高考数学(人教a版,理科)题库:椭圆(含答案)

合集下载

2020高考理科数学(人教A版)分章节总复习 第8章 第5节 第1课时 椭圆的定义、标准方程及其性质

2020高考理科数学(人教A版)分章节总复习 第8章 第5节 第1课时 椭圆的定义、标准方程及其性质

8
栏目导航
9
2.焦点三角形 椭圆上的点 P(x0,y0)与两焦点构成的△PF1F2 叫做焦点三角形.r1=|PF1|, r2=|PF2|,∠F1PF2=θ,△PF1F2 的面积为 S,则在椭圆xa22+by22=1(a>b >0)中: (1)当 r1=r2 时,即点 P 的位置为短轴端点时,θ 最大; (2)S=b2tan θ2=c|y0|,当|y0|=b 时,即点 P 的位置为短轴端点时,S 取最 大值,最大值为 bc. (3)a-c≤|PF1|≤a+c.
点恰为边长是 2 的正方形的顶点,则椭圆 E 的标准方程为( )
A.x22+ y22=1 C.x42+y22=1
B.x22+y2=1 D.y42+x22=1
(3)设 F1,F2 分别是椭圆 E:x2+by22=1(0<b<1)的左、右焦点,过点 F1
的直线交椭圆 E 于 A,B 两点.若|AF1|=3|F1B|,AF2⊥x 轴,则椭圆 E 的方程为________.
D.(0,±9)
解析答案 栏目导航
14
3.已知动点 M 到两个定点 A(- D [由题意有 6>2+2=4,故点 M
2,0),B(2,0)的距离之和为 6,则动 的轨迹为焦点在 x 轴上的椭圆,则
点 M 的轨迹方程为( )
A.x92+y2=1
B.y92+x52=1
2a=6,c=2,故 a2=9,所以 b2= a2-c2=5,故椭圆的方程为x92+y52=
栏目导航
10
3.椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中 a 是 斜边长,a2=b2+c2. 4.已知过焦点 F1 的弦 AB,则△ABF2 的周长为 4a. 5.椭圆中点弦的斜率公式 若 M(x0,y0)是椭圆xa22+by22=1(a>b>0)的弦 AB(AB 不平行 y 轴)的中点, 则有 kAB·kOM=-ba22,即 kAB=-ba22xy00.

2020版高考数学(理科)大一轮精准复习精练:9.3椭圆及其性质含解析

2020版高考数学(理科)大一轮精准复习精练:9.3椭圆及其性质含解析

9.3 椭圆及其性质挖命题【考情探究】分析解读从近5年高考情况来看,椭圆的定义、标准方程、几何性质一直是高考命题的热点,其中离心率问题考查较频繁,对直线与椭圆的位置关系的考查,常与向量、圆、三角形等知识相结合,多以解答题的形式出现,解题时,要充分利用数形结合、转化与化归思想,注重数学思想在解题中的指导作用.破考点【考点集训】考点一椭圆的定义及标准方程1.(2018湖北十堰十三中质检,6)一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为( )A.+=1B.+=1C.+=1D.+=1答案A2.(2018山东烟台二模,15)已知F(2,0)为椭圆+=1(a>b>0)的右焦点,过F且垂直于x轴的弦长为6,若A(-2,),点M为椭圆上任一点,则|MF|+|MA|的最大值为.答案8+考点二椭圆的几何性质1.(2018山东青岛城阳期末,7)若椭圆+=1的焦距为4,则实数a的值为( )A.1B.21C.4D.1或9答案D2.(2018河北衡水金卷二模,7)我国自主研制的第一个月球探测器——“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是,(如图所示),则“嫦娥一号”卫星轨道的离心率为( )A. B. C. D.答案A3.(2018河南南阳、信阳等六市联考,16)椭圆C:+=1的上、下顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是.答案考点三直线与椭圆的位置关系1.(2018安徽合肥模拟,8)已知椭圆C:+y2=1,若一组斜率为的平行直线被椭圆C所截线段的中点均在直线l上,则l的斜率为( )A.-2B.2C.-D.答案A2.(2018广东广州模拟,10)已知点M(-1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“椭型直线”的是( )A.①③B.①②C.②③D.③④答案C炼技法【方法集训】方法求椭圆离心率或取值范围的方法1.(2018江西赣南五校联考,15)椭圆Γ:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.答案-12.(2017福建四地六校模拟,15)已知椭圆C:+=1(a>b>0)和圆O:x2+y2=b2,若C上存在点P,使得过点P引圆O的两条切线,切点分别为A,B,满足∠APB=60°,则椭圆C的离心率的取值范围是. 答案3.(2018河北衡水中学八模,15)已知椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),若椭圆上存在点P使=,则该椭圆离心率的取值范围为.答案(-1,1)过专题【五年高考】A组统一命题·课标卷题组考点一椭圆的定义及标准方程(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知,=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=-.从而|PQ|=|x1-x2|=-.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=-.设-=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.思路分析(1)通过直线AF的斜率求得c的值,通过离心率求得a,进而求出b2,从而得到E的方程;(2)设出直线l的方程和点P、Q的坐标,联立直线l与椭圆方程,利用弦长公式求得|PQ|的长,根据点到直线的距离公式求得△OPQ边PQ上的高,从而表示出△OPQ的面积,利用换元法和基本不等式即可得到当面积取得最大值时k的值,从而得直线l的方程.解题关键对于第(2)问,正确选择参数,表示出△OPQ的面积,进而巧妙利用换元法分析最值是解题的关键.考点二椭圆的几何性质1.(2018课标Ⅱ,12,5分)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )A. B. C. D.答案D2.(2017课标Ⅲ,10,5分)已知椭圆C:+=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A. B. C. D.答案A3.(2016课标Ⅲ,11,5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A. B. C. D.答案A考点三直线与椭圆的位置关系(2018课标Ⅰ,19,12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.解析(1)由已知得F(1,0),l的方程为x=1,由已知可得,点A的坐标为或.所以AM的方程为y=-x+或y=x-.(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,直线OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=-+-,由y1=kx1-k,y2=kx2-k得k MA+k MB=---.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=,x1x2=-.则2kx1x2-3k(x1+x2)+4k=--=0,从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.B组自主命题·省(区、市)卷题组考点一椭圆的定义及标准方程1.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为.答案x2+y2=12.(2015陕西,20,12分)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解析(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d==,由d=c,得a=2b=2-,可得离心率=.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意,圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=-.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|=-=-.由|AB|=,得-=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意,点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则+4=4b2,+4=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0,易知AB与x轴不垂直,则x1≠x2,=.所以AB的斜率k AB=--因此直线AB的方程为y=(x+2)+1,代入②得x2+4x+8-2b2=0.所以x1+x2=-4,x1x2=8-2b2.于是|AB|=|x1-x2|=-=-.由|AB|=,得-=,解得b2=3.故椭圆E的方程为+=1.解题关键对于第(2)问,利用弦长及韦达定理或点差法构造关于参数的方程是解题的关键.考点二椭圆的几何性质1.(2018北京,14,5分)已知椭圆M:+=1(a>b>0),双曲线N:-=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N 的离心率为.答案-1;22.(2015重庆,21,12分)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q 两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解析(1)由椭圆的定义,有2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,得2c=|F1F2|===2,即c=,从而b=-=1.故所求椭圆的标准方程为+y2=1.(2)解法一:连接F1Q,如图,设点P(x0,y0)在椭圆上,且PF1⊥PF2,则+=1,+=c2,求得x0=±-,y0=±.由|PF1|=|PQ|>|PF2|得x0>0,从而|PF1|2=-+=2(a2-b2)+2a-=(a+-)2.由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PF2,|PF1|=|PQ|,知|QF1|=|PF1|.因此(2+)|PF1|=4a,即(2+)(a+-)=4a,于是(2+)(1+-)=4,解得e==-.解法二:连接F1Q,由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=|PF1|,因此,4a-2|PF1|=|PF1|,得|PF1|=2(2-)a,从而|PF2|=2a-|PF1|=2a-2(2-)a=2(-1)a.由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e===--==-.考点三直线与椭圆的位置关系(2018天津,19,14分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A 的坐标为(b,0),且|FB|·|AB|=6.(1)求椭圆的方程;(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O 为原点),求k的值.解析(1)设椭圆的焦距为2c,由已知有=,又由a2=b2+c2,可得2a=3b.由已知可得,|FB|=a,|AB|=b,由|FB|·|AB|=6,可得ab=6,从而a=3,b=2.所以,椭圆的方程为+=1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故|PQ|sin∠AOQ=y1-y2.又因为|AQ|=,而∠OAB=,故|AQ|=y2.由=sin∠AOQ,可得5y1=9y2.由方程组消去x,可得y1=.易知直线AB的方程为x+y-2=0,消去x,可得y2=.由方程组-由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2-50k+11=0,解得k=或k=.所以,k的值为或.解题关键利用平面几何知识将=sin∠AOQ转化为点P、Q坐标间的关系是解决第(2)问的关键.方法归纳求椭圆标准方程的基本方法(1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置写出椭圆方程;(2)待定系数法:这是求椭圆方程的常用方法,基本步骤为①根据已知条件判断焦点的位置;②根据焦点的位置设出所求椭圆的方程;③根据已知条件,建立关于a、b、c的方程组,注意c2=a2-b2的应用;④解方程组,求得a、b的值,从而得出椭圆的方程.C组教师专用题组考点一椭圆的定义及标准方程1.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|= .答案122.(2014课标Ⅱ,20,12分,0.185)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.解析(1)根据c=-及题设知M,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为.(2)由题意,得原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①由|MN|=5|F1N|得|DF1|=2|F1N|.设N(x1,y1),由题意知y1<0,则--即代入C的方程,得+=1.②将①及c=-代入②得-+=1.解得a=7,故b2=4a=28,故a=7,b=2.考点二椭圆的几何性质1.(2017浙江,2,5分)椭圆+=1的离心率是( )A. B. C. D.答案B2.(2014江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M 是线段AB的中点,则椭圆C的离心率等于.答案3.(2013辽宁,15,5分)已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e= .答案4.(2015安徽,20,13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B 的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解析(1)由题设条件知,点M的坐标为,又k OM=,从而=.进而得a=b,c=-=2b.故e==.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为-.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为-.又点-T在直线AB上,且k NS·k AB=-1,从而有-解得b=3.所以a=3,故椭圆E的方程为+=1.评析本题考查椭圆的方程、几何性质以及对称问题,利用方程思想解决点关于直线的对称问题,考查利用待定系数法求椭圆的方程,考查学生的运算求解能力和化归思想的应用.5.(2014天津,18,13分)设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切.求直线l的斜率.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=·|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则=.所以椭圆的离心率e=.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为+=1.设P(x 0,y 0).由F 1(-c,0),B(0,c),有 =(x 0+c,y 0), =(c,c). 由已知,有 · =0, 即(x 0+c)c+y 0c=0. 又c ≠0,故有 x 0+y 0+c=0.① 又因为点P 在椭圆上, 故+=1.②由①和②可得3+4cx 0=0.而点P 不是椭圆的顶点,故x 0=- c,代入①得y 0=, 即点P 的坐标为 -. 设圆的圆心为T(x 1,y 1),则x 1=-=-c,y 1== c,进而圆的半径r= - - =c.设直线l 的斜率为k,依题意,直线l 的方程为y=kx.由l 与圆相切,可得 =r,即- -=c,整理得k 2-8k+1=0,解得k=4± . 所以直线l 的斜率为4+ 或4- .评析 本题主要考查椭圆的标准方程和几何性质、直线方程、圆的方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.6.(2014江苏,17,14分)如图,在平面直角坐标系xOy 中,F 1、F 2分别是椭圆 +=1(a>b>0)的左、右焦点,顶点B 的坐标为(0,b),连接BF 2并延长交椭圆于点A,过点A 作x 轴的垂线交椭圆于另一点C,连接F 1C.(1)若点C 的坐标为,且BF 2= ,求椭圆的方程;(2)若F 1C ⊥AB,求椭圆离心率e 的值.解析 设椭圆的焦距为2c,则F 1(-c,0),F 2(c,0). (1)因为B(0,b),所以BF 2= =a. 又BF 2= ,故a= .因为点C在椭圆上,所以+=1,解得b 2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得-所以点A的坐标为-.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为-.因为直线F1C的斜率为----=-,直线AB的斜率为-,且F1C⊥AB,所以-·-=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.评析本题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力.考点三直线与椭圆的位置关系1.(2018江苏,18,14分)如图,在平面直角坐标系xOy中,椭圆C过点,焦点F1(-,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.解析解法一:(1)因为椭圆C的焦点为F1(-,0),F2(,0),所以可设椭圆C的方程为+=1(a>b>0).又点在椭圆C上,所以-解得因此,椭圆C的方程为+y2=1.因为圆O的直径为F1F2,所以其方程为x2+y2=3.(2)①设直线l与圆O相切于P(x0,y0)(x0>0,y0>0),则+=3.所以直线l的方程为y=-(x-x0)+y0,即y=-x+.由消去y,得(4+)x2-24x0x+36-4=0.(*)因为直线l与椭圆C有且只有一个公共点,所以Δ=(-24x0)2-4(4+)(36-4)=48(-2)=0.因为x0,y0>0,所以x0=,y0=1.因此,点P的坐标为(,1).②因为三角形OAB的面积为,所以AB·OP=,从而AB=.设A(x1,y1),B(x2,y2),由(*)得x1,2=-,所以AB2=(x1-x2)2+(y1-y2)2=·-.因为+=3,所以AB2=-=,即2-45+100=0.解得=(=20舍去),则=,因此P的坐标为.则直线l的方程为y=-x+3.解法二:(1)由题意知c=,所以圆O的方程为x2+y2=3,因为点在椭圆上,所以2a=--+-=4,所以a=2.因为a2=b2+c2,所以b=1,所以椭圆C的方程为+y2=1.(2)①由题意知直线l与圆O和椭圆C均相切,且切点在第一象限,所以直线l的斜率k存在且k<0,设直线l的方程为y=kx+m(k<0,m>0),将直线l的方程代入圆O的方程,得x2+(kx+m)2=3,整理得(k2+1)x2+2kmx+m2-3=0,因为直线l与圆O相切,所以Δ=(2km)2-4(k2+1)(m2-3)=0,整理得m2=3k2+3,将直线l的方程代入椭圆C的方程,得+(kx+m)2=1,整理得(4k2+1)x2+8kmx+4m2-4=0,因为直线l与椭圆C相切,所以Δ=(8km)2-4(4k2+1)(4m2-4)=0,整理得m2=4k2+1,所以3k2+3=4k2+1,因为k<0,所以k=-,则m=3,将k=-,m=3代入(k2+1)x2+2kmx+m2-3=0,整理得x2-2x+2=0,解得x1=x2=,将x=代入x2+y2=3,解得y=1(y=-1舍去),所以点P的坐标为(,1).②设A(x1,kx1+m),B(x2,kx2+m),由①知m2=3k2+3,且k<0,m>0,因为直线l和椭圆C相交,所以结合②的过程知m2<4k2+1,解得k<-,将直线l的方程和椭圆C的方程联立可得(4k2+1)x2+8kmx+4m2-4=0,解得x1,2=-,所以|x1-x2|=,因为AB=--=|x1-x2|=·,O到l的距离d==,所以S△OAB=···=·-··=,解得k2=5,因为k<0,所以k=-,则m=3,即直线l的方程为y=-x+3.解后反思(1)常用待定系数法求圆锥曲线方程.(2)①直线与圆相切,常见解题方法是设切点求切线方程,由于涉及直线与椭圆相切,因此也可设出直线方程求解.②因为△AOB的面积为,而△AOB的高为,所以解题关键是求AB的长,可利用弦长公式AB=--=·-=·|x1-x2|(x1、x2分别为A、B的横坐标)求解.2.(2017天津,19,14分)设椭圆+=1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.解析(1)设F的坐标为(-c,0).依题意,=,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P--,故Q-.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B--.由Q-,可得直线BQ的方程为--(x+1)---=0,令y=0,解得x=,故D.所以|AD|=1-=.又因为△APD的面积为,故××=,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-y-3=0.方法总结 1.利用待定系数法求圆锥曲线标准方程的三个步骤:(1)作判断:根据焦点位置设方程;(2)找等量关系;(3)解方程得结果.2.解决直线与圆锥曲线位置关系问题的基本策略:(1)巧设直线方程:当已知直线与x轴交点固定时,常设为x=my+b的形式,这样可避免对斜率是否存在的讨论;(2)注意整体代入思想的应用,利用根与系数的关系可以简化运算,提高运算的效率和正确率.3.(2016浙江,19,15分)如图,设椭圆+y2=1(a>1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,故x1=0,x2=-.因此|AP|=|x1-x2|=·.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.由(1)知,|AP|=,|AQ|=,故=,所以(-)[1+++a2(2-a2)]=0.由于k1≠k2,k1,k2>0得1+++a2(2-a2)=0,因此=1+a2(a2-2),①因为①式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a>.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤,由e==-得,所求离心率的取值范围为0<e≤.4.(2015福建,18,13分)已知椭圆E:+=1(a>b>0)过点(0,),且离心率e=.(1)求椭圆E的方程;(2)设直线l:x=my-1(m∈R)交椭圆E于A,B两点,判断点G-与以线段AB为直径的圆的位置关系,并说明理由.解析(1)由已知得解得所以椭圆E的方程为+=1.(2)解法一:设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).所以y1+y2=,y1y2=-,从而y0=.所以|GH|2=+=+=(m2+1)+my0+.=--=-=-=(1+m2)(-y1y2),故|GH|2-=my0+(1+m2)y1y2+=-+=>0,所以|GH|>.故点G-在以AB为直径的圆外.解法二:设点A(x1,y1),B(x2,y2),则=,=.由-得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而·=+y1y2=54+y1y2=(m2+1)y1y2+54m(y1+y2)+2516=-3(2+1)2+2+5222+2+2516=172+216(2+2)>0,所以cos<,>>0.又,不共线,所以∠AGB为锐角.故点G-在以AB为直径的圆外.评析本题主要考查椭圆、圆、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届四川第一次诊断,6)设椭圆+=1(m>0,n>0)的一个焦点与抛物线x2=8y的焦点相同,离心率为,则m-n=( )A.2-4B.4-3C.4-8D.8-4答案A2.(2019届云南师范大学附属中学12月月考,12)已知椭圆C:+=1的右焦点为F,过点F有两条互相垂直的直线l1,l2,l1与椭圆C相交于点A,B,l2与椭圆C相交于点C,D,则下列叙述不正确的是( )A.存在直线l1,l2使得|AB|+|CD|值为7B.存在直线l1,l2使得|AB|+|CD|值为C.四边形ABCD的面积存在最大值,且最大值为6D.四边形ABCD的面积存在最小值,且最小值为答案D3.(2018四川达州模拟,7)以圆x2+y2=4与x轴的交点为焦点,以抛物线y2=10x的焦点为一个顶点且中心在原点的椭圆的离心率是( )A. B. C. D.答案C4.(2018湖北重点中学4月联考,7)已知椭圆+=1的左、右焦点分别为F1、F2,过F2且垂直于长轴的直线交椭圆于A,B两点,则△ABF1内切圆的半径为( )A. B.1 C. D.答案D5.(2018广东清远模拟,11)已知m、n、s、t∈R+,m+n=3,+=1,其中m、n是常数且m<n,若s+t的最小值是3+2,满足条件的点(m,n)是椭圆+=1的一条弦的中点,则此弦所在直线的方程为( )A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0答案D6.(2018广西桂林、百色等三市联考,12)已知椭圆+=1(a>b>0)上一点A关于原点的对称点为点B,F 为其右焦点,若AF⊥BF,设∠ABF=α,且α∈,则该椭圆离心率e的取值范围为( )A.-B.C. D.答案A二、填空题(共5分)7.(2017湖南东部六校4月联考,15)设P,Q分别是圆x2+(y-1)2=3和椭圆+y2=1上的点,则P、Q两点间的最大距离是.答案三、解答题(共50分)8.(2019届安徽黄山八校联考,20)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=,点P 是椭圆的上顶点的一个动点,△PF1F2面积的最大值是4.(1)求椭圆的方程;(2)若A,B,C,D是椭圆上不重合的四点,AC与BD相交于点F1,·=0,且||+||=,求此时直线AC的方程.解析(1)由题意知,当点P是椭圆的上顶点或下顶点时,△PF1F2面积取得最大值,此时,=·2c·b=4,又e==,结合a2=b2+c2,所以a=4,b=2,c=2.所以所求椭圆的方程为+=1.(2)由(1)知F1(-2,0),由·=0得AC⊥BD.①当直线AC与BD有一条直线的斜率不存在时,||+||=14,不符合题意;②设直线AC的斜率为k(k存在且不为0),则直线BD的斜率为-.直线AC的方程为y=k(x+2),联立消去y得(3+4k2)x2+16k2x+16k2-48=0,设A(x1,y1),C(x2,y2),则x1+x2=-,x1x2=-,所以||=|x1-x2|=.同理可得||=,由||+||==,解得k2=1,故直线AC的方程为y=±(x+2).思路分析(1)根据离心率e=,△PF1F2面积的最大值是4,结合a2=b2+c2,即可求出a、b,从而得结果;(2)直线与曲线方程联立,根据根与系数关系,弦长公式将||+||用k表示,解方程即可得k的值.方法点拨求椭圆标准方程时一般利用待定系数法,根据条件确定关于a,b,c的方程组,解出a,b,即可得到椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后利用根与系数的关系解决相关问题.涉及弦中点的问题常常用“点差法”解决.9.(2019届重庆期中,20)已知椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,并且F2为抛物线C2:y2=2px(p>0)的焦点,C2的准线被椭圆C1和圆x2+y2=a2截得的弦长分别为2和4.(1)求C1和C2的方程;(2)已知动直线l与抛物线C2相切(切点异于原点),且直线l与椭圆C1相交于M,N两点,若椭圆C1上存在点Q,使得+=λ(λ≠0),求实数λ的取值范围.解析(1)由题得⇒a=2,b=2,p=2c=4,故C1:+=1,C2:y2=8x.(2)由题意知直线l的斜率存在且不为0,设l:x=my+n(m≠0),M(x1,y1),N(x2,y2),Q(x0,y0).联立⇒y2-8my-8n=0,因为l与C2相切,故Δ1=(-8m)2+4×8m=0⇒2m2+n=0.联立⇒(m2+2)y2+2mny+n2-8=0,所以y1+y2=-,y1y2=-,Δ2>0⇒n2<4m2+8,由Δ1=0知2m2=-n,所以n2<-2n+8⇒n∈(-4,2),又2m2=-n>0,因此n∈(-4,0),由+=λ⇒由根与系数的关系,得而点Q(x0,y0)在椭圆上,即+2=8,代入得+=8⇒λ2==,n∈(-4,0),令t=4-n,t∈(4,8),则λ2=2-.令f(t)=t+-8,易知f(t)在(4,8)上单调递增,所以λ2∈(0,4)⇒λ∈(-2,0)∪(0,2).10.(2018四川南充模拟,20)已知椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率e=.(1)求椭圆的标准方程;(2)若P是椭圆上的任意一点,求·的取值范围.解析(1)∵|F1F2|=2,椭圆的离心率e=,∴c=1,a=2,∴b=,∴椭圆的标准方程为+=1.(2)设P(x,y),∵A(-2,0),F1(-1,0),∴·=(-1-x)(-2-x)+y2=x2+3x+5,由椭圆方程得-2≤x≤2,二次函数图象开口向上,对称轴为直线x=-6<-2,当x=-2时,·取到最小值0,当x=2时,·取到最大值12.∴·的取值范围是[0,12].11.(2018广东茂名模拟,20)已知椭圆C:+=1(a>b>0)的焦距为2,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且·=.(1)求弦AB的长;(2)当直线l的斜率k=,且直线l'∥l时,l'交椭圆于P,Q,若点A在第一象限,求证:直线AP,AQ与x 轴围成一个等腰三角形.解析(1)由题意可知2c=2,c=,F(,0),设A(x0,y0),B(-x0,-y0),则M,N--,由·=-=,则+=5,则|AB|=2=2.(2)证明:直线l的斜率k=,则l:y=x,y0=x0,由+=5,得A(2,1),将c=代入椭圆方程解得a=2,b=,∴椭圆的方程为+=1.由题意设l':y=x+m(m≠0),联立整理得x2+2mx+2m2-4=0,Δ=4m2-4(2m2-4)>0,即m∈(-2,0)∪(0,2).设直线AP,AQ的斜率分别为k1,k2,P(x1,y1),Q(x2,y2),则k1=--,k2=--.由x2+2mx+2m2-4=0,可得x1+x2=-2m,x1x2=2m2-4,所以k1+k2=--+--=------=------=-----=------=0,即k1+k2=0.∴直线AP,AQ与x轴围成一个等腰三角形.。

高中数学考点09-椭圆的标准方程与几何性质(1月)(期末复习热点题型)(人教A版2019)(原

高中数学考点09-椭圆的标准方程与几何性质(1月)(期末复习热点题型)(人教A版2019)(原

考点09 椭圆的标准方程与几何性质一、单选题1.椭圆22154y x +=的长轴长为A .2B .4CD .2.已知椭圆1C :22221(0)x y a b a b +=>>和椭圆2C :22221(0)x y c d c d+=>>的离心率相同,则A .ab cd =B .ac bd =C .ad bc =D .2222a b c d -=-3.椭圆2212516x y +=的短轴长为A .B .10C .8D .64.椭圆223412x y +=的焦点坐标为 A .()1,0±B .()0,1±C .()D .(0,5.椭圆22259225x y +=的长轴长、短轴长分别为 A .5,3 B .3,5 C .10.6D .6,106.若点M 到两定点()10,1-F ,()20,1F 的距离之和为2,则点M 的轨迹是 A .椭圆 B .直线C .线段D .线段的中垂线.7.已知ABC 的周长是20,且顶点B 的坐标为(0,4)-,C 的坐标为(0,4),则顶点A 的轨迹方程是A .221(0)2036x y x -=≠B .221(0)3620x y x +=≠C .221(0)2036x y x +=≠D .221(0)3620x y x -=≠8.若方程222x ky +=表示焦点在y 轴上的椭圆,则实数k 的取值范围是A .(0)1,B .()(011)+∞,,C .(0)+∞,D .(1)+∞, 9.椭圆22221(0)y x a b a b +=>>的上、下焦点分别为1F 、2F ,过椭圆上的点M 作向量MN使得12MN F F =,且12 F F N 为正三角形,则该椭圆的离心率为A BC .2D .1210.已知椭圆22:196x y C +=的左、右焦点分别为1F 、2F ,点P 椭圆C 上,且12=PF ,则2PF = A .16 B .7 C .4D .111.椭圆2214924x y +=的焦点为1F 、2F ,点P 在椭圆上,若16PF =,则12PF F △的面积为 A .24 B .28 C .40D .4812.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为2F ,O 为坐标原点,M 为y 轴上一点,点A 是直线2MF 与椭圆C 的一个交点,且2||||2||OA OF OM ==,则椭圆C 的离心率为 A .13B .25C D 13.若椭圆222125x y m+=的左焦点为()14,0F -,则m =A .2B .3C .3±D .914.椭圆22195x y +=上任一点P 到点()1,0Q 的距离的最小值为A BC .2D15.已知1F ,2F 分别是椭圆22221(0)9x y a a a +=>-的左、右两焦点,过点2F 的直线交椭圆于点A ,B ,若1ABF 为等边三角形,则a 的值为A .3B .C .D 16.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,上顶点为B ,若12BF F 为等边三角形,则该椭圆的离心率为A .12B .3C .2D1710=的化简结果是A .2212521x y +=B .2212521y x +=C .221254x y +=D .221254y x +=18.设M 是圆P :()22236x y ++=上的一动点,定点()0,2Q ,线段MQ 的垂直平分线交线段PM 于N 点,则N 点的轨迹方程为A .22195x y +=B .22159x y +=C .2213632x y +=D .2213236x y +=19.已知椭圆的短轴长是焦距的2倍,则椭圆的离心率为A .12BC .15D20.设椭圆C :22221(0)x y a b a b+=>>的两个焦点分别为12,F F ,12||F F =P 是C 上一点,若12PF PF a -=,且121sin 3PF F ∠=,则椭圆C 的方程为 A .22143x y +=B .22163x y +=C .22164x y +=D .22142x y +=21.已知椭圆2222:1(0)x y C a b a b+=>>,倾斜角为45︒的直线l 与椭圆相交于A ,B 两点,AB 的中点是(4,1)M -则椭圆的离心率是A BC .2D .1222.椭圆C :2221(0)3x y a a +=>的焦点在x 轴上,其离心率为12,则A .椭圆CB .椭圆C 的长轴长为4 C .椭圆C 的焦距为4D .4a =23.椭圆22143x y +=的右焦点到直线0x y -=的距离是A .12BC .1D24.已知椭圆C 的短轴长为6,离心率为45,则椭圆C 的焦点F 到长轴的一个端点的距离为 A .9 B .1C .1或9D .以上都不对25.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于A .3B .5C .7D .826.已知椭圆C :22221x y a b+=(0a b >>),M 为椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹是 A .圆 B .椭圆 C .双曲线D .抛物线27.已知A 、B 是椭圆C :22221x y a b+=(0a b >>)长轴的两个端点,P 、Q 是椭圆上关于x 轴对称的两点,直线AP 、BQ 的斜率分别为1k 、2k ,若1211k k +的最小值为4,则椭圆的离心率为 A .12B.3 CD28.已知1F ,2F 分别是椭圆22:143x y C +=的左、右焦点,点P 、Q 是椭圆上位于x 轴上方的两点,且12//PF QF ,则12PF QF +的取值范围为 A .[)2,4B .[)3,4C .[)1,4D .[)1.5,429.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,直线y =与椭圆C 相交于A ,B 两点,且AF BF ⊥,则椭圆C 的离心率为A .12 B 1C .12D 130.已知椭圆()222210x y a b a b+=>>,点M 在椭圆上,以M 为圆心的圆与x 轴相切与椭圆的焦点,与y 轴相交于P ,Q ,若MPQ 为正三角形,则椭圆的离心率为 A .12B .13C .2D .331.已知椭圆()2222:10x y C a b a b+=>>的焦距为2,右顶点为A ,过原点与x 轴不重合的直线交C 于M ,N 两点,线段AM 的中点为B ,若直线BN 经过C 的右焦点,则C 的方程为A .22143x y +=B .22165x y +=C .22198x yD .2213632x y +=32.已知直线:210l kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆222:(2)(1)1C x y -+-=交于C 、D 两点.若存在[2,1]k ∈--,使得AC DB =,则椭圆1C 的离心率的取值范围是 A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .0,2⎛ ⎝⎦D .2⎫⎪⎪⎣⎭33.已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,1-),则G 的方程为A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=34.焦点在x 轴上的椭圆的方程为222141x ya a +=+(0a >),则它的离心率e 的取值范围为A .104⎛⎤ ⎥⎝⎦,B .102⎛⎤ ⎥⎝⎦,C .⎛ ⎝⎦D .1142⎡⎤⎢⎥⎣⎦,35.若1F 、2F 分别是椭圆2212516x y +=的左、右焦点,M 是椭圆上的任意一点,且12MF F △的内切圆的周长为3π,则满足条件的点M 的个数为 A .2 B .4 C .6 D .不确定二、多选题1.已知椭圆C :221641x y +=,则下列结论正确的是A .长轴长为12BC .焦点坐标为04⎛⎫± ⎪ ⎪⎝⎭, D .离心率为22.椭圆的焦距,短轴长和长轴长构成等差数列,其中长轴长等于10,则椭圆的标准方程为A .2212516x y +=B .22110064x y +=C .22164100x y +=D .2251162x y +=3.已知椭圆22221x y a b +=的焦距为6,直线l 与椭圆交于A ,B 两点,弦AB 的中点为(2,1)M ,则直线l 的方程为 A .78220x y +-= B .7860x y --= C .3271030x y --=D .327710x y +-=4.如图所示,某探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点处第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅰ绕月飞行,且轨道Ⅰ的右顶点为轨道Ⅰ的中心.设椭圆Ⅰ与Ⅰ的长半轴长分别为1a 和2a ,半焦距分别为1c 和2c ,离心率分别为1e ,2e ,则下列结论正确的是A .()11222a c a c +>+B .1122a c a c -=-C .2112e e +=D .椭圆Ⅰ比椭圆Ⅰ更扁5.已知椭圆C :221625400x y +=,关于椭圆C 下述正确的是 A .椭圆C 的长轴长为10B .椭圆C 的两个焦点分别为(0,3)-和(0,3) C .椭圆C 的离心率等于35D .若过椭圆C 的焦点且与长轴垂直的直线l 与椭圆C 交于,P Q ,则32||5PQ = 6.已知曲线22:1C mx ny +=A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上 C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线7.关于x 、y 的方程22221232x y m m +=+-,(其中223m ≠)对应的曲线可能是 A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线D .圆8.为使椭圆2212x y m+=的离心率为12,正数m 的值可以是A .1BC .83D .329.下列说法正确的有A .方程2x xy x +=表示两条直线B .椭圆221102x y m m +=--的焦距为4,则4m =C .曲线22259x y xy +=关于坐标原点对称D .椭圆C :2215y x +=的焦距是210.已知椭圆C :()222210x y a b a b+=>>,P 是该椭圆在第一象限内的点,1F ,2F 分别为椭圆的左右焦点,12F PF ∠的角平分线交x 轴于点M ,且满足24MF OM =,则该椭圆的离心率可能是 A .18B .14 C .12D .34三、填空题1.椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为__________.2.已知椭圆2211612x y +=的左、右焦点分别为12,,F F AB 是椭圆过焦点1F 的弦,则2ABF 的周长是__________.3.已知椭圆C :2214x y +=的两个焦点分别为1F ,2F ,过点1F 且与坐标轴不平行的直线与椭圆交于点M ,N ,则2MNF 的周长是__________.4.椭圆2216x y m+=的一个焦点是(0,2),则m =__________.5.已知方程22112x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是__________. 6.椭圆221916x y +=的离心率为__________.7.已知椭圆22221(0)x y a b a b+=>>,左焦点(,0)F c -,右顶点(,0)A a ,上顶点(0,)B b ,满足0FB AB =,则椭圆的离心率为__________.8.已知椭圆2219x y m +=的离心率等于13,则实数m =__________. 9.已知1F 、2F 是椭圆22110064x y +=上的两个焦点,P 是椭圆上一点,且12PF PF ⊥,则12F PF △的面积为__________.10.若A 、B 为椭圆C :22221x y a b+=(0a b >>)长轴的两个端点,垂直于x 轴的直线与椭圆交于点M 、N ,且14AM BN k k ⋅=,则椭圆C 的离心率为__________. 11.如图所示,椭圆C :22221x y a b+=(0a b >>)的左右焦点分别为1F 、2F ,上顶点为A ,离心率为12,点P 为第一象限内椭圆上的一点,若1122:1PF APF F S S=:,则直线1PF 的斜率为__________.12.已知椭圆2222:1(0)x y C a b a b+=>>经过函数31x y x =-图象的对称中心,若椭圆C 的离心率,23e ∈ ⎝⎭,则C 的长轴长的取值范围是__________.13.已知椭圆22195y x +=的上焦点为F ,M 是椭圆上一点,点()A ,当点M 在椭圆上运动时,MA MF +的最大值为__________.14.已知1F 、2F 为椭圆C :222116x y a +=的左、右焦点,M 为椭圆上一点,且12MF F △内切圆的周长等于3π,若满足条件的点M 恰好有两个,则a =__________.15.已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,若以原点为圆心、椭圆短半轴长为半径的圆与直线2y x =+相切,则椭圆的标准方程为__________. 四、双空题1.已知1F ,2F 是椭圆22:195x y C +=的左、右焦点,点P 在C 上,则12PF PF ⋅的最大值为__________;若(0,A ,则2PA PF -的最小值为__________.2.椭圆22149x y +=的焦距是__________,离心率是__________.3.在平面直角坐标系xOy 中,点M 的坐标为()1,2-,且0OM ON +=,动点P 与,M N 连线的斜率之积为12-,则动点P 的轨迹方程为__________,PMN 面积的取值范围是__________.4.椭圆221mx ny +=与直线10x y +-=相交于,A B 两点,C 是线段AB 的中点,若AB =,OC 的斜率为2,则m n -=__________,离心率e =__________.5.已知椭圆C 的焦点在x 轴上,它的长轴长为4,焦距为2,则椭圆C 的短轴长为__________,标准方程为__________.6.已知椭圆22195x y +=的左右焦点分别为1F 、2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,则21PF F ∠=__________,12PF PF -=__________.7.椭圆:194C +=的离心率为__________,长轴长__________.8.椭圆22142x y +=的左、右焦点分别为1F ,2F ,过焦点1F 的直线交椭圆于A ,B 两点,则2ABF 的周长为__________;若A ,B 两点的坐标分别为()11,x y 和()22,x y ,且212y y -=,则2ABF 的内切圆半径为__________.9.椭圆22194x y +=的长轴长是__________,离心率是__________.10.(1)方程2244kx y k +=表示焦点在x 轴上的椭圆,则实数k 的取值范围是__________;(2)设点A ,B 的坐标为()20-,,()20,,点P 是曲线C 上任意一点,且直线P A 与PB 的斜率之积为14-,则曲线C 的方程是__________. 五、解答题1.已知圆2219:24E x y ⎛⎫+-= ⎪⎝⎭,经过椭圆2222:1(0)x y C a b a b +=>>的左、右焦点12,F F ,且与椭圆C 在第一象限的交点为A ,且1F ,E ,A 三点共线,直线l 交椭圆C 于两点M ,N ,且(0)MN OA λλ=≠. (1)求椭圆C 的方程;(2)当AMN 的面积取到最大值时,求直线l 的方程.2.已知椭圆()2222:10x y C a b a b+=>>的四个顶点围成的四边形的面积为原点到直线1x y a b += (1)求椭圆C 的方程;(2)已知定点()0,2P ,是否存在过P 的直线l ,使l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.3.已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为2,离心率为,直线:(0)=+≠l y kx m k 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)若线段AB 的垂直平分线通过点10,2⎛⎫-⎪⎝⎭,证明:2212k m +=. 4.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为P ,右顶点为Q ,直线PQ 与圆2245x y +=相切于点24,55M ⎛⎫⎪⎝⎭. (1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且PA PB ⋅=0,求证:直线l 过定点.5.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,,F F ,离心率12e =,点P 是椭圆上一个动点,1PF F 面积的最大值是(1)求椭圆的方程; (2)A ,B ,C ,D 是椭圆上不同的四点,AC 与BD 相交于点1F ,0AC BD ⋅=,||||AC BD +的最小值.6.已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,过右焦点F 的直线l 与C 相交于A 、B 两点. 当l 的斜率为1时,坐标原点O 到l 的距离为2. (1)求a 、b 的值;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+成立?若存在,求出所有点P 的坐标与l 的方程;若不存在,说明理由. 7.平面内动点M 到点()2,0F 的距离与M 到直线92x =的距离之比为23. (1)求动点M 的轨迹C 的方程; (2)过点F 的直线l 交轨迹C 于不同两点A 、B ,交y 轴于点N ,已知1NA AF λ=,2NB BF λ=,试问12λλ+是否等于定值,并说明理由.8.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()11,0F -、()21,0F ,点P 为椭圆C 上一点,使得1260F PF ∠=,12PF F △ (1)求椭圆C 的标准方程;(2)直线1l 与椭圆C 相交于A 、B 两点,直线2l 与椭圆C 相交于D 、E 两点,且A 、B 、D 、E 四点的横坐标均不相同,若直线1l 与直线2l 的斜率互为相反数,求证:直线AD 和直线BE 的斜率互为相反数.9.已知椭圆C :()222210x y a b a b+=>>过点31,2⎛⎫ ⎪⎝⎭,且长轴长等于4.(1)求椭圆C 的方程;(2)1F ,2F 是椭圆C 的两个焦点,圆O 是以12F F 为直径的圆,直线l :y kx m =+与圆O相切,并与椭圆C 交于不同的两点A ,B ,若32OA OB ⋅=-,求k 的值.10.已知椭圆C :()222210x y a b a b+=>>,右焦点)F,且离心率2e =.(1)求椭圆C 的方程;(2)过F 且倾斜角为45︒的直线l 与椭圆交于不同的两点M ,N ,求OMN (O 为坐标原点)的面积.11.已知椭圆2222:1(0)x y C a b a b +=>>经过点P ⎛ ⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .12.设椭圆中心在坐标原点,焦点在x 轴上,一个顶点坐标为(2,0) (1)求这个椭圆的方程;(2)若这个椭圆左焦点为1F,右焦点为F,过1F且斜率为1的直线交椭圆于A、B 2两点,求AB的长及2ABF的面积.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高考数学-椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用一、随圆的第二定义(比值定义): 若),e e d MF为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。

注:①其中F 为定点,F (C ,0),d 为M 到定直线L :ca x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。

二、第二定义的应用[例1]已知11216,)3,2(22=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

分析:此题主要在于MF 2的转化,由第二定义:21==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。

再求最小值可较快的求出。

解:作图,过M 作l MN ⊥于N ,L 为右准线:8=x , 由第二定义,知:21==e d MF,MN d MF ==∴2,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,即:l AM ⊥时,MF MA 2+为最小;且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中,解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。

(2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。

[例2]:设),(00y x P 为椭圆)0(,12222>>=+b a by a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+=证明:作图, 由第二定义:e c ax PF =+201即:a ex ca x e c a x e PF r +=+=+⋅==0202011)( 又a PF PF 221=+0012)(22ex a ex a a r a r -=+-=-=∴注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出c a a e a r c a ea a r -=-⋅+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a ,(,P c a PF 01--=为时 当)(a,,P c a PF 01为时+=[练习](1)过1922=+y x 的左焦点F 作倾斜角为300的直线交椭圆于A 、B 两点,则弦AB 的长为 2 分析:是焦点弦AB Θ )x (x e a )ex (a )ex (a BF AF AB B A B A +⋅+=+++=+=∴2只需求?=+B A x x (用联立方程后,韦达定理的方法可解)(2)148642122=+y x 、F F 为的左、右焦点,P 为椭圆上的一点,若,321PF PF =则P 到左准线的距离为 24分析:由焦半径公式,设)y x p 00,(得,x )ex a ex a 8(3000=-=+即又左准线为:16-=x 则P 到左准线距离为8-(-16)=24[例3] 设椭圆的左焦点为F ,AB 过F 的弦,试分析以AB 为直径的圆与左准线L 的位置关系 解,设M 为弦AB 的中点,(即为“圆心”)作,A L AA 11于⊥ ,B L BB 11于⊥,M L MM 11于⊥由椭圆的第二定义知:)(11BB AA e BF AF AB +=+=10<<e Θ 11BB AA AB +<∴又在直角梯形11A ABB 中,1MM 是中位线1112MM BB AA =+∴ 即:12MM AB < 12MM AB<∴ (2AB为圆M 的半径1MM r ,为圆心M 到左准线的距离d d r <⇒故以AB 为直径的圆与左准线相离椭圆第二定义的应用练习1、椭圆两准线间的距离等于焦距的4倍,则此椭圆的离心率e 等于( )A .21 B.31 C.41 D.42 2、椭圆的两个焦点是)3,0(1-F 和)3,0(2F ,一条准线方程是316-=y ,则此椭圆方程是( ) A .191622=+y x B.171622=+y x C. 116922=+y x D.116722=+y x 3、由椭圆116922=+y x 的四个顶点组成的菱形的高等于: 。

人教版2020高考数学(理科)一轮复习课时作业:52 椭圆_含解析

人教版2020高考数学(理科)一轮复习课时作业:52 椭圆_含解析

课时作业52 椭圆一、选择题1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( A )A .4B .3C .2D .5解析:由题意知|OM |=12|PF 2|=3, ∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.2.(2019·开封模拟)曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k =1(k <9)的( D )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:因为c 21=25-9=16,c 22=(25-k )-(9-k )=16,所以c 1=c 2,所以两个曲线的焦距相等.3.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( C )A.306B.7C.306或7D.56或7 解析:由题意知m 2=36,解得m =±6.当m =6时,该圆锥曲线表示椭圆,此时a =6,b =1,c =5,则e =306;当m =-6时,该圆锥曲线表示双曲线,此时a =1,b =6,c =7,则e =7.故选C.4.(2019·贵州六盘水模拟)已知点F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,若点P 在椭圆C 上,且∠F 1PF 2=60°,则|PF 1|·|PF 2|=( A )A .4B .6C .8D .12解析:由|PF 1|+|PF 2|=4, |PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60° =|F 1F 2|2,得3|PF 1|·|PF 2|=12, 所以|PF 1|·|PF 2|=4,故选A.5.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( C )A.14B.13C.12D.23 解析:由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c )·b 3,得a =2c ,即e =c a =12,故选C.6.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( B )A.⎝ ⎛⎭⎪⎫5-12,1B.⎝ ⎛⎭⎪⎫0,5-12 C.⎝ ⎛⎭⎪⎫3-12,1 D.⎝ ⎛⎭⎪⎫0,3-12解析:设正方形的边长为2m ,∵椭圆的焦点在正方形的内部,∴m >c .又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1(a >b >0)上,∴m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,整理得e 4-3e 2+1>0,e 2<3-52=(5-1)24,∴0<e <5-12.故选B. 二、填空题7.(2019·河北保定一模)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为x 225+y 216=1.解析:设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r .所以|PC 1|+|PC 2|=10>|C 1C 2|=6,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.8.(2019·四川南充模拟)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是 3.解析:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a =3,所以b 2=3,即b = 3.9.(2019·云南昆明质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是(-3,0)或(3,0).解析:记椭圆的两个焦点分别为F 1,F 2, 有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25, 当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.所以点P 的坐标为(-3,0)或(3,0).10.(2019·南宁市摸底联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是32.解析:设直线x -y +5=0与椭圆x 2a 2+y 2b 2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.由⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0, 所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2-=14,于是椭圆的离心率e =c a =1-b 2a 2=32.三、解答题11.(2019·云南曲靖模拟)已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32.(1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意可得⎩⎨⎧a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1.由OA ⊥OB ,得OA →·OB →=0,OA →·OB →=x 1x 2+y 1y 2=x 1x 2+32x 2+m 32x 1+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2=54m 2-74=0,得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.12.已知椭圆C :x 23m +y 2m =1,直线l :x +y -2=0与椭圆C 相交于两点P ,Q ,与x 轴交于点B ,点P ,Q 与点B 不重合.(1)求椭圆C 的离心率;(2)当S △OPQ =2时,求椭圆C 的方程;(3)过原点O 作直线l 的垂线,垂足为N .若|PN |=λ|BQ |,求λ的值.解:(1)a 2=3m ,b 2=m ,c 2=2m ,e 2=c 2a 2=23,故e =63.(2)设P (x 1,y 1),Q (x 2,y 2),将x +y -2=0代入椭圆C 的方程并整理得4x 2-12x +12-3m =0,依题意,由Δ=(-12)2-4×4×(12-3m )>0得m >1.且有⎩⎨⎧x 1+x 2=3,x 1x 2=12-3m4,|PQ |=1+k 2|x 1-x 2|=2·9-(12-3m )=6m -1, 原点到直线l 的距离d =2,所以S △OPQ =12|PQ |·d =12×6·m -1×2=2,解得m =73>1,故椭圆方程为x 27+3y 27=1.(3)直线l 的垂线为ON :y =x ,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,解得交点N (1,1). 因为|PN |=λ|BQ |,又x 1+x 2=3,所以λ=|PN ||BQ |=|x 1-1||x 2-2|=|2-x 2||x 2-2|=1,故λ的值为1.13.(2019·合肥市质量检测)如图,椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( D )A .20B .10C .2 5D .4 5解析:由F 1,H 是线段MN 的三等分点,得H 是F 1N 的中点,又F 1(-c,0),∴点N 的横坐标为c ,联立方程,得⎩⎨⎧x =c ,x 2a 2+y 24=1,得N (c ,4a ),∴H (0,2a ),M (-2c ,-2a ).把点M 的坐标代入椭圆方程得4c 2a 2+(-2a )24=1,化简得c 2=a 2-14,又c 2=a 2-4,∴a 2-14=a 2-4,解得a 2=5,∴a = 5.由椭圆的定义知|NF 2|+|NF 1|=|MF 2|+|MF 1|=2a ,∴△F 2MN 的周长为|NF 2|+|MF 2|+|MN |=|NF 2|+|MF 2|+|NF 1|+|MF 1|=4a =45,故选D.14.(2019·南昌摸底调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围.解:(1)由题知e =c a =32,2b =2,又a 2=b 2+c 2, ∴b =1,a =2,∴椭圆C 的标准方程为x 24+y 2=1. (2)设M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0,化简得m 2<4k 2+1,①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·(-8km4k 2+1)+4m 2=0,即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简得m 2+k 2=54,②由①②得0≤m 2<65,120<k 2≤54, ∵原点O 到直线l 的距离d =|m |1+k 2, ∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2),又120<k 2≤54,∴0≤d 2<87,∴原点O 到直线l 的距离的取值范围是[0,2147). 尖子生小题库——供重点班学生使用,普通班学生慎用15.(2019·郑州市第一次质量预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点和上顶点分别是A ,B ,左、右焦点分别是F 1,F 2,在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,则椭圆的离心率的平方为( B )A.32B.3-52 C.-1+52D.3-12解析:如图,由题意得,A (-a,0),B (0,b ),由在线段AB 上有且只有一个点P 满足PF 1⊥PF 2,得点P 是以点O 为圆心,线段F 1F 2为直径的圆x 2+y 2=c 2与线段AB 的切点,连接OP ,则OP ⊥AB ,且OP =c ,即点O 到直线AB 的距离为c .又直线AB 的方程为y =ba x +b ,整理得bx -ay +ab =0,点O 到直线AB 的距离d =abb 2+a 2=c ,两边同时平方整理得,a 2b 2=c 2(a 2+b 2)=(a 2-b 2)(a 2+b 2)=a 4-b 4,可得b 4+a 2b 2-a 4=0,两边同时除以a 4,得(b 2a 2)2+b 2a 2-1=0,可得b 2a 2=-1+52,则e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=1--1+52=3-52,故选B. 16.(2019·重庆六校联考)如图,记椭圆x 225+y 29=1,y 225+x 29=1内部重叠区域的边界为曲线C ,P 是曲线C 上的任意一点,给出下列四个命题:①P 到F 1(-4,0),F 2(4,0),E 1(0,-4),E 2(0,4)四点的距离之和为定值;②曲线C 关于直线y =x ,y =-x 均对称; ③曲线C 所围区域的面积必小于36; ④曲线C 的总长度不大于6π. 其中正确命题的序号是②③.解析:对于①,若点P 在椭圆x 225+y 29=1上,P 到F 1(-4,0),F 2(4,0)两点的距离之和为定值,到E 1(0,-4),E 2(0,4)两点的距离之和不为定值,故①错;对于②,联立两个椭圆的方程,得⎩⎪⎨⎪⎧x 225+y 29=1,y 225+x 29=1,得y 2=x 2,结合椭圆的对称性知,曲线C 关于直线y =x ,y =-x 均对称,故②正确;对于③,曲线C 所围区域在边长为6的正方形内部,所以其面积必小于36,故③正确;对于④,曲线C 所围区域的内切圆为半径为3的圆,所以曲线C 的总长度必大于圆的周长6π,故④错.故答案为②③.。

(新课标)高考数学备考试题库 第八章 第5节 椭圆 文(含解析)-人教版高三全册数学试题

(新课标)高考数学备考试题库 第八章 第5节 椭圆 文(含解析)-人教版高三全册数学试题

2010~2014年高考真题备选题库第8章 平面解析几何第5节 椭圆1. (2014某某,5分)已知椭圆C :x 29 +y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 |AN |+|BN |=________.解析:取MN 的中点G ,G 在椭圆C 上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B ,故有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.答案:12.2.(2014某某,5分)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x+2y -3=0被圆截得的弦长为24-95=2555. 答案:25553. (2014某某,12分)圆 x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x + 3 交于A ,B 两点.若△PAB 的面积为2,求C 的标准方程.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).(2)设C 的标准方程为x 2a 2+y 2b2=1(a >b >0),点A (x 1,y 1),B (x 2,y 2).由点P 在C 上知2a 2+2b2=1,并由⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =x +3,得b 2x 2+43x +6-2b 2=0,又x 1,x 2是方程的根,因此⎩⎪⎨⎪⎧x 1+x 2=-43b2,x 1x 2=6-2b 2b2.由y 1=x 1+3,y 2=x 2+3, 得|AB |=2|x 1-x 2|=2·48-24b 2+8b4b 2.由点P 到直线l 的距离为32及S △PAB =12×32×|AB |=2得b 4-9b 2+18=0,解得b 2=6或3,因此b 2=6,a 2=3(舍)或b 2=3,a 2=6.从而所求C 的方程为x 26+y 23=1.4. (2014某某,5分)设椭圆 C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为 F 1,F 2,过F 2 作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆 C 的离心率等于________.解析:由题意知F 1(-c,0),F 2(c,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a .因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎪⎫0,-b 22a ,又AD ⊥F 1B ,所以k AD ·kF 1B =-1,即b 2a -⎝ ⎛⎭⎪⎫-b 22a c -0×-b 2a -0c --c=-1,整理得3b 2=2ac ,所以3(a 2-c 2)=2ac ,又e =c a,0<e <1,所以3e 2+2e -3=0,解得e =33(e =-3舍去). 答案:335(2013某某,5分)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 解析:本题主要考查椭圆的图像、方程、性质等知识,考查数形结合的数学思想方法,意在考查考生的抽象概括能力、运算求解能力.依题意,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:D6(2013某某,14分)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22. (1)求椭圆C 的方程;(2)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P .设OP =t OE ,某某数t 的值.解:本题综合考查椭圆的方程、直线与椭圆的位置关系、平面向量的坐标运算等知识,考查方程思想、分类讨论思想、推理论证能力和运算求解能力.(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得a =2,b =1,因此椭圆C 的方程为x 22+y 2=1.(2)(ⅰ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =m ,由题意得-2<m <0或0<m < 2. 将x =m 代入椭圆方程x 22+y 2=1,得|y |=2-m22, 所以S △AOB =|m |2-m 22=64, 解得m 2=12或m 2=32.①又OP =t OE =12t (OA +OB )=12t (2m,0)=(mt,0),因为P 为椭圆C 上一点, 所以mt22=1.②由①②得t 2=4或t 2=43,又t >0,所以t =2或t =233.(ⅱ)当A ,B 两点关于x 轴不对称时, 设直线AB 的方程为y =kx +h , 将其代入椭圆的方程x 22+y 2=1,得(1+2k 2)x 2+4khx +2h 2-2=0. 设A (x 1,y 1),B (x 2,y 2). 由判别式Δ>0可得1+2k 2>h 2, 此时x 1+x 2=-4kh 1+2k 2,x 1x 2=2h 2-21+2k2,y 1+y 2=k (x 1+x 2)+2h =2h1+2k2, 所以|AB |=1+k2x 1+x 22-4x 1x 2=22·1+k 2· 1+2k 2-h21+2k2. 因为点O 到直线AB 的距离d =|h |1+k2,所以S△AOB=12·|AB |·d =12×221+k 2·1+2k 2-h21+2k2·|h |1+k2=2· 1+2k 2-h21+2k 2·|h |. 又S △AOB =64, 所以2· 1+2k 2-h 21+2k 2·|h |=64.③ 令n =1+2k 2,代入③整理得3n 2-16h 2n +16h 4=0, 解得n =4h 2或n =43h 2,即1+2k 2=4h 2或1+2k 2=43h 2.④又OP =t OE =12t (OA +OB )=12t (x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-2kht 1+2k 2,ht 1+2k 2,因为P 为椭圆C 上一点,所以t 212⎝ ⎛⎭⎪⎫-2kh 1+2k 22+⎝ ⎛⎭⎪⎫h 1+2k 22=1,即h 2·t 21+2k2=1.⑤ 将④代入⑤得t 2=4或t 2=43.又t >0,所以t =2或t =233.经检验,符合题意.综合(ⅰ)(ⅱ)得t =2或t =233. 7(2013新课标全国Ⅱ,5分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.1323解析:本题主要考查椭圆离心率的计算,涉及椭圆的定义、方程与几何性质等知识,意在考查考生的运算求解能力.法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c2a=|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:D8.(2013某某,5分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解析:本题主要考查圆锥曲线的定义、离心率,解三角形等知识,意在考查考生对圆锥曲线的求解能力以及数据处理能力.由余弦定理得,|AF |=6,所以2a =6+8=14,又2c =10,所以e =1014=57.答案:B9.(2013某某,5分)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.1222解析:本题主要考查椭圆的简单几何性质,意在考查曲线和方程这一解析几何的基本思想.由已知,点P (-c ,y )在椭圆上,代入椭圆方程,得P ⎝ ⎛⎭⎪⎫-c ,b 2a .∵AB ∥OP ,∴k AB =k OP ,即-b a =-b 2ac ,则b =c ,∴a 2=b 2+c 2=2c 2,则c a =22,即该椭圆的离心率是22.答案:C10.(2013某某,4分)椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:本题主要考查椭圆的定义、图像和性质等基础知识,意在考查考生的数形结合能力、转化和化归能力、运算求解能力.直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2c c +3c=3-1.答案:3-111.(2012某某,13分)如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2, 直线AB 的方程可为y =-3(x -c ).将其代入椭圆方程3x 2+4y 2=12c 2,得B (85c ,-335c ).所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.12.(2012新课标全国,5分)设F 1,F 2是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45解析:由题意可得|PF 2|=|F 1F 2|,所以2(32a -c )=2c ,所以3a =4c ,所以e =34.答案:C13.(2012某某,5分)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A.14B.55C.12D.5-2 解析:依题意得|F 1F 2|2=|AF 1|·|F 1B |,即4c 2=(a -c )(a +c )=a 2-c 2,整理得5c 2=a 2,所以e =ca =55. 答案:B14.(2011某某,5分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与双曲线C 2:x 2-y 24=1有公共的焦点,C 2的一条渐近线与以C 1的长轴为直径的圆相交于A ,B 两点.若C 1恰好将线段AB 三等分,则( )A .a 2=132B .a 2=13C .b 2=12D .b 2=2解析:对于直线与椭圆、圆的关系,如图所示,设直线AB 与椭圆C 1的一个交点为C (靠近A 的交点),则|OC |=a3,因tan ∠COx =2, ∴sin ∠COx =25,cos ∠COx =15, 则C 的坐标为(a 35,2a35),代入椭圆方程得a 245a 2+4a 245b 2=1,∴a 2=11b 2.∵5=a 2-b 2,∴b 2=12.答案:C15.(2011某某,12分)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点(0,4),离心率为35.(Ⅰ)求C 的方程;(Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(Ⅰ)将(0,4)代入C 的方程得16b2=1,∴b =4,又e =c a =35得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y 216=1.(Ⅱ)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0,解得x 1=3-412,x 2=3+412, ∴AB 的中点坐标x =x 1+x 22=32,y =y 1+y 22=25(x 1+x 2-6)=-65, 即中点坐标为(32,-65).注:用韦达定理正确求得结果,同样给分.16.(2011新课标全国,5分)椭圆x 216+y 28=1的离心率为( )A.13B.12C.33D.22解析:由x 216+y 28=1可得a 2=16,b 2=8,∴c 2=a 2-b 2=8.∴e 2=c 2a 2=12.∴e =22.答案:D17.(2010某某,5分)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为( )A .2B .3C .6D .8解析:由椭圆x 24+y 23=1,可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP ·FP=x 2+x +y 2=x 2+x +3(1-x 24)=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP ·FP 取得最大值6.word 答案:C11 / 11。

专题22 椭圆(解答题压轴题)(教师版)-2024年高考数学压轴专题复习

专题22 椭圆(解答题压轴题)目录①椭圆的弦长(焦点弦)问题 (1)②椭圆的中点弦问题 (10)③椭圆中的面积问题 (15)④椭圆中的参数和范围问题 (22)⑤椭圆中的最值问题 (28)⑥椭圆中定点、定值、定直线问题 (35)⑦椭圆中向量问题 (42)⑧椭圆综合问题 (48)所以()2216432224m m ∆=-⨯⨯-=解得33m -<<.设()11,A x y ,()22,B x y ,则1243m x x +=-,212223m x x -=2.(2023春·甘肃白银·高二统考开学考试)已知椭圆C上一点.(1)求C的方程;(2)设M,N是C上两点,若线段MN3.(2023秋·湖北武汉·高二武汉市第十七中学校联考期末)已知椭圆椭圆上一点与两焦点构成的三角形周长为(1)求椭圆C的标准方程;(2)若直线l与C交于A,B两点,且线段则2211222211641164x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得(x 所以()()(1212124x x x x y y +-++又因为P 是DE 中点,所以1x +3.(2023秋·安徽亳州·高三校考阶段练习)令21230t k=->,故24k=当且仅当12tt=,即23,t k=故AOBV面积的最大值为3.)由题意得,四边形ABCD为菱形,则菱形ABCD的面积1S AC=⋅令235t n -=,得2716970n n -+=,解得7n =或977n =,从而2t =±或11621t =±.故直线l 的方程为23x y =±-,或116x =±④椭圆中的参数和范围问题1.(2023·辽宁抚顺·校考模拟预测)已知动点)显然直线l 的斜率存在,设直线:1l y kx =+,1,1)y ,2(B x ,2)y ,则2(D x λ,2)y λ,四边形OAED 为平行四边形,AE =,12(E x x λ+,12)y y λ+,A ,B ,E 均在椭圆C 上,2114y +=,2222194x y +=,221212()()194x x y y λλ+++=,0,2129180x y y λ++=,依题意,设直线l 的方程为(1)(y k x =-易得12x x <.联立方程组()221,1,4y k x x y ⎧=-⎪⎨+=⎪⎩ 消去y 并整理得则2122814k x x k +=+,()21224114k x x k -=+,)得()20A ,,设直线l 的方程为x =2214x my tx y =+⎧⎪⎨+=⎪⎩,得()2242m y mty ++()()()222Δ244416mt m t m =-+-=2mt 24t -)C 短轴顶点时,PAB V 的面积取最大值222a b c =+,解得2,a b =的标准方程为2214x y += .)1122(,),(,)P x y Q x y ,若直线PQ 的斜率为零,由对称性知1111022y y x x -==++,222y k x -=-设直线PQ 的方程为x ty n =+由()2224y k x x y ⎧=+⎨+=⎩,得(2k +()()(22121k x k x ⎡⎤++-+⎣⎦解得()22211k x k -=+或x =-))()0011,,,x y A x y ,()22,B x y ,则可设直线PA 的方程为1x my =-,其中221143x my x y =-⎧⎪⎨+=⎪⎩,化简得(234m +)为椭圆C 的左顶点,又由(1)可知:(2,0)M -,设直线联立方程可得:222(44x ty mt x y =+⎧⇒+⎨+=⎩()()22224(4)40mt t m =-+->,即设直线:l y kx m =+交该椭圆220x +将y kx m =+代入221205x y +=得()2221484200k x kmx m +++-=设()11,D x y ,()22,E x y ,则21221621k x x k +=+,12x x ∴()1212542x x x x =+-,又()2,0A -,()2,0B ,∴直线AD 的方程为()1122y y x x =++,直线BE 的方程为1.(2023·吉林长春·东北师大附中校考一模)椭圆且垂直于长轴的弦长度为1.(1)求椭圆C的标准方程;2.(2023秋·北京海淀·高三清华附中校考开学考试)已知椭圆长轴长为6.(1)求椭圆E的标准方程;(2)椭圆E的上下顶点分别为,A B,右顶点为C,过点于x轴对称,直线AP交BC于M,直线AQ交BC于点【答案】(1)221 94x y+=(2)证明见解析【详解】(1)根据题意可知26a=,可得3a=;联立直线与椭圆方程221942x y y kx ⎧+=⎪⎨⎪=+⎩,消去设(),P P P x y ,易知P x 和0是方程的两根,由韦达定理可得又2P P y kx =+,所以2218894P k y k -=+,即1.(2023秋·辽宁·高二校联考阶段练习)已知椭圆3。

2020版高考数学 47 椭圆的定义、标准方程及其性质 理(含解析)新人教A版

课后限时集训(四十七)椭圆的定义、标准方程及其性质(建议用时:60分钟)A组基础达标一、选择题1.已知方程错误!+错误!=1表示焦点在y轴上的椭圆,则实数k的取值范围是( )A。

错误!B.(1,+∞)C.(1,2) D.错误!C [由题意得错误!解得1<k<2.故选C。

]2.(2018·惠州二模)设F1,F2为椭圆x29+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为( )A.错误!B。

错误!C。

错误! D.错误!D [如图,设线段PF1的中点为M,因为O是F1F2的中点,所以OM∥PF2,可得PF2⊥x轴,|PF2|=错误!=错误!,|PF1|=2a-|PF2|=错误!,错误!=错误!,故选D.]3.如图,底面直径为12 cm的圆柱被与底面成30°角的平面所截,截口是一个椭圆,则这个椭圆的离心率为( )A.错误!B.错误!C.错误!D。

错误!A [由题意得2a=错误!=8错误!(cm),短轴长即2b为底面圆直径12 cm,∴c=错误!=2错误!cm,∴e=错误!=错误!。

故选A.]4.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A.1 B.错误!C.2 D.2错误!D [设a,b,c分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,错误!×2cb=1⇒bc=1,2a=2错误!≥2错误!=2错误!,当且仅当b=c =1时,等号成立.故选D.]5.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为( ) A.错误!+错误!=1 B.错误!-错误!=1C.x23-错误!=1 D。

错误!+错误!=1D [由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=23>|AF|=2,∴点P的轨迹是以A,F为焦点的椭圆,且a =错误!,c=1,∴b=错误!,∴动点P的轨迹方程为错误!+错误!=1,故选D.]二、填空题6.(2018·全国卷Ⅰ改编)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为________.错误![由题意可知a2-4=4,∴a2=8,即a=2错误!。

2020版高考数学一轮复习课时训练(五十)椭圆及其性质(含解析)新人教A版(2021-2022学年)

课时跟踪检测(五十) 椭圆及其性质一、题点全面练1.方程kx2+4y2=4k表示焦点在x轴上的椭圆,则实数k的取值范围是( )A.(4,+∞)ﻩB.{4}C.(-∞,4)ﻩD.(0,4)解析:选D因为椭圆的标准方程为错误!未定义书签。

+错误!=1,焦点在x轴上,所以0<k<4。

2.(2019·六盘水模拟)已知点F1,F2分别为椭圆C:错误!+错误!未定义书签。

=1的左、右焦点,若点P在椭圆C上,且∠F1PF2=60°,则|PF1|·|PF2|=()A.4 B.6C.8 D.12解析:选A 由|PF1|+|PF2|=4,|PF1|2+|PF2|2-2|PF1|·|PF2|·cos60°=|F1F2|2,得3|PF1|·|PF2|=12,所以|PF1|·|PF2|=4,故选A.3.(2018·大连二模)焦点在x轴上的椭圆方程为\f(x2,a2)+错误!未定义书签。

=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A.14ﻩ B.错误!未定义书签。

C。

错误!未定义书签。

D.错误!解析:选C由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得错误!未定义书签。

×2c×b=错误!(2a+2c)×错误!,得a=2c,即e=错误!未定义书签。

=错误!,故选C.4.若点O和点F分别为椭圆错误!未定义书签。

+错误!未定义书签。

=1的中心和左焦点,点P为椭圆上的任意一点,则错误!·错误!的最大值为()A.2 B。

3C.6 D.8解析:选C 设点P(x0,y0),则错误!未定义书签。

+错误!=1,即y错误!=3-错误!。

因为点F(-1,0),所以错误!·错误!未定义书签。

=x0(x0+1)+y错误!未定义书签。

高考数学一轮复习 考点50 椭圆必刷题 理(含解析)-人教版高三全册数学试题

考点50 椭圆1.(市昌平区2019届高三5月综合练习二模理)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在某某卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里.已知月球的直径为3476公里,则该椭圆形轨道的离心率约为A.125B.340C.18D.35【答案】B 【解析】如下图,F为月球的球心,月球半径为:12×3476=1738,依题意,|AF|=100+1738=1838,|BF|=400+1738=2138. 2a=1838+2138,a=1988,a+c=2138,c=2138-1988=150,椭圆的离心率为:1503198840cea==≈,选B.2.(某某省实验中学等四校2019届高三联合考试理)已知椭圆C :22221x y a b+=,()0a b >>的左、右焦点分别为1F ,2F ,M 为椭圆上异于长轴端点的一点,12MF F ∆的内心为I ,直线MI 交x 轴于点E ,若2MI IE=,则椭圆C 的离心率是( )A .22B .12C .32D .13【答案】B 【解析】解:12MF F ∆的内心为I ,连接1IF 和2IF , 可得1IF 为12MF F ∠的平分线,即有11MF MI F EIE=,22MF MI F EIE=,可得12122MF MF MI F E F E IE===,即有1212222MF MF aF EEF c===, 即有12e =, 故选:B .3.(某某2019届高三高考一模试卷数学理)以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为( )A .32-B .31-C .22D .32【答案】B 【解析】解:设椭圆的两个焦点为1F ,2F ,圆与椭圆交于A ,B ,C ,D 四个不同的点, 设122F F c =,则1DF c =,23DF c =. 椭圆定义,得122||||3a DF DF c c =+=+, 所以23131c e a ===-+, 故选:B .4.(某某省某某市高级中学2019届高三适应性考试(6月)数学理)在平面直角坐标系xOy 中,已知点, A F分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于,P Q 两点,线段AP 的中点为M ,若, , Q F M 三点共线,则椭圆C 的离心率为( ) A .13B .23C .83D .32或83【答案】A 【解析】 如图设()()0000,,,P x y Q x y --,又(,0),(,0)A a F c ,00,22x a y M +⎛⎫∴ ⎪⎝⎭,,,Q F M 三点共线,MF QF k k =000022y y x a c x c -∴=++-, 即00002y y c x x a c=++-, 002c x x a c ∴+=+-,3a c ∴=,13c e a ∴==,故选A. 5.(某某省某某市2019届高三全真模拟考试数学理)已知1F 、2F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,则椭圆C 的离心率为_________.【解析】1F 、2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点A 是1F 关于直线bx ay ab +=的对称点,且2AF x ⊥轴,可得2AF 的方程为x c =,1AF 的方程()a y x c b =+,可得2(,)acA c b, 1AF 的中点为(0,)acb ,代入直线bx ay ab +=,可得:222ac b c a ==-,1c e a=<, 可得210e e --=,解得12e =.6.(某某省某某市2018-2019学年高二5月质量检测(期末)数学(理)已知F 是椭圆()222210x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,直线AF 与椭圆另一交点为B ,且2AF FB =,则椭圆的离心率为______.【答案】33【解析】设()0,A b -,(),0F c ,作BC y ⊥轴,垂足为C ,如下图所示:则:22AF b c a =+=由2AF FB =得:23AF c ABBC==32BC c ∴=,即:32B x c = 由椭圆的焦半径公式可知:B BF a ex =-232B AF a ac c a ex FBa a ∴===--⋅,整理可得:223a c =213e ∴=,即3e =本题正确结果:337.(某某省某某市2019届高三第三次教学质量检测数学理)如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球1O ,球2O 的半径分别为3和1,球心距离128OO =,截面分别与球1O ,球2O 切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于______.25【解析】如图,圆锥面与其内切球1O ,2O 分别相切与B,A ,连接12,O B O A 则1O BAB ,2O A AB ,过1O 作12O D O A 垂直于D ,连接12,O F O E ,EF 交12O O 于点C设圆锥母线与轴的夹角为α ,截面与轴的夹角为β 在12Rt O O D 中,2312DO ,22182215O D11221515cos84O O O D 128O O = 218CO O C21EO CFO C11218O C O CO E O F 解得1=2O C 222211213CFO FO C即13cos2CF O C则椭圆的离心率3cos 252cos 5154e8.(某某省某某市师X 大学某某市附属中学2019届高三第四次模拟考试)已知椭圆()2222:10x y E a b a b+=>>与y 轴正半轴交于点(3M ,离心率为12.直线l 经过点()(),00P t t a <<和点()0,1Q .且与椭图E 交于A 、B 两点(点A 在第二象限). (1)求椭圆E 的标准方程; (2)若AP PB λ=,当230t <≤时,求λ的取值X 围. 【答案】(1)22143x y +=(2)35λ⎛+∈ ⎝⎦【解析】解析:(1).由题意,12c e a ==且3b =2a =,所以椭圆E 的标准方程为22143x y +=.(2).因为直线l 经过点()(),00P t t a <<和点()0,1Q ,所以直线l 的斜率为1t -,设1:1l y x t=-+,将其代入椭圆方程22143x y +=中,消去x 得()22223463120t y t y t +-+-=,当∆>0时,设()11,A x y 、()22,B x y ,则2122634t y y t +=+……①,212231234t y y t -=+……②因为AP PB λ=,所以()()1122,,t x y x t y λ--=-,所以12y y λ=-……③ 联立①②③,消去1y 、2y ,整理得()222124141t λλ⎛⎫=+- ⎪⎝⎭-.当0t <≤时,()[)2221241412,1t λλ⎛⎫=+-∈+∞ ⎪⎝⎭-,解351,2λ⎫⎛+∈⎪ ⎪ ⎣⎭⎝⎦由()2122261034t y y y t λ+=-=>+且20y <,故1λ>,所以λ⎛∈ ⎝⎦. 9.(某某省威海市2019届高三二模考试数学理)在直角坐标系xOy 中,设椭圆2222:1(0)x y C a b a b+=>>的左焦点为1F ,短轴的两个端点分别为,A B ,且160AF B ∠=︒,点1)2在C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线:(0)l y kx m k =+>与椭圆C 和圆O 分别相切于P ,Q 两点,当OPQ ∆面积取得最大值时,求直线l 的方程.【答案】(Ⅰ) 2214x y +=.(Ⅱ) y x =【解析】(Ⅰ)由160AF B ∠=︒,可得2a b =,①由椭圆C经过点1)2,得2231144b b+=,② 由①②得224,1a b ==,所以椭圆C 的方程为2214x y +=.(Ⅱ)由2214x y y kx m ⎧+=⎪⎨⎪=+⎩消去y 整理得()222148440k x kmx m +++-=(*),由直线l 与椭圆相切得,()()222264161140k m m k ∆=--+=,整理得2241m k =+,故方程(*)化为2228160m x kmx k ++=,即2(4)0mx k +=, 解得4kx m-=, 设()11,P x y ,则124414km k x k m--==+,故111y kx m m =+=, 因此41(,)k P m m-. 又直线:(0)l y kx m k =+>与圆O相切,可得||OQ =所以||PQ ==所以1||||2OPQS PQ OQ ∆=⋅= 将2241m k =+式代入上式可得OPQS ∆===21321k k =⋅+3112k k=⋅+, 由0k >得12k k+≥,所以313124OPQ S k k∆=⋅≤+,当且仅当1k =时等号成立,即1k =时OPQ S ∆取得最大值.由22415m k =+=,得5m =±, 所以直线l 的方程为5y x =±.10.(某某省日照市2019届高三5月校际联合考试数学理)如图,已知椭圆()222210x y E a b a b +=:>>,()4,0A 是长轴的一个端点,弦BC 过椭圆的中心O ,且213213cos OA CA OC OB BC BA 〈〉=-=-,,.(1)求椭圆E 的方程.(2)过椭圆E 右焦点F 的直线,交椭圆E 于11,A B 两点,交直线8x =于点M ,判定直线11,,CA CM CB 的斜率是否依次构成等差数列?请说明理由.【答案】(1)2211612x y +=;(2)是,理由见详解. 【解析】 (1)由2OC OB BC BA -=-,得2B A C C =,即2O A C C =,所以AOC ∆是等腰三角形, 又4a OA ==,∴点C 的横坐标为2;又213cos OACA 〈〉=,, 设点C 的纵坐标为C y 222132C y =+,解得3C y =±, 应取(2,3)C ,又点C 在椭圆上,∴22222314b +=,解得212b =,∴所求椭圆的方程为2211612x y +=;(2)由题意知椭圆的右焦点为(2,0)F ,(2,3)C , 由题意可知直线11,,CA CM CB 的斜率存在, 设直线11A B 的方程为(2)y k x =-,代入椭圆2211612x y +=并整理,得2222(34)1616480k x k x k +-+-=;设11(,)A x y ,22(,)B x y ,直线11,,CA CM CB 的斜率分别为123,,k k k ,则有21221634k x x k+=+,2122164834k x x k -=+, 可知M 的坐标为(8,6)M k ;∴()()12121312122323332222k x k x y y k k x x x x ------+=+=+---- 1212124232142()x x k k x x x x +-=-•=-+-+,又263222182k k k -=•=--; 所以1322k k k +=,即直线11,,CA CM CB 的斜率成等差数列.11.(某某市某某区2019届高三一模数学理)已知椭圆C :22221(0)x y a b a b +=>>过点()2,1,且离心率为(Ⅰ)求椭圆C 的方程;(Ⅱ)若过原点的直线1l 与椭圆C 交于P 、Q 两点,且在直线2:0l x y -+=上存在点M ,使得MPQ 为等边三角形,求直线1l 的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 椭 圆一、选择题1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ). A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1解析 依题意知:2a =18,∴a =9,2c =13×2a ,∴c =3,∴b 2=a 2-c 2=81-9=72,∴椭圆方程为x 281+y 272=1.答案 A2.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为 ( ). A.14B.55C.12D.5-2解析 因为A ,B 为左、右顶点,F 1,F 2为左、右焦点,所以|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c .又因为|AF 1|,|F 1F 2|,|F 1B |成等比数列, 所以(a -c )(a +c )=4c 2,即a 2=5c 2. 所以离心率e =c a =55,故选B. 答案 B3.已知椭圆x 2+my 2=1的离心率e ∈⎝ ⎛⎭⎪⎫12,1,则实数m 的取值范围是 ( ).A.⎝ ⎛⎭⎪⎫0,34B.⎝ ⎛⎭⎪⎫43,+∞ C.⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞D.⎝ ⎛⎭⎪⎫34,1∪⎝ ⎛⎭⎪⎫1,43解析 椭圆标准方程为x 2+y 21m=1.当m >1时,e 2=1-1m ∈⎝ ⎛⎭⎪⎫14,1,解得m >43;当0<m <1时,e 2=1m -11m =1-m ∈⎝ ⎛⎭⎪⎫14,1,解得0<m <34,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,34∪⎝ ⎛⎭⎪⎫43,+∞. 答案 C4.设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,P 是第一象限内该椭圆上的一点,且PF 1⊥PF 2,则点P 的横坐标为( ).A .1 B.83 C .2 2 D.263解析 由题意知,点P 即为圆x 2+y 2=3与椭圆x 24+y 2=1在第一象限的交点,解方程组⎩⎨⎧x 2+y 2=3,x24+y 2=1,得点P 的横坐标为263. 答案 D5.椭圆x 2a 2+y 2b 2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△FAB是以角B 为直角的直角三角形,则椭圆的离心率e 为( ) A.3-12 B.5-12 C.1+54 D.3+14解析 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52,故所求的椭圆的离心率为5-12.答案 B6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ).A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1解析 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y 2=45b 2,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,所以椭圆方程为x 220+y 25=1.答案 D 二、填空题7.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为________.解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6.∴|PF 1|=2×5-6=4.答案 48.在等差数列{a n }中,a 2+a 3=11,a 2+a 3+a 4=21,则椭圆C :x 2a 6+y 2a 5=1的离心率为________.解析 由题意,得a 4=10,设公差为d ,则a 3+a 2=(10-d )+(10-2d )=20-3d =11,∴d =3,∴a 5=a 4+d =13,a 6=a 4+2d =16>a 5,∴e =16-134=34. 答案 349. 椭圆31222y x=1的焦点为F 1和F 2,点P 在椭圆上.如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的_____倍.解析 不妨设F 1(-3,0),F 2(3,0)由条件得P (3,±23),即|PF 2|=23,|PF 1|=2147,因此|PF 1|=7|PF 2|. 答案 710.如图,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为________.解析 设标准方程为x 2a 2+y 2b 2=1(a >b >0), 由题可知,|OF |=c ,|OB |=b ,∴|BF |=a , ∵∠OFB =π6,∴b c =33,a =2b . S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3,∴b 2=2,∴b =2,∴a =22,∴椭圆的方程为x 28+y 22=1.答案 x 28+y 22=1 三、解答题11.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程,得x 225+x -225=1,即x 2-3x -8=0. ∴x 1=3-412,x 2=3+412. ∴线段AB 的长度为|AB |=x 1-x 22+y 1-y 22=⎝⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. 12.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2.所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3(x -2),x 2a 2+y 2b2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0. 解得y 1=-3b 2(2+2a )3a 2+b 2,y 2=-3b 2(2-2a )3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2(2+2a )3a 2+b 2=2·-3b 2(2-2a )3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5.故椭圆C 的方程为x 29+y 25=1. 13. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba = 1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4(3y 0-4)28(2y 0-3)2=8-4y 20+4(3y 0-4)28(2y 0-3)2=32y 20-96y 0+728(2y 0-3)2=8(2y 0-3)28(2y 0-3)2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x2y -3,y 0=3y -42y -3. 因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝ ⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+(3y -4)22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 14.如图,设椭圆的中心为原点O ,长轴在x轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程. 解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0). 因△AB 1B 2是直角三角形,又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0. 设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16(m 2+1)m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.。

相关文档
最新文档