常用函数的拉氏变换

合集下载

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss is A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()(式中,1s 为F(s)的r 重根,1 r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

拉氏变换

拉氏变换

)
=
⎧0(t
⎨ ⎩
t
(t
< ≥
0) 0)
L[t] =
1 s2
4.加速度函数
f
(t )
=
⎪⎧ ⎨ ⎪⎩
0(t < 0) 1 t 2 (t ≥ 0) 2
L[ 1 2
t2] =
1 s3
5
时间域:δ(t)→ 1(t)→t→ t2/2 复数域: 1→1/s→1/s2→1/s3
4.指数函数
f (t) = e−at (t ≥ 0)
t →0+
s→∞
证明方法同上。只是要将s→∞取极限。
15
(6) 衰减定理 若f2(t)=e-at f1(t), 则
F2(s) =F1(s+a)
L[e−at f (T )] = F (s + a)
16
8
(7) 延迟定理 (处理复杂时间函数) 若 f2(t)=f1(t-a), 则 F2(s)=e-as F1(s)
=
f (t) ∞ 0
= lim t→∞
f (t) −
f (0)
右边 = lim [sF (s) − f (0)] = lim sF (s) − f (0)
s→0
s→0
∴ lim f (t ) = lim sF (s)
t→∞
s→0
14
7
(5)初值定理
若 f(t) 在t=0+处有初值f(0+),则
lim f (t) = f (0+ ) = lim sF (s)
1
= 1 (1 − 1)
(s + a)(s + b) b − a s + a s + b

(完整版)典型常见函数拉氏变换表

(完整版)典型常见函数拉氏变换表

t 0
s
lim f (t) lim sF (s)
t
s0
L
d dt
f
(t)
SF(s)
f
(0)
L
d
2f dt
(t
2
)
S 2F(s)
Sf (0)
f
(0)
f (0 ) lim f (t) lim sF (s)
t 0
s
lim f (t) lim sF (s)
t
s0
Lf (t)g(t)= F sGs
18
1
t n 1-2
e -nt sinn 1-2
1 e -nt sin(n 1-2 t-
) 1-2
19
=
arctan
1-2
1
s2+2ns+n2
s
s2+2ns+n2
典型时间函数的拉普拉斯变换
序号
原函数 f(t) (t >0)
1- 1 e -nt sin(n 1-2 t +
) 1-2
20
1-2
= arctan
典型常见函数 拉氏变换表
典型常见函数拉氏变换表
序号 1
原函数 f(t) (t >0)
1 (单位阶跃函数)
象函数 F(s)=L[f(t)]
1 s
2
(t) (单位脉冲函数)
1
3
K (常数)
K s
4
t (单位斜坡函数)
1 s2
典型常见时间函数拉氏变换表
序号 5 6 7 8
原函数 f(t) (t >0)
t n (n=1, 2, …) e -at

(完整word版)常用函数的拉氏变换

(完整word版)常用函数的拉氏变换

附录A 拉普拉斯变换及反变换4194204213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ (F-1)式中,n s s s ,,,21Λ是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+Λ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;422其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。

拉氏变换

拉氏变换
st 0


0
1 st [ f (t )dt ] de s
e st e st [ f (t )dt d] |0 f (t )dt d 0 s s f ( 1) (0) F ( s ) s s
f
(n)
(t ) f (t )dt

且: f
(t ) (t )dt d 1

L[ (t )] (t )e dt 1
st 0
典型函数的拉氏变换 5、正弦函数
1 f ( t ) sin t ( e j t e j t ) 2j 1 j t jt st L[sin t ] (e e )e dt 0 2j 1 ( s j ) t ( s j )t (e e )dt 2j 0 1 1 1 ( ) 2 2 j s j s j s 2
若f 1 (0) f 2 (0) f n (0) 0
li f ( t ) lim lim li sF ( s )
t0 s
li f ( t ) lim lim li sF F (s)
t s 0
典型函数的拉氏变换 6、余弦函数
1 j t j t ) f (t ) cos t ( e e 2
s L[cos [ t] 2 s 2
常用函数的拉氏变换表(重要)
f(t)
F(s) 1 1/s 1/s2
f(t) Sinωt Cosωt
F(s)
δ(t)
u(t) t

s
L [e at f (t )] F ( s a )
dn L[ n f (t )] s n F ( s ) 若f (0) f(0) f (n2)) (0) f (n1)) (0) 0 dt

拉氏变换详解

拉氏变换详解

称为拉氏反变换。记为 L1[ F (s)] 。
由F(s)可按下式求出
f
(t)

L1[F (s)]

1
2
j
C j

C j
F (s)est ds(t

0)
式中C是实常数,而且大于F(s)所有极点的 实部。
直接按上式求原函数太复杂,一般都用查 拉氏变换表的方法求拉氏反变换,但F(s)必 须是一种能直接查到的原函数的形式。 12
2.常用函数的拉氏变换
数学知识回顾
(1)例1.求阶跃函数f(t)=A·1(t)的拉氏变换。

F (s) Ae st dt

A e st


A
0
s
0
s
1
单位阶跃函数f(t)=1(t)的拉氏变换为 s 。
(2)例2.求单位脉冲函数f(t)=δ(t)的拉氏变换。
lim lim
F (s) (t)est dt
3
证:根据拉氏变换的定义有
L[
f
(t)]


0
f
(t)est dt


s
0
f
(t)est dt

f
(t )e st
0
sF(s) f (0)
原函数二阶导数的拉氏变换
L[ f (t)] sL[ f (t)] f (0) s[sF (s) f (0)] f (0)
则象函数及其自变量都增加(或减小)同
样倍数。即:L[ f ( t )] aF (as)
证:
a L[ f ( t )] f ( t )est dt
a 0a

拉氏变换

拉氏变换

1 1 1 2 = − + 2 2 s ⎛ 3⎛ ⎞ 1⎞ ⎛ 3 ⎜ ⎟ ⎜s+ ⎟ +⎜ ⎜s+ ⎟ 2⎠ ⎝ 2 ⎠ ⎝ ⎝ s+
3 2 ⎞ 1⎞ ⎛ 3 ⎜ ⎟ ⎟ +⎜ ⎟ 2⎠ ⎝ 2 ⎠
2
2

⎡ s+1 ⎤ 所以f (t ) = L ⎢ 2 ⎥ s s + s + 1 ⎣ ⎦
−1
(
)
- 1 式中,L 是表示进行拉氏反变换 的符号
常用函数拉氏变换对照表
s s 2 + w2
拉 氏 变 换 续 表
典型函数的拉氏变换
单位阶跃函数1 ( t) ⎧0( t < 0) 1( t ) = ⎨ ⎩1( t ≥ 0)
F ( s ) = L[1( t )] = ∫

0
1 − st ∞ 1( t )e dt = − e s 0
A3 A1 s + A2 + = (s + p1 )(s + p2 ) s + p3
1
系数求法:
An + ... + s + pn
s=− p [F ( s )(s + p1 )(s + p2 )]或 s=− p
2
⎡ A1 s + A2 A3 An ⎤ =⎢ + + ... + ⎥ (s + p1 )(s + p2 ) s = − p1 ( )( ) s + pn ⎦ s + p3 ⎣ s + p1 s + p2 或s = − p2
s −s+2 F (s ) = s s2 − s − 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

419
附录A 拉普拉斯变换及反变换
1.表A-1 拉氏变换的基本性质齐次性)
()]([s aF t af L =1
线性定理
叠加性
)
()()]()([2121s F s F t f t f L ±=±一般形式
=
-=][ '- -=-=----=-∑1
1
)1()
1(1
22
2)
()()
0()()(0)0()(])([)0()(])
([
k k k k n
k k n n n
n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L
)(2
微分定理初始条件为0时
)
(])([s F s dt t f d L n n
n =一般形式
∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=+
+=+=
n
k t n n k n n n
n t t t dt t f s
s s F dt t f L s
dt t f s dt t f s s F dt t f L s
dt t f s s F dt t f L 10
10
2
2022
]))(([1)(])()([]))(([])([)(]))(([])([)(])([个
共个
共 3
积分定理
初始条件为0时
n
n n s
s F dt t f L )
(]))(([=⎰⎰个
共 4延迟定理(或称域平移定理)t )
()](1)([s F e T t T t f L Ts -=--5
衰减定理(或称域平移定理)s )
(])([a s F e t f L at +=-6终值定理)
(lim )(lim 0
s sF t f s t →∞
→=7
初值定理
)
(lim )(lim 0
s sF t f s t ∞
→→=
420
8
卷积定理
)
()(])()([])()([210
210
21s F s F d t f t f L d f t f L t
t =-=-⎰⎰τττττ2.表A-2 常用函数的拉氏变换和z 变换表序
号 拉氏变换E(s)
时间函数e(t)
Z 变换E(z)
1
1
δ(t)1
2
Ts
e --11∑∞
=-=0)
()(n T nT t t δδ1
-z z 3s
1)
(1t 1
-z z 42
1s t
2
)1(-z Tz 53
1s 2
2t 3
2
)1(2)1(-+z z z T
61
1+n s !n t n )(!)1(lim 0aT
n n n a e z z a n -→-∂∂-7a
s +1at
e
-aT
e z z
--82
)(1a s +at
te -2
)(aT aT e z Tze ---9)
(a s s a +at
e
--1)
)(1()1(aT aT e z z z e -----10)
)((b s a s a b ++-bt
at e e ---bT aT e z z
e z z ----
-112
2ωω
+s t
ωsin 1
cos 2sin 2+-T z z T
z ωω122
2ω+s s t
ωcos 1
cos 2)cos (2
+--T z z T z z ωω132
2)(ωω
++a s t e at
ωsin -aT
aT aT e T ze z T
ze 22cos 2sin ---+-ωω14
2
2)(ω+++a s a s t
e
at
ωcos -aT
aT aT e T ze z T ze z 222cos 2cos ---+--ωω
421
15
a
T s ln )/1(1
-T
t a /a
z z -3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进
行反变换。

设是的有理真分式
)(s F s ()0
11
10
111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- m n >式中系数,都是实常数;是正整数。

按代数定理可
n n a a a a ,,...,,110-m m b b b b ,,,110- n m ,将展开为部分分式。

分以下两种情况讨论。

)(s F ① 无重根
0)(=s A 这时,F(s)可展开为n 个简单的部分分式之和的形式。

(F-1)∑=-=-++-++-+-=n
i i
i n n i i s s c s s c s s c s s c s s c s F 122
11)( 式中,是特征方程A(s)=0的根。

为待定常数,称为F(s)在处的留数,可n s s s ,,,21 i c i s 按下式计算:
(F-2)
)()(lim s F s s c i s s i i
-=→或
(F-
i
s
s i s A s B c ='=
)()
(3)
式中,为对的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数
)(s A ')(s A s
= (F-4)
[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 11
1)()(t
s n i i i
e c -=∑1

有重根
0)(=s A 设有r 重根,F(s)可写为
0)(=s A 1s ())
()()()
(11n r r s s s s s s s B s F ---=
+
422
=
n
n i i r r r
r r r s s c s s c s s c s s c s s c s s c -+
+-++-+-++-+-++-- 11
111111)()()(式中,为F(s)的r 重根,,…, 为F(s)的n-r 个单根;
1s 1+r s n s 其中,,…, 仍按式(F-2)或(F-3)计算,,,…, 则按下式计算:
1+r c n c r c 1-r c 1c )
()(lim 11
s F s s c r s s r -=→)]()([lim
111
s F s s ds
d
c r s s r -=→- (F-5)
)()(lim !11)()
(1s F s s ds
d j c r j j s s j
r -=→-
)
()(lim )!1(11)1()
1(11s F s s ds
d r c r r r s s --=--→原函数为
)(t f
[]
)()(1s F L t f -=⎥⎦⎤⎢⎣
⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11
111
1111)()()(
(F-6)
t s n
r i i t s r r r r i
e c e c t c t r c t r c ∑+=---+⎥⎦
⎤⎢⎣⎡+++-+-=112211
1
)!2()!1(。

相关文档
最新文档