高中物理封闭气体压强的计算
压强高中公式

压强高中公式
压强高中公式是一个重要的物理公式,它用于计算物体在单位面积上所受到的压力。
这个公式通常表示为p=F/S,其中p代表压强,F代表施加在物体上的力,S代表物体的受力面积。
这个公式可以应用于许多不同的场景,例如在工程学中计算建筑物或机械部件的承载能力,在气象学中计算大气压强等等。
在应用这个公式时,需要注意的是,压强和力是向量,即它们有方向和大小,而受力面积必须是垂直于力的方向上的面积。
在解决具体的压强问题时,还需要考虑一些其他的因素,例如液体的密度、重力加速度等。
例如,在计算液体内部的压强时,可以使用公式p=ρgh,其中ρ代表液体的密度,g代表重力加速度,h代表液体的高度。
此外,还有一些其他的压强公式可以用于解决不同类型的问题。
例如,在计算气体压强时,可以使用玻意耳定律和查理
定律等气体实验定律来解决问题。
这些公式可以根据不同的气体状态和条件进行选择和运用。
总之,压强是一个非常重要的物理量,它可以影响物体的机械性能、能量传递和热力学性质等多个方面。
通过掌握这些压强公式,我们可以更好地理解和应用这些物理原理,为我们的生活和工业生产带来更多的便利和效益。
高中 高考物理 气体和热力学定律

续表 玻意耳定律 查理定律 盖—吕萨克定律
适用 实际气体在压强不太大(相对于 1 标准气压)、 温度不太低(相 条件 对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲, 理想气体是指在任何条件下始终遵守气体实验定律 的气体。实际气体在压强 不太大、温度 不太低 的条件下,可视为理 想气体。
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因: 由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和 体积 。 微观:决定于分子的 平均动能 和分子的 密集程度 (单位 体积内的分子数)。
解析:开始时由于活塞处于静止,由平衡条件可得 mg p0S+mg=p1S,则 p1=p0+ S 当气缸刚提离地面时气缸处于静止,气缸与地面间无 作用力,因此由平衡条件可得 p2S+Mg=p0S Mg 则 p2=p0- S 。 mg 答案:p0+ S Mg p0- S
2.[考查液柱封闭的气体压强]若已知大气压强 为 p0,在图中各装置均处于静止状态,图中液体密 度均为 ρ,求被封闭气体的压强。
解析:在图甲中,以高为 h 的液柱 为研究对象,由二力平衡知 p 气 S=-ρghS+p0S 所以 p 气=p0-ρgh
在图乙中,以 B 液面为研究对象,由平衡方程 F 上=F 下 有:p 气 S+ρghS=p0S p 气=p0-ρgh 在图丙中,以 B 液面为研究对象,有 3 p 气+ρghsin 60° =pB=p0,所以 p 气=p0- ρgh 2 在图丁中,以液面 A 为研究对象,由二力平衡得 p 气 S=(p0+ρgh1)S,所以 p 气=p0+ρgh1。 答案:甲:p0-ρgh 乙:p0-ρgh 3 丙:p0- ρgh 2 丁:p0+ρgh1
【高中物理】专题封闭气体的压强和气体变质量问题 高中物理同步备课(人教版2019选择性必修第三册)

例题分析
例:如图所示,长50 cm的玻璃管开口向上竖直放置,用15 cm长的水银柱封闭了一
段20 cm长的空气柱,外界大气压强相当于75 cm水银柱产生的压强。现让玻璃管自
由下落。不计空气阻力,求稳定时气柱的长。(可以认为气柱温度没有变化)
解析:假设自由下落过程中,水银没有溢出。根据玻意耳定律得
p1l1S=p2l2S
为p0=76 cmHg.如果使玻璃管绕底端在竖直平面内缓慢地转动一周,求在开口向下和转回到原
来位置时管中空气柱的长度(在转动过程中没有发生漏气,气体状态变化可视为等温变化)。
法二:在气体与水银相接触处,水银柱上取一液片为研
究对象,其处于静止状态,根据受力平衡确定气体各状
态的压强。
解析:
玻璃管开口向上时
知识点拨
1.一只手握住玻璃管中部,在管内灌满水银,排出空气,用另一只手指紧紧堵住
玻璃管开口端并把玻璃管小心地倒插在盛有水银的槽里,待开口端全部浸入水银槽
内时放开手指,将管子竖直固定,当管内水银液面停止下降时,读出此时水银液柱
与水槽中水平液面的竖直高度差,约为760mm。
2.逐渐倾斜玻璃管,发现管内水银柱的竖直高度不变。
析,列平衡方程求气体压强。
(2)①pA=p0-ph=71 cmHg
②pA=p0-ph=66 cmHg
③pA=p0+ph=(76+10×sin30°)cmHg=81 cmHg
④pA=p0-ph=71 cmHg pB=pA-ph=66 cmHg
例题分析
例:如图所示,在长为57 cm的一端封闭、另一端开口向上的竖直玻璃管内,用4 cm高
(1)玻璃管水平放置时,管内气体的长度。
(2)玻璃管开口竖直向下时,管内气体的长度。(假设水银没有流出)
高中物理选三 第2节 气体的等温变化

等温变化的图像及应用
两种图线 内容
[学透用活] p-V1 图线
p-V 图线
图线 特点
物理意义
一定质量的气体,温度不 一定质量的气体,在温度
变时,p
与V1 成正比,在
p
1 -V
不变的情况下,p
与
V
成
图像上的等温线应是过原 反比,因此等温过程的 p-V
点的直线
图线是双曲线的一支
温度高低
一定质量的气体,温度越 直线的斜率为 p 与 V 的乘
[典例2] (2018·全国卷Ⅰ)如图,容积为 V 的汽缸由导热材料制 成,面积为 S 的活塞将汽缸分成容积相等的上下两部分,汽缸上 部通过细管与装有某种液体的容器相连,细管上有一阀门 K。开 始时,K 关闭,汽缸内上下两部分气体的压强均为 p0。现将 K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V8时,将 K 关闭, 活塞平衡时其下方气体的体积减小了V6 。不计活塞的质量和体积,外界温度保 持不变,重力加速度大小为 g。求流入汽缸内液体的质量。
第 2 节 气体的等温变化
1.知道什么叫作气体的等温变化。 2.学会通过实验的手段探究气体等温变化的规律,体验科学探究过程。 3.理解气体等温变化的 p -V 图像及其意义。 4.会用玻意耳定律进行有关计算。
一、探究气体等温变化的规律 1.填一填 (1)等温变化:一定质量的气体,在温度不变的条件下,其 压强 与 体积 变 化时的关系。 (2)实验探究 ①实验装置:如图所示。
是不同的,B、D 正确,C 错误。 答案:ABD
3.如图所示,一定质量的封闭气体由状态 A 沿直线 AB 变化到状态 B,在此
过程中气体温度的变化情况是
()
A.一直升高 C.先升高后降低
高中物理第八章气体第2节气体的等容变化和等压变化讲义含解析新人教版选修3_3

第2节气体的等容变化和等压变化1.查理定律:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比,即p T=C 。
2.盖-吕萨克定律:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比,即V T=C 。
3.玻意耳定律、查理定律、盖-吕萨克定律的适用条件均为一定质量的某种气体。
一、气体的等容变化 1.等容变化一定质量的某种气体,在体积不变时,压强随温度的变化。
2.查理定律 (1)内容:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比。
(2)表达式:p T =C 或p 1T 1=p 2T 2。
(3)适用条件:①气体的质量不变;②气体的体积不变。
3.等容线一定质量的气体,在体积不变时,其p T 图像是一条过原点的直线,这条直线叫做等容线。
二、气体的等压变化 1.等压变化一定质量的某种气体,在压强不变时,体积随温度的变化。
2.盖-吕萨克定律 (1)内容:一定质量的某种气体,在压强不变的情况下,体积V 与热力学温度T 成正比。
(2)表达式:V =CT 或V T =C 或V 1T 1=V 2T 2。
(3)适用条件:①气体的质量不变;②气体的压强不变。
3.等压线一定质量的气体,在压强不变时,其V T 图像是一条过原点的直线,这条直线叫做等压线。
1.自主思考——判一判(1)气体的温度升高,气体体积一定增大。
(×)(2)一定质量的气体,在压强不变时体积与温度成正比。
(×)(3)一定质量的某种气体,在压强不变时,其V T 图像是过原点的直线。
(√) (4)一定质量的气体在体积不变的情况下,气体的压强与摄氏温度成正比。
(×) (5)pV =C 、p T =C 、V T=C ,三个公式中的常数C 是同一个值。
(×) 2.合作探究——议一议(1)某登山运动员在一次攀登珠穆朗玛峰的过程中,在接近山顶时他裸露在手腕上的防水手表的表盘玻璃突然爆裂了,而手表没有受到任何撞击,你知道其中的原因吗?提示:手表表壳可以看成一个密闭容器,出厂时封闭着一定质量的气体,登山过程中气体发生等容变化,因为高山山顶附近的压强比山脚处小很多,内外压力差超过表盘玻璃的承受限度,便会发生爆裂。
气体压强及计算

解析:水银柱做匀速圆周运动所需向心力由液柱两侧气体压力差提供,应用牛顿第 二定律列方程进行计算.气体问题中应用牛顿第二定律列式时,式中气体压力F=pS中 的“p”必须采用国际单位, 如题中告诉压强为75 cmHg,则应写成p=ρgh=13.6×103×9.8×75×10-2 Pa.
选取水银柱为研究对象, 转动所需向心力由液柱两侧气体压力差提供 (p-p0)S=mω2R
1、连通器原理:同一种液体在同一水平面上的压强相等。 巧取等压液面。
2、平衡条件法: 求用液体(水银)、固体(活塞)封闭在静止容器中的气体的压强时,应对液体或 固体进行受力分析,然后根据平衡条件列方程进行求解。
典例分析1:如图,设大气压为P0,试求玻璃管中被水银封闭的气体的压强?
h1
h2
h3
课堂练习
式中:m=ρl1S,
l1 2
解得:
P
P0
l12 (l2
l0
l1 2
)
课堂练习
如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆板的上表面是水平的, 下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板与容器内 壁的摩擦.若大气压强为P0,则被圆板封闭在容器中的气体压强?
水银柱相对玻璃管静止,则二者加速度相等, 以水银柱为研究对象,对其进行受力分析如 图所示; 以水银柱为研究对象应用牛顿第二定律有: mgsin30°+p0s-ps=ma 解得;p=p0=76 cmHg
典例分析4、如图所示的试管内由水银封有一定质量的气体,静止时气柱长为L0,大气
压强为P0.当试管绕竖直轴以角速度ω在水平面内匀速转动时气柱长变为L.其他尺寸如 图所示.求转动时的气体压强(设温度不变,管截面积为S,水银密度为ρ).
气体气压的计算公式

气体气压的计算公式气体压强是指气体分子在单位面积上对物体施加的压力,是一种物体受力的表现。
气体压强的计算公式可以根据不同的情况有所不同,下面将介绍几种常见的计算气体压强的公式。
1.理想气体状态方程理想气体状态方程描述了气体的状态与温度、压强、体积之间的关系,其公式如下:PV=nRT其中P表示气体压强(单位为帕斯卡Pa),V表示气体体积(单位为立方米m³),n表示气体物质的摩尔数,R表示气体常数(约为8.314J/(mol·K)),T表示气体的绝对温度(单位为开尔文K)。
通过此公式,可以根据已知条件计算气体的压强。
2.玻意耳-马略特定律玻意耳-马略特定律是描述气体在恒温下压强与体积之间的关系的定律,其公式为:P₁V₁=P₂V₂其中P₁和P₂分别表示气体的初始压强和最终压强,V₁和V₂分别表示气体的初始体积和最终体积。
该定律适用于恒温过程中,通过已知初始状态和改变的体积来计算气体的压强。
3.爱德瓦·沃泽定律爱德瓦·沃泽定律描述了温度和压强之间的关系,其公式为:P₁/T₁=P₂/T₂其中P₁和P₂分别表示气体的初始压强和最终压强,T₁和T₂分别表示气体的初始温度和最终温度。
该定律适用于等容过程中,通过已知初始状态和改变的温度来计算气体的压强。
4.高斯定理高斯定理是描述封闭容器内气体压强与容器内总分子数的关系的定律,其公式为:P=(n/V)kT其中P表示气体的压强,n表示气体内分子数,V表示容器的体积,k表示玻尔兹曼常数(约为1.38×10⁻²³J/K),T表示气体的温度。
通过此公式,可以根据已知条件计算气体的压强。
5.狄朗-珀蒂定律狄朗-珀蒂定律描述了气体压强与气体的密度和温度之间的关系,其公式如下:P=ρRT其中P表示气体的压强,ρ表示气体的密度(单位为千克/立方米kg/m³),R表示气体常数(约为8.314J/(mol·K)),T表示气体的绝对温度(单位为开尔文K)。
高中物理(人教版)选修3-3教学课件:第八章 第1节 气体的等温变化

思路点拨:取水银柱为研究对象,由平衡条件求得空气柱初态的
压强;由牛顿第二定律求得末态的压强,由几何关系算得体积关系,代
入 p1V1=p2V2 可求得稳定时气柱长度。
解析:设封闭空气柱压强为 p1,水银柱质量为 m,底面积为 S1,静
止时对水银柱由平衡条件得
p1S1=mg+p0S1,故 p1=ρgh1+p0
闭气体向下的压力 p1S、下液面受到大气向上的压力 p0S,其中 S 是
液柱的横截面积,m 是液柱的质量(m=ρhS)。由平衡条件得
p0S=p1S+mg=p1S+ρhSg
则 p1=p0-ρgh。
方法二:以甲图中液柱的下液面为研究对象,因液柱静止不动,液
面上下两侧的压强应相等。该液面下侧面受到大气向上的压强 p0,
与筒壁的摩擦会影响针筒内压强的测量,影响实验的准确性,选项 C
错误。
答案:B
2.下列四个选项图中,p 表示压强,V 表示体积,T 为热力学温度,则各
气体所处的温度高低有关,温度越高,恒量 C 越大。
3.应用玻意耳定律解题的一般步骤:
(1)首先确定研究对象,并判断是否满足玻意耳定律适用的条件;
(2)然后确定始末状态及状态参量(p1、V1,p2、V2);
(3)最后根据玻意耳定律列方程求解(注意 p1 和 p 2、V1 和 V2 统
一单位);
(4)注意分析隐含的已知条件,必要时还应由力学或几何知识列
出辅助方程。
思考探究
1.应用 pV=C 解题时,p、V 的单位必须采用国际单位吗?
答案:不,只要等式两边单位相同即可。
2.如果已经画出一定质量气体等温变化的 p-V 图象,怎样来比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理封闭气体压强的计算公司内部档案编码:[OPPTR-OPPT28-OPPTL98-难点突破:用气体实验定律解题的思路1.基本解题思路(1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和某一部分气体(状态变化时质量必须一定).(2)确定状态参量:找出状态变化前后的p、V、T数值或表达式.(3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定.(4)列出相关方程.封闭气体压强的计算1.系统处于平衡状态的气体压强的计算方法(1)液体封闭的气体压强的确定①平衡法:选与气体接触的液柱为研究对象进行受力分析,利用它的受力平衡,求出气体的压强.②取等压面法:根据同种液体在同一水平液面处压强相等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强.液体内部深度为h 处的总压强p =p 0+ρgh ,例如,图中同一水平液面C 、D 处压强相等,则p A =p 0+ρgh .(2)固体(活塞或汽缸)封闭的气体压强的确定:由于该固体必定受到被封闭气体的压力,可通过对该固体进行受力分析,由平衡条件建立方程来找出气体压强与其他各力的关系.2.加速运动系统中封闭气体压强的计算方法一般选与气体接触的液柱或活塞、汽缸为研究对象,进行受力分析,利用牛顿第二定律列方程求出封闭气体的压强.如图所示,当竖直放置的玻璃管向上加速时,对液柱受力分析有:pS -p 0S -mg =ma ,S 为玻璃管横截面积,得p =p 0+S m (g +a ).3.分析压强时的注意点(1)气体压强与大气压强不同,大气压强由于重力而产生,随高度增大而减小,气体压强是由大量气体分子频繁碰撞器壁而产生的,大小不随高度而变化;封闭气体对器壁的压强处处相等.(2)求解液体内部深度为h 处的总压强时,不要忘记液面上方气体的压强.用气体实验定律解题的思路1.基本解题思路(1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和某一部分气体(状态变化时质量必须一定).(2)确定状态参量:找出状态变化前后的p、V、T数值或表达式.(3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定.(4)列出相关方程.2.对两部分气体的状态变化问题总结多个系统相互联系的定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系.变质量气体问题的分析方法这类问题的关键是巧妙地选择研究对象,把变质量转化为定质量问题.常见变质量气体问题有:(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.液柱(活塞)的移动问题的分析方法此类问题的特点是气体的状态参量p 、V 、T 都发生了变化,直接判断液柱或活塞的移动方向比较困难,通常先进行气体状态的假设,然后应用查理定律可以简单地求解.其一般思路为:(1)先假设液柱或活塞不发生移动,两部分气体均做等容变化.(2)对两部分气体分别应用查理定律,求出每部分气体压强的变化量Δp =T ΔTp ,并加以比较.①如果液柱或活塞两端的横截面积相等,则若Δp 均大于零,意味着两部分气体的压强均增大,则液柱或活塞向Δp 值较小的一方移动;若Δp 均小于零,意味着两部分气体的压强均减小,则液柱或活塞向压强减小量较大的一方(即|Δp |较大的一方)移动;若Δp 相等,则液柱或活塞不移动.②如果液柱或活塞两端的横截面积不相等,则应考虑液柱或活塞两端的受力变化(ΔpS),若Δp均大于零,则液柱或活塞向ΔpS较小的一方移动;若Δp均小于零,则液柱或活塞向|ΔpS|较大的一方移动;若ΔpS相等,则液柱或活塞不移动.气体图象问题的分析要点对气体状态变化图象的理解应注意两点:(1)图象上的一个点表示一定质量气体的一个平衡状态,它对应着三个状态参量;图象上的某一条直线或曲线表示一定质量气体状态变化的一个过程.(2)熟练掌握同一过程的p—V、V—T、p—T图象之间的转化,必要时能作出辅助的状态变化图线.如在V—T或p—T图象中,比较两个状态的压强或体积大小,可以用这两个状态到原点连线的斜率大小来判断.斜率越大,压强或体积越小;斜率越小,压强或体积越大.计算气体压强的常用方法气体压强的计算问题,可以转化为力学问题进行处理。
具体如下:参考液面法(1)主要依据是液体静力学知识:①静止(或匀速)液面下深h处的压强为。
注意h 是液体的竖直深度。
②若静止(或匀速)液面与外界大气接触,则液面下深h处的压强为,为外界大气压强。
③帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递。
④连通器原理:在连通器中,同一种液体(中间液体不间断)的同一平面上时压强是相等的。
(2)计算压强的步骤:①选取假想的一个液体薄片(不计自身重力)为研究对象;②分析液片两侧受力情况,建立平衡方程,消去横截面积,得到薄片两侧的压强平衡方程;③解方程,求得气体压强。
【典例】如图(a)所示,水平放置的均匀玻璃管内,一段长为h=25 cm的水银柱封闭了长为L0=20 cm、温度为t0=27 ℃的理想气体,大气压强p0=75cmHg,将玻璃管缓慢地转过90°角,使它开口向上,并将封闭端浸入热水中,如图(b)所示,待稳定后,测得玻璃管内封闭气柱的长度L1= cm。
问:(1)此时管内封闭气体的温度t1是多少(2)若用薄塞将管口封闭,此时水银上部封闭气柱的长度为L2=10 cm。
保持水银上部封闭气体的温度不变,对水银下面的气体加热,当上面气柱长度的减少量ΔL= cm时,下面气体的温度是多少1.如图所示,玻璃管A上端封闭,B上端开口且足够长,两管下端用橡皮管连接起来,A管上端被一段水银柱封闭了一段长为6 cm的气体,外界大气压为75 cmHg,左右两水银面高度差为5 cm,温度为t1=27℃。
(1)保持温度不变,上下移动B管,使A管中气体长度变为5 cm,稳定后的压强为多少(2)稳定后保持B不动,为了让A管中气体体积回复到6 cm,则温度应变为多少2.如图乙所示,两端开口、粗细均匀的足够长玻璃管插在大水银槽中,管的上部有一定长度的水银柱,两段空气柱被封闭在左右两侧的竖直管中。
开启上部连通左右水银的阀门A ,当温度为300 K,平衡时水银柱的位置如图(h1=h2=5 cm,L1=50 cm),大气压为75 cmHg。
求:(1)右管内气柱的长度L2。
(2)关闭阀门A,当温度升至405 K时,左侧竖直管内气柱的长度L3(大气压强保持不变)。
平衡条件法对于用固体(或活塞)封闭静止容器内的气体,要求气体的压强,可对固体(或活塞)进行受力分析,然后根据平衡条件列式求解。
【典例】如图所示,透热的气缸内封有一定质量的理想气体,缸体质量M=200 kg,活塞质量m=10 kg,活塞面积S=100 cm2,活塞与气缸壁无摩擦且不漏气,此时缸内气体的温度为27 ℃,活塞刚好位于气缸正中间,整个装置都静止,已知大气压恒为p0=×105 Pa,重力加速度为g=10 m/s2,,求:(1)缸内气体的压强p1;(2)缸内气体的温度升高到多少摄氏度时,活塞恰好会静止在气缸缸口AB处1.圆柱形气缸固定放置在水平地面上,其截面如图所示,用硬杆连接的两个活塞在气缸的左右两侧分别封闭了两部分气体A、B,活塞可自由移动。
两侧的横截面积S A<S B,两活塞间的C部分可通过阀门K 实现与外界的连通或断开。
开始时两边气体温度相同,活塞处于平衡状态。
现使两边气体缓慢升高相同的温度,重新平衡后两边气体压强的增量分别为△p A和△p B。
下列判断正确的是A.若C部分是真空,则在温度升高的过程中活塞始终不动B.若C部分是真空,则最终平衡时△p A=△p BC.若C部分与外界大气连通,则活塞向右移D.若C部分与外界大气连通,则最终平衡时△p A>△p B2.两端开口、内表面光滑的U形管处于竖直平面内,如图所示质量均为m=10 kg的活塞A、B在外力作用下静止于左右管中同一高度h 处,将管内空气封闭,此时管内外空气的压强均为p0=×105 Pa,左管和水平管横截面积S1=10 cm2,右管横截面积S2 =20 cm2,水平管长为3h,现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度。
(活塞厚度均大于水平管直径,管内气体初末状态温度相同,g取10 m/s2)动力学法当与气体相连的系统加速运动时,要求气体的压强,可以选择与气体相连的合适的研究对象(如活塞、气缸等),对其进行受力分析,然后根据牛顿第二定律列动力学方程进行求解。
在对系统进行分析时,可针对具体情况选用整体法或隔离法。
【典例】如图,在沿水平方向以加速度a=1 m/s2匀加速行驶的车厢中,斜靠着与水平方向成α=37°角的气缸。
一质量m=2 kg、横截面积S=10 cm2的光滑活塞,将一定质量的气体封闭在气缸内,并与气缸保持相对静止。
已知大气压强为p0=1×105 Pa。
下列说法正确的是A.气缸对活塞的弹力为16 NB.气缸对活塞的弹力为 NC.气缸内气体的压强为×105 PaD.气缸内气体的压强为×105 Pa1.高空试验火箭起飞前,仪器舱内气体的压强p0=1 atm,温度t=27 ℃。
在火箭竖直上升的过程中,加速度的大小等于重力加速度g,仪器舱内水银气压计的读数为p=,已知仪器舱是密封的,那么,该过程中舱里的温度是多少2.如图所示,倾斜的玻璃管长L=57 cm,一端封闭、另一端开口向上,倾角θ=30°。
有4 cm长的水银柱封闭着45 cm长的理想气体,管内外气体的温度均为33 ℃,大气压强p0=76 cmHg。
(1)将璃管缓慢加热,若有2 cm水银柱逸出,则温度需要升高到多少(2)若让玻璃管沿倾斜方向向上以a=2 m/s2做匀加速直线运动,则空气柱长度为多少。