数学教育概论
数学教育概论课件

• 内容之间有何联系?
教(学)到什么程度?
——教学目标的确定 • 教学:教学是学习者发生预期变化的过程
• 教学目标:教学中师生所预期达到的学习效 果和标准——是教学的根本指向和核心任务, 是教学设计的关键 范例1、2、3
哪些重要,难教(学)?
——教学内容的重点和难点
• 教学目标确定后,具体实行起来必须抓重点,解决主要矛 盾,同时,要分析数学内容的难点,设法克服 • 教学重点是教材中为了达到教学目的而着重指导学生必须 熟练掌握的内容。通常教材中的公式,定义,定理,法则, 数学思想方法等都是数学教学重点 • 教学难点是教材中那些对于学生来说不易理解的内容,或 者说是那些太抽象、离生活实际太远的、过程太复杂的教 学内容。有些难点是理解上的困难,如:无理数,复数, 指数;有些难点是技巧性的,如:因式分解,三角恒等变换 等 • 多种情况下重点与难点是相同的。有时难点不见得是重点, 但必须突破难点才有利于重点的解决。还有时,难点与重 点无关。 • 要注意,重点和难点的确定,一定要站在学生的角度去考 虑。教师认为易学好懂的地方,学生不一定感到好学。
概念间的关系(概念外延间的同异关系) 1、相容关系 (1)同一关系(全同关系或重合关系)
外延完全重合,内涵可以不同。 例如:数0是扩大的自然数集中最小的数,又是正数 与负数的分界数,在数的运算中它又是两个相等数 的差等; 等腰三角形底边上的高线、中线以及顶角的平分线 的外延都是同一条线段,而内涵也各不相同。 注:研究概念间的同一关系,可以对概念所反映的对 象得到较深刻、较全面的认识。另外,在推理证明中 具有全同关系的概念可以互相代换,使得论证简明。
数学概念产生和发展的途径
(1)从现实模型直接得来; (2)经过多级抽象概括得来; (3)从数学内部需要产生出来;
数学教育概论

• 除了数学还要懂得教学法才能胜任数学 教师工作(会数学不一定会教数学)--《一份数学教育研究的历史》
第九章 数学课堂教学观摩 与评析
• 本章首先通过对往届实习生的困惑的分 析,表明“弄懂数学并不等于会教数学” 然后通过听课,案例学习,案例再评析, 进一步感受数学教学设计的思考过程, 以及数学教学设计的多样性。
第一节 师范生走向课堂执 教时的困惑
• 平日里觉得十分简单的中学数学知识,怎么到 了课堂却让学生听得一头雾水?
• 特点:边缘性学科,处于数学、教育学、逻辑 学和心理学等学科的“交界”处;实践性很强 的理论学科,是人们把教学过程、学习过程作 为认识过程来深刻分析的成果。这种认识过程 旨在寻求中学生学习数学知识,发展数学思维 的规律以及数学教学过程的特点和规律;发展 中的理论学科,随着社会的发展而不断改进完 善。
数学教育研究的热点问题
• 2000年,在ICME9上,Mogens Niss在《数 学教育研究的主要问题与趋势》中指出: 1960、1970年代以研究教育体制、课程、教 学经验或大规模的课程实验为主,使用统计分 析方法的定量的比较研究较多。到了1970年 代后期,对个别人或少数学生的小型的定性的 研究明显增加,这种研究在1980和1990年代 更加盛行。1980年代之后,受Piaget等心理学 家的影响,解释学生理解的理论及相应的思想 学派变得兴旺起来。
• 随着知识总量的急剧增加,使得一个人终身享 用在学校学习的知识和技能几乎是不可能的。
数学教育概论范文

数学教育概论范文
一、数学教育的历史概况
数学教育的历史可以追溯到古老的文明社会,早在公元前2400年古埃及人便发明了一种进行十进制计算的符号系统,古希腊和古罗马社会曾有多种数学教育活动,如公元前234年,希腊数学家和学者欧几里德就出自希腊学校约克索斯(Jocose),中国古代数学教育活动最早起源于春秋战国时期,以《九章算术》、《周髀算经》为代表,把中国古代数学圈定在算术即定量计算领域。
直至政治的变化才让家庭教育的形式逐渐消失,统一的教育模式和政府监管的教育机构起到作用,到了中国明清时期,数学是提供中学教育课程的基础科目之一,由此可见,数学教育在历史上的地位是十分重要的。
二、数学教育的现状
数学教育的现状主要是高等教育阶段的数学本科和数学类专业研究生阶段,被称作数学教育的重要时期。
随着开放的推进,各种新的数学教育模式也随之出现,如:网络教学、小班教学、小组教学、双师教学、案例教学等。
868数学教育概论

数学教育概论是一门研究数学教育基本理论、原则和方法的学科,旨在为数学教育实践提供科学依据,促进数学教育的健康发展。
在本文中,我们将探讨数学教育概论的重要性、历史发展、基本原理、教育目标以及实践应用等方面。
首先,数学教育概论的重要性不言而喻。
它不仅是数学教育工作者的重要参考,也是广大数学教师和教育研究者必备的基本素养。
通过学习数学教育概论,我们可以深入了解数学教育的本质和规律,掌握数学教育的原则和方法,为提高数学教育质量提供有力支持。
回顾数学教育的发展历程,我们可以发现其经历了漫长而复杂的过程。
在古代,数学教育主要是通过师徒传承和书本传授等方式进行。
随着时代的发展,数学教育的形式和方法也不断变革,如计算机技术的应用、课程内容的更新等。
这些变革为数学教育带来了新的机遇和挑战,同时也推动了数学教育理论的发展和完善。
在数学教育概论中,基本原理是不可或缺的一部分。
它包括但不限于学生的认知发展、学习动机、学习策略、教师角色等。
这些原理是数学教育实践的基础,只有深入理解和运用这些原理,才能有效地提高数学教育的效果和质量。
同时,我们也需要关注数学教育的多元化和个性化,尊重学生的个体差异,为每个学生提供适合他们的教育方式。
数学教育的目标应该是培养具有创新精神和实际应用能力的人才。
为此,我们需要关注学生的数学素养、问题解决能力和创新意识的培养。
在教学过程中,我们需要注重学生的主体地位,激发他们的学习兴趣和主动性,同时注重教学方法的多样性和灵活性,以满足不同学生的需求。
在实践中,数学教育概论的应用也非常广泛。
首先,我们可以运用数学教育概论的理论和方法来评估教学质量和效果,发现问题并及时调整教学策略。
其次,我们可以借鉴数学教育概论中的研究成果和实践经验,为解决实际问题提供参考和借鉴。
最后,我们可以通过开展数学教育研究和实践,不断推动数学教育的创新和发展。
总之,数学教育概论是一门重要的学科,它为我们提供了深入了解数学教育的基本理论、原则和方法的机会。
数学教育概论

数学教育概论一、数学教育的含义:数学教育是研究数学教学的实践和方法的学科。
而且,数学教育工作者也关注促进这种实践的工具及其研究的发展。
数学教育是现代社会激烈争论的主题之一。
这个术语有个歧义,它既指各地的教室里的实践,也指新生的一个学科,它有自己的期刊,会议,等等。
这方面最重要的国际组织是数学教育国际委员会(the International Commission on Mathematical Instruction)。
中国数学教育mathematics eduction in China中国的数学教育有悠久的历史,早在西周时期,数学已作为“六艺”之一,成为专门的学问,唐初国子监增设算学馆,设有算学博士和助教,使用李淳风等编纂注释的《算经十书》为教材。
明代算科考试亦以这些教材为准(见中国数学史)。
近现代的初等数学教育,可以说是在晚清(1903)颁布癸卯学制,废除科举,兴办小学、中学后才开始的。
当时小学设算术课,中学设数学课(包括算术、代数、几何、三角、簿记)。
民国初年(1912~1913)公布壬子癸丑学制,中学由五年改为四年,数学课程不再讲授簿记。
执行时间最久的是1922年公布的壬戌学制,将小学、中学都改为六年,各分初高两级,初小四年,高小二年,初高中皆三年。
初中数学讲授算术、代数、平面几何,高中数学讲授平面三角、高中几何、高中代数、平面解析几何(高中曾分文理两科,部分理科加授立体解析几何和微积分初步),这个学制基本沿用到1949年。
中华人民共和国成立后,中小学的教育进行了改革,学制大都改为小学六年,初高中各三年,初中逐步取消算术课。
50年代高中数学一度停授平面解析几何,后又恢复并增授微积分初步以及概率论和电子计算机的初步知识。
中国近代高等数学教育,也是从清朝末年开始的。
1862年洋务派创办的京师同文馆,本来是个外语学校,从1866年增设天文算学馆,1867年招生,开始向中等专科学校转变。
1868年聘李善兰为总教习,设代数、几何(原本)、平面和球面三角、微积分等课程,可以认为,这是向中国学生较系统地传授西方高等数学基础知识的开始。
数学教育概论总结

数学教育概论总结数学教育概论(1)一、数学教学中合理地运用数学活动应当具备以下几个特点:1、数学活动应该是现实的、有趣的、富有挑战性的、与学生的生活经验相联系的;2、数学活动应该有助于培养学生实验、观察、猜想、思维的能力3、数学活动应该关注真实的活动;二、数学现实:学生的生活经验和已有的数学知识构成学生的数学现实,它是新知识的生长点。
三、数学教学设计:是为数学教学活动制定蓝图的过程。
完成设计教师需要考虑的方面:1、明确教学目标;2、形成设计意图;3、制定教学过程。
四、教师进行教学设计的目的:是为了达到教学活动的预期目的,减少教学过程中的盲目性和随意性,其最终目的是为了能够使学生更高效地学习,开发学生的学习潜能,塑造学生的健全人格,以促进学生的全面发展。
五、数学教学目标:是设计者希望通过数学教学活动达到的理想状态,是数学教学活动的结果,也是数学教学设计的起点。
1、远期目标:是某一课程内容学习结束里所要达到的目标,也可以是某一学习阶段结束后所要达到的目标。
2、近期目标:是某一课程内容学习过程中,或者某一学习环节结束时所要达到的目标。
3、过程性目标:知识与技能;过程与方法;情感与态度。
六、教学的重点:在学习中那些贯穿全民、带动全面、应用广泛、对学生认知结构起核心作用、在进一步学习中起基础作用和纽带作用的内容。
教学的难点:学生接受起来比较困难的知识点,往往是由于学生的认知能力、接受水平与新老知识之间的矛盾造成的,也可能是学习新知识时,所用到的旧知识不牢固造成的。
教学的关键:对掌握某一部分知识或解决葳个问题能起决定作用的知识内容,掌握了这部分内容。
七、几种教学过程:(一)、数学问题的教学设计:数学问题在数学教学设计中的作用不仅仅是创设出一个数学问题情境,使学生进入“愤”和“悱”的状况,更重要的是为学生的思维活动提供一个好的切入口,为学生的学习活动找到一个好的载体,从而给学生更多的思考、动手和交流的机会。
好的数学问题的特点:1、问题具有较强的探索性,要求人们具有某种程度的独立性、判断性、能动性和创造精神;2、问题具有现实意义或与学生的实际生活有着直接的联系,有趣味和魅力;3、问题具有开放性,有多种不同的解法或有多种可能的解答;4、问题能推广或扩充到各种情形。
第1讲数学教育概论

第1讲数学教育概论
数学教育概论是一门重要的理论课程,是数学教育学科的基础课程,
它包括数学教育发展的历史、内容概念与教学方法、教育心理学等内容,
为数学教育学科建设和数学教育实践提供基础理论依据。
数学教育发展的历史主要从狄拉克对数学运用抽象思维的概念到现代
数学教育理论的发展,反映了数学教育及其发展的实际情况。
狄拉克认为,数学是抽象思维的研究,其历史也追溯到古希腊,他提出了“建立系统的
数学”,代表着数学教育理论的最初阶段,也是现代数学教育理论发展的
基础。
到20世纪的晚期,数学教育理论及其发展又有了新的变化,数学
教育从一般意义上的“讲授”转变为“活动式”的学习数学。
在这种思想
指导下,数学教育走向更广阔的空间,也更加重视学生自主学习的能力。
数学教育内容概念和教学方法涉及到数学内容的认知,这就引出了数
学教育中的意义概念和内容理论、抽象原理的把握和系统建构、解决问题
的策略和方法以及具体数学技能等内容。
第1讲 数学教育概论

返回
《算经十书》
返回
初创阶段—数学教学法(1951-1985年)
返回
发展阶段—数学教学论(1986-1996年)
返回
提升阶段—数学教育学(1996年至今)
返回
培利(J.Perry,1850-1920爱尔兰 数学家、力学家)
主要著作(演讲报告):《数学的教学》、《数学教学 纲目》 特别强调:数学理论与实际应用的统一 主要观点:让学生自己去思考、发现和理解数学问题 注重培养学生的应用能力和逻辑思维能力
主要要求:从《几何原本》解放出来
返回
F.克莱因(F.Klein,1849-1925德国著名数学家) 国际数学教育委员会第一任主席(1908-1925) 主要著作:《中等学校的数学教育讲义》《高观点下的 初等数学》 主要观点:以函数概念为中心,统一中学数学内容的改 革思想,重视数学教育方法 主要工作:起草《数学教学要目》(“米兰大纲”), 其指导思想: 教材的选择和安排,应适应学生心理的自然发展 融合各个数学学科,密切数学与其他学科的联系 不过分强调形式的训练,应重视应用 以函数思想和空间观察能力作为数学教学的基础 “米兰大纲”的指导思想影响了整个20世纪的数学教育 返回
返回
常量数学→变量数学
● 笛卡尔(Descartes,1596-1650) 法国数学家、哲学家、解析几何创始人
● 牛顿(Newton,1642-1727,英国伟大 的科学家、数学家) 发现万有引力,创立微积分 名著《自然科学的数学原理》光照几百年 ● 莱布尼兹(Leibniz,1646-1716) 微积分的发明者之一,今天的微积分符号即由他 发明。 解析几何、微积分的发明与发展将大学的数学教育 提升到新阶段。 返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学教育概论》心得体会
在这一学年里学习数学教育概论让我学得了不少知识,也了解了不少相关数学软件的使用。
本来刚开始觉得数学教育概论应该是一门非常无聊的课,觉得怎样上都可以,但是当自己真正去体会才发现这门课是这么有意思。
泽西老师富有感染力的教学,打破常规老师的教学流程,让我对数学教育概论这门课改变了原有的看法。
先来谈谈在这门课上的收获吧。
在这门课上,让我学会了很多东西。
以前自己机会从来不碰数学软件,也感觉自己应该学不会吧,但在这门课上我慢慢地开始接触数学软件,觉得数学软件是一个非常有趣的软件,你可以在上构造一些自己喜欢的图形。
记得学习怎样使用超级画板的时候,我还是很激动的,至少觉得能够多学一门软件的使用还是很有帮助的。
当老师在讲解怎样使用超级画板的过程中,自己还是觉得很简单的。
但当自己进行使用的时候觉得好多东西都不会,觉得自己所掌握的东西太少了。
在这次学习中,也认识到自己的能力有限,以前都过高的估计自己,但是在泽西老师的带动下,我不仅认识到了自己不足,也开始想去学习一些知识,而这位老师又给了我这样的一个机会,所以觉得数学教育概论不但是学习课本上的知识,还让我们能够掌握一些有趣的软件。
在学习数学教育概论这门课程中,我渐渐喜欢上了这门课,因为这门课不像传统教学那么枯燥无聊,因为在这门课上我们能够学到一些课本上没有的知识。
在这门课上老师教学会了我怎样制作PPT,怎样用一些简单的数学软件,而且我觉得这位教师是一位非常仁慈的
教师,总是给人一种很和蔼的感觉,一种平易近人的感觉。
在这门课上第一次让我有了当老师冲动,第一次觉得老师这个职业也是一个不错选择。
这门课给我好多不一样的感觉,尤其是老师带领我们去听课的时候。
以前从来没有想过自己会以一名教师的身份出现在中学里,但是在这门课中我却真正的以这种身份出现在了中学里。
记得刚听老师说我们可能会去中学听课,我当时就想肯定是骗人的吧,怎么可能让我们真的去中学听课呢。
但是心里还是蛮期待,结果终于有一天老师叫我们准备去中学听课,当时我真的很激动。
想想曾经的自己总是以一名学生的身份出现在教室里,而现在出现在教室里确实以一名准老师的身份,想着就叫人兴奋。
当那天自己真的以一名准老师的身份的出现在校园的时候,真有一种不能言语心情。
坐在自己曾经坐过的座位,一种莫名的喜悦涌上心头。
当上面老师开始上课的时候,我还在想自己还是一名中学生的时候,而现在已经快成为一名教师了。
听完上面老师的教课,想想以后自己也会以这种形式出现在讲台上,心里还是有点小激动的。
这门课给了我不一样的感觉,也让我体会到了数学的乐趣。
而在这一学期中最让我震惊也最让我激动的就是上讲台讲课吧,记得当自己听见这一消息的时候真的有点害怕,害怕自己没有那个勇气,害怕自己讲不好,害怕自己…….,反正就是各种复杂的心情相交在一起。
曾经的自己是一个非常胆小怕事,而在这学期学习过程中,我开始改变了这种性格。
并且在这次讲课中,我竟然是第一个,当时我真的乱了,好担心好担心,担心自己这里会出错,那里也不行。
当
真到了教课的那一天,我还是毅然决然的走上了讲台,站在讲台上一种莫名的压迫感袭来,感觉自己都快不能呼吸了。
但还是坚持到了最后。
虽然讲的不太好,但是我觉得自己已经很努力了,那几天,天天都在教室试讲,总担心自己会出错。
结果到讲课的时候还是出错了,但是我一点也不后悔,因为我感觉自己已经尽力了。
其实自己还是挺满意的,至少鼓起了勇气讲到了最后。
我非常感觉老师能够给我这样一个机会,至少锻炼了自己的胆量,也了解到了自己在哪些方面的不足。
这门课真的让我对课堂有了不一样的理解,他没有传统课堂的那种沉闷,给人一种欢快感,使自己想融入到这门课当中去。
记得自己在编写教案的过程,觉得自己什么都不会,但是在老师的讲解下,我还是完成了自己的教案。
老师说教案包括课题、教学目标、教学重点,难点,关键点、教学方法、教具、教学过程、板书设计、教学反思。
而说课主要部分有:说教材、说教法、说学法、说流程等几个重要部分组成。
而我在试讲过程中,刚开始的引入就出现了严重的错误,但是后面我慢慢地不再那么紧张了。
总之我还是很感谢老师能够给我们这样一次锻炼的机会的。
再来说说对书本上知识的体会吧。
第一章讲的是为什么要学习数学教育学。
数学教育是一门专业的学科,而数学教师的一种职业,是一种需要特殊培养的专业人士,从而需要学习数学教育来提高数学教师的专业技能。
而且教师在教学过程中语言是非常重要的,不经要求具有启发性,而且要值得回味,留有思考的余地。
对于中学生而言,学生证处在个性形成和发展阶段,心理上还比较脆弱,迫切需要教师
的关爱,非常希望得到教师的激励。
学生也具有较强的自尊心,把自己的人格放在首位,他们又维护自尊的意识和要求,他们希望教师能以平等、真诚的态度来对待他们。
相比之下,学生对“训斥责骂的”语言的承受力要大于“侮辱人格的”和“讽刺挖苦的”语言的承受力,这种语言已见不到教师的丝毫“爱心”,留给学生的只是心灵的“痛处”。
所以学习数学教育就是为了能够更好地教好学生。
第二章讲的是与时俱进的数学教育。
人们创立了数学,就有传承数学的需要,数学教育也就出现了。
经过几千年的人类文明发展,数学渐渐成为公民教育中的核心成分。
时至今日,世界各国都设置了9年以上的学校数学课程。
数学,也成为最具国际可比性的一门教育学科。
在学习这章中,了解到了数学教育发展是日新月异。
第三章讲的是数学教育的基本理论。
数学教育作为一门学科,始于20世纪初,目前还不满一百年。
1908年成立国际数学教育委员会,数学教育成为国际的事务。
但是在第二次世界大战之前,数学教育的研究只局限于各国的“数学教学大纲”、“数学教学计划”等文件的交流,尚无数学教育的理论著作问世。
第二次世界大战结束之后,数学教育进入一个迅猛发展的时期,各种数学教育的著作大量出现。
但是,真正形成数学教育理论形态的研究并不多。
心理学家皮亚杰倡导的构建主义学说,对数学教育有很大影响。
学习本章了解到了数学教育理论的形成过程是非常艰难坎坷的。
第四章讲的是数学教育的核心内容。
数学教育,是整个教育的组成部分。
数学教育,特别是数学课堂教学,必然要接受一般教育规律
的指导。
先进的教育学理念,对于数学教育实践,有重要的指导作用。
“一般教育学+数学例子”的阐述是必要的研究工作。
但是,我们不能仅限于此。
数学教育有其与一般教育学相适应却又独特的规律。
一门学科如果没有自己的独特规律,也就没有存在的必要了。
学习这一章体会到了数学教育是整个教育的重要组成部分。
第五章讲的是数学教育研究的一些特定课题。
其中包括数学本质的揭示、数学教育心理学、数学文化与数学史、数学教育技术、数学竞赛、数学学差生的教育等课题。
第六章讲的是数学课程的制定和改革。
数学一直是世界各国基础教育中的核心课目。
在21世纪到来之际,世界各国都在实行新的数学课程标准。
2000年,美国的“全国数学教师协会”颁布了已准备10年之久的《数学课程标准》,向全国推行。
同样,日本的数学教学“指导要领”,也在21世纪初正式推出。
欧洲各国,以及亚洲的新加坡、韩国,也都相应地进行了数学课程的改革。
中国于2001年首先公布了《全日制义务教育数学课程标准》,接着又在2003年推出了《普通高中数学课程标准》。
这样,我国新一轮的数学课程改革就进入到实施阶段。
实验将持续5~10年。
因此,在未来的10年中,中国数学教育将有重大而深刻的变化。
第七章讲的是数学问题与数学考试。
中国古代把科学研究称为“做学问”,一个人“有知识”叫做“有学问”。
一个“问”字,显示出“问题”在科学研究中的地位。
我国古代数学经典《九章算术》就是对246个应用数学问题的回答。
在西方,数学问题的含义更加广泛。
最著名的有1900年希尔伯特提出的23个数学问题,其中包括哥德巴赫猜想。
至于数学教育,则以解答数学问题为目标。
检测一个人的数学水平,主要用解答数学考试的成绩加以评定。
通过学习数学教育概论,我深深地体会到数学教育是我们在进入教师岗位的必经之路,只有在学好了数学教育概论等知识后,我们在才能在教师的岗位上走的更远,才能知道自己究竟应该做些什么,才能更好地了解学生究竟需要怎样的老师。