三角函数与三角恒等变换练习题

合集下载

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.若,则.【答案】【解析】【考点】1.二倍角公式;2.同角三角函数2.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为.【答案】2【解析】由题意得:,因为在上为增函数,所以,即的最大值为2【考点】三角函数图像变换与性质3.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图可知则,又,结合可知,即,为了得到的图象,只需把的图象上所有点向右平移个单位长度.【考点】函数图象、图象的平移.4.在中,角所对的边分别为,满足,且.(1)求角的大小;(2)求的最大值,并求取得最大值时角的值.【答案】(1);(2)当时,取到最大值.【解析】本题主要考查余弦定理、正弦定理、两角和的正弦公式、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用三角形的内角和定理转化为A的三角函数,利用两角和的正弦公式求解,结合正弦定理把边转化为角,求出表达式,求出结果即可;第二问,由余弦定理以及基本不等式求出的最值,注意等号成立的条件即可.试题解析:(1)由,可得,即,又,所以,由正弦定理得,因为,所以0,从而,即.(2)由余弦定理,得,又,所以,于是,--10当时,取到最大值.【考点】余弦定理、正弦定理、两角和的正弦公式、基本不等式.5.下列各式中,值为的是()A.B.C.D.【答案】C【解析】A,B、,C、, D、,故选择C【考点】三角恒等变换6.在△ABC中,a,b,c分别是角A,B,C所对的边,已知则c=.【答案】【解析】由余弦定理可得【考点】余弦定理解三角形7.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式8.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=,b=4,且BC边上的高h=2.(1)求角C;(2)求边a的长【答案】(1);(2)5;【解析】(1)角C在直角三角形ADC中,根据定义求解即可;(2)由(1)知的值,利用余弦定理即可.本题注意活用余弦定理.试题解析:(1)由于△ABC为锐角三角形,过A作AD⊥BC于D点,,则.(2)由余弦定理,可知则,即所以或(舍)因此边长为5.【考点】1.正弦的定义;2.余弦定理;9.△ABC中,,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】由正弦定理可知,,整理得,所以,则△ABC为等腰三角形.【考点】正弦定理的应用.10.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.11.(2011•安徽)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为.【答案】15【解析】因为三角形三边构成公差为4的等差数列,设中间的一条边为x,则最大的边为x+4,最小的边为x﹣4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积.解:设三角形的三边分别为x﹣4,x,x+4,则cos120°==﹣,化简得:x﹣16=4﹣x,解得x=10,所以三角形的三边分别为:6,10,14则△ABC的面积S=×6×10sin120°=15.故答案为:15【考点】余弦定理;数列的应用;正弦定理.12.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.13.如图所示,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距10海里.问:乙船每小时航行多少海里?【答案】【解析】连接,则∴△是等边三角形,求出,在△中使用余弦定理求出的长,除以航行时间得出速度试题解析:如图,连接A1B2,由题意知,A1B1=20,A2B2=10,A1A2=×30=10(海里)又∵∠B2A2A1=180°-120°=60°,∴△A1A2B2是等边三角形,∠B1A1B2=105-60°=45°.在△A1B2B1中,由余弦定理得=202+(10)2-2×20×10×=200,∴B1B2=10(海里).因此乙船的速度大小为×60=30(海里/小时).【考点】解三角形的实际应用;余弦定理14.(2015春•东城区期末)下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①【答案】B【解析】根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B【考点】演绎推理的基本方法.15.在△ABC内部有任意三点不共线的2017个点,加上A、B、C三个顶点,共有2020个点,把这2020个点连线,将△ABC分割成以这些点为顶点,且互不重叠的小三角形,则小三角形的个数为()A.4037 B.4035 C.4033 D.4032【答案】B【解析】三个点时,有1个三角形,4个点时有3个三角形,5个点时有5个三角形,每加一个点,三角形的个数加2,因此2020个点时三角形的个数为1+(2020-3)×2=4035.【考点】归纳推理.16.在锐角中,内角的对边分别为,且.(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)由正弦定理得的值,再由题意可得的大小;(2)由已知条件代入余弦定理可求得的值,代入面积公式可得三角形的面积.试题解析:(1)∵中,,∴根据正弦定理,得∵锐角中,,∴等式两边约去,得∵是锐角的内角,∴;(2)∵,,∴由余弦定理,得,化简得,∵,平方得,∴两式相减,得,可得.因此,的面积.【考点】正弦定理、余弦定理.17.设函数,若为奇函数,则= ;【答案】【解析】,函数为奇函数,所以【考点】三角函数性质18.已知的三内角所对的边分别为,且,则.【答案】【解析】由正弦定理及得,所以,所以.【考点】正弦定理与余弦定理.19.函数的部分图像如图所示,则A.B.C.D.【答案】A【解析】由图象可知,,所以,当时,,故选A.【考点】函数的图象.20.在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的值.【答案】(1);(2).【解析】(1)根据正弦定理化简已知的式子求出,在由锐角三角形的特征求出角的大小;(2)根据余弦定理和条件,可得,利用三角形的面积公式和条件求出和的值,由完全平方公式即可求出的值.试题解析:(1)由及正弦定理得,,∵,∴.∵是锐角三角形,∴.(2)∵,由面积公式得,即....①由余弦定理得,即,∴....②,由①②得,故.【考点】正弦定理与余弦定理.21.已知:f(x)=2cos2x+sin2x﹣+1(x∈R).求:(Ⅰ)f(x)的最小正周期;(Ⅱ)f(x)的单调增区间;(Ⅲ)若x∈[﹣,]时,求f(x)的值域.【答案】见解析【解析】解:f(x)=sin2x+(2cos2x﹣1)+1=sin2x+cos2x+1=2sin(2x+)+1(Ⅰ)函数f(x)的最小正周期为T==π(Ⅱ)由2kπ﹣≤2x+≤2kπ+得2kπ﹣≤2x≤2kπ+∴kπ﹣≤x≤kπ+,k∈Z函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z(Ⅲ)因为x∈[﹣,],∴2x+∈[﹣,],∴sin(2x+)∈[,1],∴f(x)∈[0,3].【点评】本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,是基础题.22.在中,三内角的对边分别为,面积为,若,则等于()A.B.C.D.【答案】A【解析】因为,所以,所以,化为,又因为,解得或(舍去),所以.【考点】余弦定理.23.已知函数,(1)求函数的单调递减区间;(2)求函数的极小值和最大值,并写明取到极小值和最大值时分别对应的值.【答案】(1);(2)详见解析.【解析】(1)先求函数的导数,并且根据辅助角公式化简函数,并求导数在的零点,同时讨论零点两侧的单调性,确定函数的单调递减区间;(2)根据(1)的讨论,可求得极值点和极值以及端点值的大小,经比较可得函数的最大值以及极小值.试题解析:(1)f′(x)=cosx+sinx+1=sin(x+)+1 ()令f′(x)=0,即sin(x+)=-,解之得x=π或x=π.x,f′(x)以及f(x)变化情况如下表:(π,π)π(π,2π)-0+∴f(x)的单调减区间为(π,π).=f()=.(2)由(1)知f (x)极小而f(π)=π+2,,所以.【考点】导数的简单应用24.在一个港口,相邻两次高潮发生的时间相距,低潮时水深为,高潮时水深为.每天潮涨潮落时,该港口水的深度()关于时间()的函数图象可以近似地看成函数的图象,其中,且时涨潮到一次高潮,则该函数的解析式可以是()A.B.C.D.【答案】A【解析】由题意分析可知函数的最大值为15,最小值为9,周期T=12,所以,又当t=3时,函数取得最大值,所以答案为A。

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换-经典测试题-附答案

三角函数与三角恒等变换(A)一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)1. 半径是r,圆心角是α(弧度)的扇形的面积为________.2. 若,则tan(π+α)=________.3. 若α是第四象限的角,则π-α是第________象限的角.4. 适合的实数m的取值范围是_________.5. 若tanα=3,则cos2α+3sin2α=__________.6. 函数的图象的一个对称轴方程是___________.(答案不唯一)7. 把函数的图象向左平移个单位,所得的图象对应的函数为偶函数,则的最小正值为___________.8. 若方程sin2x+cosx+k=0有解,则常数k的取值范围是__________.9. 1-sin10°·sin 30°·sin 50°·sin 70°=__________.10. 角α的终边过点(4,3),角β的终边过点(-7,1),则sin(α+β)=__________.11. 函数的递减区间是___________.12. 已知函数f(x)是以4为周期的奇函数,且f(-1)=1,那么__________.13. 若函数y=sin(x+)+cos(x+)是偶函数,则满足条件的为_______.14. tan3、tan4、tan5的大小顺序是________.二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)已知,求的值.16. (本小题满分14分)已知函数f(x)=2sinx(sinx+cosx).(1) 求函数f(x)的最小正周期和最大值;(2) 在给出的直角坐标系中,画出函数y=f(x)在区间上的图象.17. (本小题满分14分)求函数y=4sin2x+6cosx-6()的值域.18. (本小题满分16分)已知函数的图象如图所示.(1) 求该函数的解析式;(2) 求该函数的单调递增区间.19. (本小题满分16分)设函数(x∈R).(1) 求函数f(x)的值域;(2) 若对任意x∈,都有|f(x)-m|<2成立,求实数m的取值范围.20. (本小题满分16分)已知奇函数f(x)的定义域为实数集,且f(x)在[0,+∞)上是增函数.当时,是否存在这样的实数m,使对所有的均成立?若存在,求出所有适合条件的实数m;若不存在,请说明理由.三角函数与三角恒等变换(B)一、填空题(本大题共14小题,每题5分,共70分.不需写出解答过程,请把答案写在指定位置上)1.______.2._______.3. 已知,则的值为_________.4. 已知,则________.5. 将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是________.6. 已知函数是R上的偶函数,则__________.7. 函数的单调递减区间为________.8. 已知函数,且,则函数的值域是_________.9. 若,则的值是___________.10. 已知都是锐角,且,则的值是_________.11. 给出下列四个命题,其中不正确命题的序号是_______.① 若,则,k∈Z;② 函数的图象关于对称;③ 函数(x∈R)为偶函数;④ 函数y=sin|x|是周期函数,且周期为2π.12. 已知函数的图象如图所示,,则f(0)=_________.13. 若,且,则______.14. 已知函数(x∈R,ω>0)的最小正周期为π.将y=f(x)的图象向左平移个单位长度,所得图象关于y轴对称,则的最小值是______.二、解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)如图是表示电流强度I与时间t的关系在一个周期内的图象.(1) 写出的解析式;(2) 指出它的图象是由I=sint的图象经过怎样的变换而得到的.16. (本小题满分14分)化简.17. (本小题满分14分)已知函数y=sinx·cosx+sinx+cosx,求y的最大值、最小值及取得最大值、最小值时x的值.18. (本小题满分16分)设,曲线和有4个不同的交点.(1) 求的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f(x)=1-2a-2acosx-2sin2x的最小值为g(a),a∈R.(1) 求g(a)的表达式;(2) 若g(a)=,求a及此时f(x)的最大值.20. (本小题满分16分)已知定义在区间上的函数y=f(x)的图象关于直线对称,当x≥时,函数f(x)=sinx.(1) 求的值;(2) 求y=f(x)的函数表达式;(3) 如果关于x的方程f(x)=a有解,那么在a取某一确定值时,将方程所求得的所有解的和记为Ma,求Ma的所有可能取值及相对应的a的取值范围.三角函数与三角恒等变换(A)1.2. ±3. 三4.5.6. x=【解析】对称轴方程满足2x+=kπ+,所以x=(k∈Z).7.8.9.【解析】∵ sin10°·sin30°·sin50°·sin70°==∴ 原式=1-10. -11.12. -1 【解析】f(5)=-f(-5)=-f(-1)=-1,∴ 原式=sin=-1.13.=kπ+(k∈Z) 14. tan5<tan3<tan415. 2+sinθcosθ-cos2θ=2+=16. (1) f(x)=2sin2x+2sinxcosx=1-cos2x+sin2x=1+(sin2xcos-cos2xsin)=1+sin(2x-).所以函数f(x)的最小正周期为π,最大值为1+.(2)列表.xy 1 1 1 故函数y=f(x)在区间上的图象是17. y=4sin2x+6cosx-6=4(1-cos2x)+6cosx-6 =-4cos2x+6cosx-2 =-4∵ -≤x≤,∴ -≤cosx≤1,∴ y∈.18. (1)由图象可知:T=2=πω==2.A==2,∴ y=2sin(2x+).又∵为“五点画法”中的第二点,∴ 2×+==.∴ 所求函数的解析式为y=2sin(2)∵ 当2x+∈(k∈Z)时,f(x)单调递增,∴ 2x∈x∈(k∈Z).19. (1) f(x)=4sinx·+cos2x=2sinx(1+sinx)+1-2sin2x=2sinx+1.∵ x∈R,∴ sinx∈[-1,1],故f(x)的值域是[-1,3].(2)当x∈时,sinx∈,∴ f(x)∈[2,3].由|f(x)-m|<2-2<f(x)-m<2,∴ f(x)-2<m<f(x)+2恒成立.∴ m<[f(x)+2]min=4,且m>[f(x)-2]max=1.故m的取值范围是(1,4).20. 因为f(x)为奇函数,所以f(-x)=-f(x)(x∈R),所以f (0)=0.所以f(4m-2mcosθ)-f(2sin2θ+2)>0,所以f(4m-2mcosθ)>f(2sin2θ+2).又因为f(x)在[0,+∞)上是增函数,且f(x)是奇函数,所以f(x)是R上的增函数,所以4m-2mcosθ>2sin2θ+2.所以cos2θ-mcosθ+2m-2>0. 因为θ∈,所以cosθ∈[0,1].令l=cosθ(l∈[0,1]). 满足条件的m应使不等式l2-ml+2m-2>0对任意l∈[0,1]均成立. 设g(l)=l2-ml+2m-2=-+2m-2.由条件得解得,m>4-2.三角函数与三角恒等变换(B)1.2.3.【解析】原式=4. 25. y=2cos2x6.7.(k∈Z)【解析】∵ sin>0,且y=是减函数,∴ 2kπ<2x+≤+2kπ,(k∈Z),∴ x∈(k∈Z).8.【解析】y=sinx+cosx=2sin,又≤x+≤∴ sin∈,∴ y∈[-,2].9.【解析】tanθ=,∴ cos2θ+sin2θ=10.【解析】由题意得cosα=,sin(α+β)=.∴ sinβ=sin[(α+β)-α]=sin(α+β)·cosα-cos(α+β)·sinα=.11. ①②④ 12.13.【解析】tanα=tan(α-β+β)=,∴ tan(2α-β)=tan[(α-β)+α]=.∵ β∈(0,π),且tanβ=-∈(-1,0),∴ β∈,∴ 2α-β∈∴ 2α-β=-.14.【解析】由已知,周期为π=,∴ ω=2.则结合平移公式和诱导公式可知平移后是偶函数,sin=±cos2x,故min=.15. (1) I=300sin.(2) I=sintI=sinI=sinI=300sin.16. 原式=sin6°·cos48°·cos24°·cos12°===…=17. 令sinx+cosx=t.由sinx+cosx=sin,知t∈[-,],∴ sinx·cosx=,t∈[-,].所以y=+t=(t+1)2-1,t∈[-,].当t=-1,即2sin=-1,x=2kπ+π或x=2kπ+π(k∈Z)时,ymin=-1;当t=,即sin=, x=2kπ+(k∈Z)时,ymax=.18. (1)解方程组故两条已知曲线有四个不同的交点的充要条件为∵ 0<θ<,∴ 0<θ<.(2)设四个交点的坐标为(xi,yi)(i=1,2,3,4),则+=2cosθ∈(,2)(i=1,2,3,4).故此四个交点共圆,并且这个圆的半径r=.19. f(x)=1-2a-2acosx-2sin2x=1-2a-2acosx-2(1-cos2x)=2cos2x-2acosx-1-2a=2-1-2a-(a∈R).(1)函数f(x)的最小值为g(a).① 当<-1,即a<-2时,由cosx=-1,得g(a)=2-1-2a-=1;。

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)

三角恒等变换(测试题及答案)三角恒等变换测试题第I卷一、选择题(本大题共12个小题,每小题5分,共60分)1.求cos24cos36-cos66cos54的值。

A。

0.B。

1/2.C。

1/4.D。

1/82.已知tan(α+β)=3,tan(α-β)=5,则tan(2α)的值为:A。

1/2.B。

2/3.C。

3/4.D。

4/53.函数y=sin(x)+cos(x)的最小正周期为:A。

π。

B。

2π。

C。

4π。

D。

π/24.已知等腰三角形顶角的余弦值等于4/5,则这个三角形底角的正弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/45.α,β都是锐角,且sin(α)=1/3,cos(α+β)=-1/2,则sin(β)的值是:A。

-2/3.B。

-1/3.C。

1/3.D。

2/36.已知-x<π/3且cos(-x)=-√3/2,则cos(2x)的值是:A。

-7/24.B。

-1/8.C。

1/8.D。

7/247.函数y=sin(x)+cos(x)的值域是:A。

[0,1]。

B。

[-1,1]。

C。

[-1/2,1/2]。

D。

[1/2,√2]8.将y=2sin(2x)的图像向左平移π/4个单位,得到y=3sin(2x)-cos(2x)的图像,只需将y=2sin(2x)的图像:A。

向右平移π/4个单位。

B。

向左平移π/4个单位C。

向右平移π/2个单位。

D。

向左平移π/2个单位9.已知等腰三角形顶角的正弦值等于4/5,则这个三角形底角的余弦值为:A。

3/5.B。

4/5.C。

5/6.D。

5/410.函数y=sin(x)+3cos(2x)的图像的一条对称轴方程是:A。

x=π/4.B。

x=π/6.C。

x=π/2.D。

x=π/3二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中的横线上)11.已知α,β为锐角,cosα=1/10,cosβ=1/5,则α+β的值为__ π/6 __。

12.在△ABC中,已知tanA,tanB是方程3x^2-7x+2=0的两个实根,则tanC=__ 1/2 __。

高中数学 第五章 三角函数 5.5 三角恒等变换 5.5.2 简单的三角恒等变换精品练习(含解析)新

高中数学 第五章 三角函数 5.5 三角恒等变换 5.5.2 简单的三角恒等变换精品练习(含解析)新

5.5.2 简单的三角恒等变换知识点三 三角恒等变换的应用7.函数y =cos 2ωx -sin 2ωx (ω>0)的最小正周期是π,则函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2B.⎣⎢⎡⎦⎥⎤5π4,9π4C.⎣⎢⎡⎦⎥⎤-π4,3π4D.⎣⎢⎡⎦⎥⎤π4,5π48.在△ABC 中,求证:tan A 2tan B 2+tan B 2tan C 2+tan C 2tan A2=1.9.如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?关键能力综合练 一、选择题1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2 C .-21+a2D .-21-a22.若2sin x =1+cos x ,则tan x2的值等于( )A.12B.12或不存在学科素养升级练1.(多选题)对于函数f (x )=sin x +3cos x ,给出下列选项其中不正确的是( )A .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称B .存在α∈⎝⎛⎭⎪⎫0,π3,使f (α)=1C .存在α∈⎝ ⎛⎭⎪⎫0,π3,使函数f (x +α)的图象关于y 轴对称D .存在α∈⎝⎛⎭⎪⎫0,π3,使f (x +α)=f (x +3α)恒成立 2.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是________,最小值是________.3.(学科素养—数学建模)如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.5.5.2 简单的三角恒等变换必备知识基础练1.解析:∵3π<θ<7π2,sin θ=-35,∴cos θ=-1-⎝ ⎛⎭⎪⎫-352=-45,∵3π<θ<7π2,∴3π2<θ2<7π4.则tan θ2=-1-cos θ1+cos θ=-1+451-45=-3. 答案:B2.解析:因为2π<θ<3π,所以π<θ2<3π2.又cos θ=m ,所以sin θ2=-1-cos θ2=-1-m2,故选A. 答案:A3.解析:y =1+cos ⎝ ⎛⎭⎪⎫2x -π62+1-cos ⎝ ⎛⎭⎪⎫2x +π62-1=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π6-cos ⎝ ⎛⎭⎪⎫2x +π6=12sin 2x ,是奇函数.故选A.答案:A4.解析:f (x )=sin x -cos ⎝⎛⎭⎪⎫x +π6=sin x -32cos x +12sin x =32sin x -32cos x =3sin ⎝⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3],故选B. 答案:B5.解析:∵f (x )=2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3.∴f (x )∈[-2,2]. 答案:[-2,2]6.解析:(1)2(cos x -sin x )=2×2⎝⎛⎭⎪⎫22cos x -22sin x=2⎝ ⎛⎭⎪⎫cos π4cos x -sin π4sin x =2cos ⎝ ⎛⎭⎪⎫π4+x .(2)315sin x +35cos x =65⎝⎛⎭⎪⎫32sin x +12cos x=65⎝ ⎛⎭⎪⎫sin π3sin x +cos π3cos x =65cos ⎝ ⎛⎭⎪⎫x -π3.7.解析:y =cos 2ωx -sin 2ωx =cos 2ωx (ω>0), 因为函数的最小正周期为π,故2π2ω=π,所以ω=1.则f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4=2sin ⎝ ⎛⎭⎪⎫x +π4. 由2k π-π2≤x +π4≤2k π+π2,得2k π-3π4≤x ≤2k π+π4(k ∈Z ),当k =1时,函数的一个单调递增区间是⎣⎢⎡⎦⎥⎤5π4,9π4.答案:B8.证明:∵A ,B ,C 是△ABC 的三个内角, ∴A +B +C =π,从而有A +C 2=π2-B2.左边=tan B 2⎝ ⎛⎭⎪⎫tan A2+tan C 2+tan A 2tan C2=tan B 2tan ⎝ ⎛⎭⎪⎫A 2+C 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+tan A 2tan C2=tan B 2tan ⎝ ⎛⎭⎪⎫π2-B 2⎝ ⎛⎭⎪⎫1-tan A 2tan C 2+tan A 2tan C2=1-tan A 2tan C 2+tan A 2tan C2=1=右边, ∴等式成立.9.解析:设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝ ⎛⎭⎪⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.关键能力综合练1.解析:若5π<θ<6π,则5π4<θ4<3π2,则sin θ4=-1-cosθ22=-1-a2=-21-a2. 答案:D2.解析:由已知得sin x 1+cos x =12,tan x2=sinx2cosx2=2sin x 2cosx22cos 2x 2=sin x 1+cos x =12.当x =π+2k π,k ∈Z 时,tan x2不存在.答案:B3.解析:由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.答案:C 4.解析:cos ⎝⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1.∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫π3+α=π2, ∴cos ⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π6-α=13.∴cos ⎝⎛⎭⎪⎫2π3+2α=2×⎝ ⎛⎭⎪⎫132-1=-79.故选A.答案:A5.解析:由cos α=-45,α是第三象限角,可得sin α=-1-cos 2α=-35.所以1+tan α21-tan α2=cos α2+sin α2cos α2-sin α2=1+sin αcos α=1-35-45=-12.答案:A6.解析:f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎪⎫2x +π6+a +1. 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴f (x )min =2·⎝ ⎛⎭⎪⎫-12+a +1=-4. ∴a =-4. 答案:C7.解析:1+sin 2=sin 21+cos 21+2sin 1cos 1 =sin 1+cos 12=|sin 1+cos 1|,因为1∈⎝⎛⎭⎪⎫0,π2,所以sin 1>0,cos 1>0,则1+sin 2=sin 1+cos 1. 答案:sin 1+cos 18.解析:由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos2θ2=1+cos θ2得cos2θ2=925. 又θ2是第一、三象限角,所以cos θ2=±35.答案:±359.解析:y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎪⎫2x -π4+32.最小正周期T =2π2=π.令-π2+2k π<2x -π4<π2+2k π,k ∈Z ,解得-π8+k π<x <3π8+k π,k ∈Z .所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫k π-π8,k π+3π8(k ∈Z ).答案:π ⎝ ⎛⎭⎪⎫k π-π8,k π+3π8,k ∈Z10.证明:左边=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x =sin x 1+cos x =2sin x 2cosx22cos2x 2=tan x2=右边. 所以原等式成立.学科素养升级练1.解析:函数f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,对于A :函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3,当x =π6时,2sin ⎝ ⎛⎭⎪⎫π6+π3=2,不能得到函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称.∴A 不对.对于B :α∈⎝ ⎛⎭⎪⎫0,π3,可得α+π3∈⎝ ⎛⎭⎪⎫π3,2π3,f (α)∈(3,2],不存在f (α)=1.∴B 不对.对于C :函数f (x +α)的对称轴方程为:x +α+π3=π2+k π,可得x =k π+π6-α(k ∈Z ),当k =0,α=π6时,可得图象关于y 轴对称.∴C 对.对于D :f (x +α)=f (x +3α)说明2α是函数的周期,函数f (x )的周期为2π,故α=π,∴不存在α∈⎝⎛⎭⎪⎫0,π3,使f (x +α)=f (x +3α)恒成立,∴D 不对.故选A ,B ,D.答案:ABD2.解析:∵A +B =2π3,∴cos 2A +cos 2B =12(1+cos 2A +1+cos 2B )=1+12(cos 2A +cos 2B )=1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B )=1-12cos(A -B ),∴当cos(A -B )=-1时, 原式取得最大值32;当cos(A -B )=1时,原式取得最小值12.答案:32123.word - 11 - / 11解析:如图所示, 设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC 的中点,在Rt△ONC 中,=sin α,ON =cos α,OM =DM tan π6=3DM =3=3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2=2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α-3=2⎝ ⎛⎭⎪⎫12sin 2α+32cos 2α- 3=2sin ⎝ ⎛⎭⎪⎫2α+π3- 3.因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3.故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值,此时S 矩形ABCD =2- 3.。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.已知⊿ABC和⊿BCD均为边长等于的等边三角形,且,则二面角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】略2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.在中,三内角、、的对边分别是、、.(1)若求;(2)若,,试判断的形状.【答案】(1)或;(2)等边三角形【解析】(1)由题根据正弦定理得到,因为,所以,可得或;(2)根据正弦定理化简可得,结合条件,得到,判断三角形为等边三角形.试题解析:(1)由正弦定理得:又∴∴或(2)由得又是等边三角形.【考点】正弦定理;余弦定理4.圆锥的表面积是底面积的3倍,则该圆锥的侧面展开图扇形的圆心角的弧度数为.【答案】【解析】设母线长为R,底面半径为r,∴底面周长=,底面面积=,侧面面积,∵侧面积是底面积的3倍,∴,【考点】扇形和圆锥的相关计算5.在中,内角A 、B、C对的边长分别是a、b、c.(1)若c=2,C=,且的面积是,求a,b的值;(2)若,试判断的形状.【答案】(1)a=2, b=2(2)等腰三角形【解析】(Ⅰ)根据余弦定理,得,再由面积正弦定理得,两式联解可得到a,b的值;(Ⅱ)根据三角形内角和定理,得到sinC=sin(A+B),代入已知等式,展开化简合并,得sinBcosA=sinAcosA,最后讨论当cosA=0时与当cosA≠0时,分别对△ABC 的形状的形状加以判断,可以得到结论试题解析:(1)由余弦定理得又的面积为,得ab=4 解得 a=2, b=2(2)得得,为直角三角形;当时,A="B," 为等腰三角形【考点】1.正余弦定理解三角形;2.三角函数基本公式6.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.7.在△ABC中,A=60°,,,则B=()A.45°B.135°C.45°或135°D.以上答案都不对【答案】A【解析】由正弦定理,得,即,因为,所以,所以;故选A.【考点】正弦定理.【易错点睛】本题考查正弦定理的应用,属于基础题;在三角形中,若已知两边及其中一边的对角,则选用正弦定理求另一边的对角,但满足该条件的三角形并非唯一,可能一解、两解或无解,要根据题目中的条件合理取舍,如本题中由正弦定理得到后,部分学生会出现选C的错误答案,要注意利用“大边对大角”进行取舍.8.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.9.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A. B. C. D.【解析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【考点】余弦定理;等比数列.10.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.11.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形12.(2015秋•珠海期末)△ABC内角A,B,C的对边分别为a,b,c.已知,则B= .【答案】45°.【解析】由已知及正弦定理可得sinB==,根据大边对大角由b<a可得B∈(0,60°),即可求B的值.解:△ABC中,∵,∴由正弦定理可得:sinB===,∵b<a,∴B∈(0,60°),∴B=45°.故答案为:45°.【考点】正弦定理.13.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【答案】(1)(2)4【解析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.【考点】余弦定理;正弦定理.14.在中,角对边分别是,且满足.(1)求角的大小;(2)若,且的面积为,求.【答案】(1);(2).【解析】(1)利用正弦定理,化边为角,利用两角差的正弦公式,可得进而得,即可求解角的大小;(2)利用三角形的面积公式得,再利用余弦定理得,联立方程组即可求解的值.试题解析:(1);(2)①,利用余弦定理得:即②,联立①②,解得:.【考点】正弦定理、余弦定理及三角形的面积公式.15.在中,内角所对的边分别为,且.(1)求角的大小;(2)如果,求面积的最大值,并判断此时的形状。

三角函数图象及恒等变换高考题

三角函数图象及恒等变换高考题

三角函数的图象和性质及三角恒等变换一、选择题1.函数1)4(cos 22--=πx y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数 2.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫ ⎪⎝⎭,0中心对称,那么||ϕ的最小值为( )A .6π B.4π C.3π D. 2π 3.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x =C.)42sin(1π++=x yD.22sin y x = 4.函数()(13tan )cos f x x x =+的最小正周期为( )A .2πB .32π C .π D .2π 5已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) A.23- B. 23 C.- 12 D. 12 6将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于 ( ) A .6π B .56π C. 76π D.116π 7.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度二、填空题8 函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .9已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫= ⎪⎝⎭。

10函数22cos sin 2y x x =+的最小值是_____________________ .三、解答题11.已知函数()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 12.设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的最小正周期.(Ⅱ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间. 答案1 答案 A2 答案 C3 答案: B4 答案:A5 答案 B6 答案 D7 答案 A8 答案 39 答案 010 答案 111解(Ⅰ)∵()()2sin cos 2sin cos sin 2f x x x x x x π=-==, ∴函数()f x 的最小正周期为π.(Ⅱ)由2623x x ππππ-≤≤⇒-≤≤,∴sin 21x ≤≤,∴()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为1,最小值为12解:(Ⅰ) 依题意得2223ππω=,故ω的最小正周期为32.(Ⅱ)依题意得: 5()3()2)2244g x x x πππ⎡⎤=-++=-+⎢⎥⎣⎦ 由5232()242k x k k Z πππππ--+∈≤≤ 解得227()34312k x k k Z ππππ++∈≤≤\ 故()y g x =的单调增区间为: 227[,]()34312k k k Z ππππ++∈。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
对任意的 , 成立,
所以 , ,
所以 ,
又 的周期 ,
所以 ,
故选:B.
【点睛】
本题主要考查三角函数的性质运用,考查分析理解能力,难度不大
3.已知 ,则 ()
A. B.1C. D.0
【答案】A
【解析】
【分析】
利用两角和的正弦和余弦公式求出 的值,然后利用二倍角的正弦公式以及弦化切思想可求出 的值.
17.已知 .
(1)化简 ;
(2)若 是第三象限角,且 ,求 的值.
【答案】(1) ;(2) .
【解析】
试题分析:
(1)利用诱导公式化简 = = ;(2)由诱导公式可得 ,再利用同角三角函数关系求出 即可.
试题解析:
(1)

(2)∵ ,
∴ ,
又 为第三象限角,
∴ ,
∴ .
18.已知函数
(Ⅰ)求 最小正周期;
A. B. 或 C. D.
【答案】D
【解析】
【分析】
根据 可得到 ,从而确定 ,由同角三角函数可求解出 和 ,利用两角和差正弦公式可求得结果.
【详解】
且 为锐角
又 ,又
故选:
12.函数 的部分图象如图所示,则下列说法中错误的是()
A. 的最小正周期是 B. 在 上单调递增
C. 在 上单调递增D.直线 是曲线 的一条对称轴
(Ⅱ)求 在区间 上的最大值和最小值.
【答案】(Ⅰ) ;(Ⅱ)最大值为 ,最小值为0
【解析】
试题分析:(Ⅰ)利用三角函数基本公式将函数式整理化简为 ,函数的周期为 ;(Ⅱ)由定义域 得到 的取值范围,借助于三角函数单调性可求得函数的最大值和最小值
试题解析:(Ⅰ)
的最小正周期
(Ⅱ)
19.已知函数 .
(1)求函数 的单调减区间和对称轴;
由 得 ,
即函数 的对称中心为 ,故B错;
由 得 ,
即 的对称轴为 ,故C错;
由 得 ,
即函数 的单调递增区间为 ,D选项显然正确;
故选:D.
10.若 ,且 ,则 等于()
A.3B.2C. D.
【答案】B
【解析】
【分析】
根据二倍角正余弦公式化简条件,解得结果.
【详解】
故选:B
11.已知 为锐角, ,则 的值为()
【答案】C
【解析】
【分析】
根据图像,可得 ,利用正弦函数的性质,结合整体法计算,以及对选项的排除法,可得结果.
【详解】
由图可知, ,
该三角函数的最小正周期 ,
故A项正确;
所以 ,则 .
因为 ,所以该函数的
一条对称轴为 ,
将 代入 ,
则 ,
解得 ,
故 .
令 ,
得 ,
令 ,则
故函数 在 上单调递增.故B项正确;
又 ,解得 ,
函数 的对称轴方程为: , .
(2) .



要使不等式有解,必须 .
的取值范围为 , .
【详解】
由题知 对称中心的横坐标满足 ,
将 代入得 ,
因为 ,所以最小值为 .
故选:A
7.函数 的值域为()
A. B. C. D.
【答案】B
【解析】
f(x)=sinx-cos(x+ ) , , 值域为[- , ].
8.已知: ,则 ( )
A. B. C. D.
【答案】A
【解析】
【分析】
观察已知角与待求的角之间的特殊关系,运用余弦的二倍角公式和诱导公式求解.
【答案】
【解析】
【分析】
利用同角三角函数的基本关系以及两角和的正弦公式即可求解.
【详解】
由于 都是锐角,所以 ,
所以 , ,
所以
故答案为:
15. 的值为______.
【答案】4
【解析】
【分析】
利用诱导公式、辅助角公式以及二倍角公式化简即可求解.
【详解】
.
故答案为:4
16.关于函数 有下列命题:①由 可得 必是 的整数倍;② 的图象关于点 对称;③ 的表达式可改写为 ④ 的图象关于直线 对称.其中正确命题的序号是_________.
【详解】
, ,
可得 , .
因此, .
故选:A.
4.已知 ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
将角 表示为 ,再利用诱导公式可得出结果.
【详解】
,故选C.
5.已知角 的顶点与坐标原点 重合,始边与 轴的非负半轴重合,它的终边过点 ,则 的值为()
A. B. C. D.
【答案】B
【解析】
【分析】
根据三角函数定义得到 ,故 ,再利用和差公式得到答案.
【详解】
∵角 的终边过点 ,∴ , .
∴ .
故选: .
【点睛】
本题考查了三角函数定义,和差公式,意在考查学生的计算能力.
6.函数 的一个对称中心为 ,则 的最小值为()
A. B. C. D.
【答案】A
【解析】
【分析】
令 ,将 代入,结合 , 即可求 的最小值.
(2)若不等式 在 上有解,求 的取值范围.
【答案】(1) ; ;(2)
【解析】
【分析】
(1)利用三角恒等变换以及二倍角化简,然后根据正弦函数的性质进行计算.
(2)由(1)可得 ,再根据正弦函数的性质求出 在区间上的值域,即可得解.
【详解】
解:(1)由题意

由 , .
整理,可得 , .
函数 的单调减区间为: , , .
【答案】②③
【解析】
【分析】
根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案.
【详解】
①中 是,②正确;故④错误;
③中 ,③正确;
所以正确命题序号是②③.
故答案为:②③.
【点睛】
本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.
三角函数与三角恒等变换练习题
1.若 ,则 ( )
A. B. C. D.
【答案】D
【解析】
.
分子分母同时除以 ,即得: .
故选D.
2.已知函数 ,若对于任意的 ,都有 成立,则 的最小值为()
A.2B.1C.4D.
【答案】B
【解析】
【分析】
由题意可知 是函数的最小值, 是函数的最大值,则 的最小值就是函数的半周期.
【详解】
令 ,则 ,
所以 ,
所以 ,
故选A.
9.已知函数 ,则下列结论中正确的是().
A. 的一个周期为 B. 的图像关于点 对称
C. 的图像关于直线 对称D. 在区间 上单调递增
【答案】D
【解析】
【分析】
根据正弦函数的性质,由题中条件,逐项判断,即可得出结果.
【详解】
因为 ,
所以最小正周期为 ,故A错;
令 ,
得 ,
令 ,
故函数 在 上单调递减.故C项错误;
令 ,得 ,
令 ,
故直线 是 的一条对称轴.故D项正确.
故选C.
13.sin7°cos37°-sin83°cos53°的值是__________.
14.已知 中, ,则 的大小为________.
.已知 , , , 均为锐角,则 ___________.
相关文档
最新文档