《组合图形的面积》人教版五年级数学上册课件PPT(5篇)
合集下载
(公开课课件)五年级上册数学《组合图形的面积》(共19张PPT)精选全文完整版

瓷砖的面积:(3+20)×12÷2=138(m²) 草坪面积:20×12-138=102(m²)
19
2021/6/20
谢谢大家
20
2021/6/20
(1)0.96公顷=( )平方米。(2)一个梯形上底与下底的和是18厘米,高是6.8厘米,面积是( )平方厘米。(3)平行四边形的底是2.5分米,高是底的1.2倍,它的面积是( )平方厘米。
9600
61.2
750
15
2021/6/20
课后作业
2 . 求下面图形的面积。(单位:cm)
【解析】这个组合图形可以把它看成一个三角形和一个长方形,然后求出各自的面积再加到一起。答案:12×6+12×6÷2 =108(cm²)
6
2021/6/20
知识梳理
【小练习】求出这个图形的面积。(单位m)
答案:32×10÷2+32×20=800(㎡)
7
2021/6/20
知识梳理
知识点2:添补法。
添补法是通过画辅助线,把组合图形变成一个大的简单图形,然后再用这个大的简单图形减去一个或几个简单的小图形求出组合图形面积的方法。
2021/6/20
课堂练习
2 . 有一块青菜地,中间有一个小池塘,如右图,平均每平方米菜地能产出8千克的青菜,这块地的面积是多少平方米?这块地能产出多少千克的青菜?
答案:60×45=2700(平方米) (8+10)×7÷2=63(平方米)2700-63=2637(平方米) 2637×8=21096(千克)
6.4组合图形的面积
教材第99~101页
第六单元 多边形的面积
1
2021/6/20
课题引入
生活中有许多组合图形,大家观察一下上面的图,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?先小组交流一下,然后再全班汇报。
19
2021/6/20
谢谢大家
20
2021/6/20
(1)0.96公顷=( )平方米。(2)一个梯形上底与下底的和是18厘米,高是6.8厘米,面积是( )平方厘米。(3)平行四边形的底是2.5分米,高是底的1.2倍,它的面积是( )平方厘米。
9600
61.2
750
15
2021/6/20
课后作业
2 . 求下面图形的面积。(单位:cm)
【解析】这个组合图形可以把它看成一个三角形和一个长方形,然后求出各自的面积再加到一起。答案:12×6+12×6÷2 =108(cm²)
6
2021/6/20
知识梳理
【小练习】求出这个图形的面积。(单位m)
答案:32×10÷2+32×20=800(㎡)
7
2021/6/20
知识梳理
知识点2:添补法。
添补法是通过画辅助线,把组合图形变成一个大的简单图形,然后再用这个大的简单图形减去一个或几个简单的小图形求出组合图形面积的方法。
2021/6/20
课堂练习
2 . 有一块青菜地,中间有一个小池塘,如右图,平均每平方米菜地能产出8千克的青菜,这块地的面积是多少平方米?这块地能产出多少千克的青菜?
答案:60×45=2700(平方米) (8+10)×7÷2=63(平方米)2700-63=2637(平方米) 2637×8=21096(千克)
6.4组合图形的面积
教材第99~101页
第六单元 多边形的面积
1
2021/6/20
课题引入
生活中有许多组合图形,大家观察一下上面的图,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?先小组交流一下,然后再全班汇报。
人教版数学小学五年级上册第五单元组合图形的面积ppt

平行四边形的面积= 底×高
三 角 形 的 面 积 = 底×高÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
由几个简单的图 形拼出来的图形,我 们把它们叫做组合图 形。
合作探究一 求导学案第一题的第一幅图的 面积
合作探究二 求导学案第一题的第二幅图的 面积
归纳总结
方法:一分图形 二的 方法计算组合图形面积.
你敢接受挑战吗?
求下列图形的面积。(单位:cm)
8 12 25
你敢接受挑战吗?
求下列图形的面积。(单位:cm) 20
10
16
12
正方形
长方形
平行四边形
梯 形
三角形
火眼金睛
学习目标
• 1.能认真观察组合图形,会把组合图形分 解成已学过的平面图形, • 2.知道求组合图形的面积就是求几个图形 面积的和(或差),能正确地进行组合 图形面积的计算,并能灵活思考解决实 际问题。
你还记得吗?
长 方 形 的 面 积 = 长 ×宽 正 方 形 的 面 积 = 边长×边长 S=ab S=a×a S=ah S=ah÷2
新人教版小学五年级数学上册《组合图形的面积》PPT教学课件

1.5m 3.2m
4.8 1.5 2 =3.6m
2
4.8 3.2 =15.36m2
3.6 +15.36=18.96m2
18.96 0.2=3.792(千克)
4.8m
答:一共要用3.792千克石灰。
方法二:分成两个梯形
2.4m
(3.2+3.2+1.5) 2.4 2 =9.48m2
1.5m 9.48 2 =18.96m2
4.8m
3.2m 18.96 0.2=3.792(千克) 答:一共要用3.792千克石灰。
2、张伯伯在一块梯形地里建了一个长方形 Nhomakorabea鱼塘,余 下的种菜,这块菜地的实际面积是多少平方米?
分析:菜地面积=梯形面积-长方形的面积
a、指名板演,其他学生在练习本 上自己完成解答。 b、集体订正。
火眼金睛
小明用一张红色纸剪了一个大写英文字母 “A”。它的面积是多少?
回归生活
下面各图可以看成哪些基本图形的组合?
引入新课
像上面那样由几个基本图形组合而成的图形, 我们就叫它组合图形。
接下来我们一起来研究组合图形的面积。
1、下面是一间房屋的侧面墙,如果用石灰粉刷这面 墙,每平方米用石灰0.2千克,一共要用多少千克石灰?
方法一:分成一个三角形和一个长方形 2.4m
引导学生分析,再进行计算
(2+10)×12÷2-3×4÷2-(4+6)×4÷2=46(cm2) 答:它的面积是46cm2。
练习环节
求下列图形中阴影部分的面积。 单位:(厘米)
小组讨论
如果要求这个旗子的面积可以怎样想?
归纳总结 组 合 图 形 的 面 积
分割 求和
添补 求差
《组合图形的面积》多边形的面积PPT优秀课件

把组合图形转化成已学过的几个简单图形; 2.分别计算出简单图形的面积; 3.对这些简单图形的面积求和或求差。
课堂练习
40 m
在一块梯形的地中间有一个长方
30m 15m
形的游泳池,其余的地方是草地。
30m
草地的面积是多少平方米?
70 m
这里可看成一个大梯形挖去一个小长方形
梯 形:(40+70)×30÷2 = 1650(m2)
人教版·数学·五年级·上册
第六单元 多边形的面积
组合图形的面积
情景导入
在实际生活中,有些图形是由几个简单的图形组合而成的。
说一说 下面这些组合图形里有哪些学过的图形?
……
2个梯形 1个长方形 1个梯形 2个三角形 1个三角形
1个三角形和1个长方形 窗户由4个小小正方形组成
2个三角形 2个三角形 4个三角形 5个三角形、1个正方形、1个平行四边形
答:涂色部分的面积是13.5 cm2 。
思维训练
求图中涂色部分的面积。(单位:cm)
3
把涂色部分看作一个梯形
3
梯形:(3+6)×3÷2 =13.5(cm2) 答:涂色部分的面积是13.5 cm2 。
6 6
课堂小结 这节课有什么收获呢?
组合图形的面积
要根据已知条件对图形进行分解,转 化成已学过的简单图形,先分别计算出它 们的面积,再求和或差。
=22+25 =47(平方厘米)
思维训练
求图中涂色部分的面积。(单位:cm)
Hale Waihona Puke 6 涂色部分面积=大正方形面积+小正方形 3
面积-空白三角形面积-空白梯形面积
36
大正方形:6×6 = 36(cm2)
课堂练习
40 m
在一块梯形的地中间有一个长方
30m 15m
形的游泳池,其余的地方是草地。
30m
草地的面积是多少平方米?
70 m
这里可看成一个大梯形挖去一个小长方形
梯 形:(40+70)×30÷2 = 1650(m2)
人教版·数学·五年级·上册
第六单元 多边形的面积
组合图形的面积
情景导入
在实际生活中,有些图形是由几个简单的图形组合而成的。
说一说 下面这些组合图形里有哪些学过的图形?
……
2个梯形 1个长方形 1个梯形 2个三角形 1个三角形
1个三角形和1个长方形 窗户由4个小小正方形组成
2个三角形 2个三角形 4个三角形 5个三角形、1个正方形、1个平行四边形
答:涂色部分的面积是13.5 cm2 。
思维训练
求图中涂色部分的面积。(单位:cm)
3
把涂色部分看作一个梯形
3
梯形:(3+6)×3÷2 =13.5(cm2) 答:涂色部分的面积是13.5 cm2 。
6 6
课堂小结 这节课有什么收获呢?
组合图形的面积
要根据已知条件对图形进行分解,转 化成已学过的简单图形,先分别计算出它 们的面积,再求和或差。
=22+25 =47(平方厘米)
思维训练
求图中涂色部分的面积。(单位:cm)
Hale Waihona Puke 6 涂色部分面积=大正方形面积+小正方形 3
面积-空白三角形面积-空白梯形面积
36
大正方形:6×6 = 36(cm2)
人教版五年级上册数学课件-6.4组合图形的面积|(共14张PPT)

五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
下图是小华家客厅的平面图,它的面积是多少平方米?(单位:米)
4 6
3 7
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
=5×(2+5)-(5÷2) ×2 ÷2×2 =30(m 2)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
8
6 8
6 8
6
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
9
(单位:cm )
S组=S长+S梯
10 =a b + (a + b) h÷2
(8)(6) (6) (10 ) (9)
图中每个小方格的边长为1dm,下面这个图形的面积是多少?
2 8
2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
图中每个小方格的边长为1dm,下面这个图形的面积是多少?
8 2 22 8 8
2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
9
S组=S长-S梯
10 = a b - ( a + b ) h÷2
( 8+9 )(10) (8)(8+9 )(10-6)
9
S组=S三+S梯
10 =a h÷2 + (a + b ) h÷2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
下图是小华家客厅的平面图,它的面积是多少平方米?(单位:米)
4 6
3 7
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
=5×(2+5)-(5÷2) ×2 ÷2×2 =30(m 2)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
8
6 8
6 8
6
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
9
(单位:cm )
S组=S长+S梯
10 =a b + (a + b) h÷2
(8)(6) (6) (10 ) (9)
图中每个小方格的边长为1dm,下面这个图形的面积是多少?
2 8
2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
图中每个小方格的边长为1dm,下面这个图形的面积是多少?
8 2 22 8 8
2
五年级上册数学课件-6.4组合图形的 面积 |人教版(共14张PPT)
9
S组=S长-S梯
10 = a b - ( a + b ) h÷2
( 8+9 )(10) (8)(8+9 )(10-6)
9
S组=S三+S梯
10 =a h÷2 + (a + b ) h÷2
《组合图形的面积》ppt完整版11(共16张PPT)

=1200(m²)
答:草地的面积是1200平方米。
草地的面积=梯形面积长方形面积
一面中国少年先锋队中队旗的面积是多少?
中队旗的面积=梯形面积+梯形面积
30cm 30cm
(80-20+80)×30÷2×2 =140×30÷2×2
=4200(cm²)
20cm 80cm
答:一面中国少年先锋队中队旗的面积是4200平方厘米。
答:它的面积是300平方厘米。
校园里有一块花圃(如图所示),求它的面积。(单位:米) 花圃的面积=大长方形面积–小长方形面积
5×6-2×(6-2) =30-8 =22(m²)
6
2
2
5
答:它的面积是22平方米。
计算组合图形的面积,先根据已知条件把组合图形分解成已经学过 的简单图形,分别计算出它们的面积,再求和或求差。
点睛:学习意识的能动性时要克服以下几个错误观点:
28.2016年9月,袁隆平领衔的超级杂交稻第五期攻关项目第二次测产验收在湖南某地进行,攻关品种“广湘24S/R900”的测产没有达到预期目标,未能通过验收。面对失败,袁隆平
坦然接受。这一事例反映的认识论道理是
我与国家和社会
A. 发现校园发生欺凌现象,及时向老师和家长报告
③国家安全是实现国家利益最根本的保障 ,关系人民幸福 、社会发展进步和中华民族伟大复兴。(2 分) ②追求真理是一个不断推翻固有认识、逐步深化的过程 前面我们已经学了生命的珍贵与独特,每个人都是独一无二的,我们都应该为自己的生命喝彩,用心的呵护生命,并且努力地让自己的生命绽放出精彩的光芒。有人说,生命如此
一面中国少年先锋队中队旗的面积是多少?
中队旗的面积=正方形面积+2个三角形面积
人教版五年级上册数学《组合图形的面积》PPT课件

人教新课标五年级数学上册
正方形
长方形
平行四边形
梯形
三角形
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
中队旗面积 = 梯形面积 + 三角形面积
中队旗面积 = 长方形面积 — 三角形面积
中队知识知多少
6 分 米
8分米
下面是一块 正方形 空心地砖,它的实际占地 面积是多少?
13厘米
40 厘
米
40×40-13×13 =1600-169 =1431(平方厘米)
(40+70)×30÷2 =110×30÷2 = 3300÷2 =1650(平方米)
复 习
5分米
5米
2米
1.先说一说下面图形的面积计算 公式,再计算。
8 厘 米
3厘米
6分米 3分米 8分米
3厘米
8厘米
8厘米
5厘米
7厘米
引 你喜欢哪个组合图形?它是由哪些简
单的图形组成的?
入
由几个简单的图形组成的图形,叫做组 合图形。
同学们,在生活中也能找出 这样的组合图形吗?
流 动 红 旗
保护环境
25
30毫米
毫 米
50毫米
长方形的面积—梯形的面积
小小设计师(计算下面零件涂色部分的面积)Leabharlann 20毫米10毫
米
25
333000毫毫毫米米米
正方形
长方形
平行四边形
梯形
三角形
你还记得吗?
长 方 形 的 面 积 = 长 ×宽
S=ab
正 方 形 的 面 积 = 边长×边长
S=a×a
平行四边形的面积= 底×高
S=ah
三 角 形 的 面 积 = 底×高÷2
S=ah÷2
梯 形 的 面 积 = (上底+下底)×高÷2 S=(a+b)h÷2
中队旗面积 = 梯形面积 + 三角形面积
中队旗面积 = 长方形面积 — 三角形面积
中队知识知多少
6 分 米
8分米
下面是一块 正方形 空心地砖,它的实际占地 面积是多少?
13厘米
40 厘
米
40×40-13×13 =1600-169 =1431(平方厘米)
(40+70)×30÷2 =110×30÷2 = 3300÷2 =1650(平方米)
复 习
5分米
5米
2米
1.先说一说下面图形的面积计算 公式,再计算。
8 厘 米
3厘米
6分米 3分米 8分米
3厘米
8厘米
8厘米
5厘米
7厘米
引 你喜欢哪个组合图形?它是由哪些简
单的图形组成的?
入
由几个简单的图形组成的图形,叫做组 合图形。
同学们,在生活中也能找出 这样的组合图形吗?
流 动 红 旗
保护环境
25
30毫米
毫 米
50毫米
长方形的面积—梯形的面积
小小设计师(计算下面零件涂色部分的面积)Leabharlann 20毫米10毫
米
25
333000毫毫毫米米米
人教版小学数学五年级上册《组合图形的面积》PPT课件

0
新知探究
下图表示的是一间房子侧面墙的形状。它的面积是多少平方米? [教材P99 例4]
方法四:从长方形中挖走两个小三角形 长方形面积 =(5+2)×5 = 7×5 = 35(m2) 两个三角形面积 = 2×(5÷2)÷2×2 = 5(m2) 房子侧面墙的面积 = 35-5 = 30(m2)
0
新知探究
0
课堂练习
4. 在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面 积是多少平方米?
[教材P101 练习二十二 第4题]
用什么方法解决这道题?
有一句著名的格言说数学比科学大得多,因为它是科学的语言。数学不仅用来写科学,
而且可以用来描写人生。下面介绍几位古今中外名人的人生格言,它们都是用很简单的
复习导入
目录
01 平行四边形的面 积=底×高
02 S=ah
0
新知探究
下面这些组合图形里有哪些学过的图形? [教材P99]
由几个简单的图形拼出来的图形,就叫做组合图形。
如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通
关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩
0
新知探究
下图表示的是一间房子侧面墙的形状。它的面积是多少平方米? [教材P99 例4]
方法三:拼成一个长方形
长方形面积 = 5×(5+2÷2) = 5×6 = 30(m2)
房子侧面墙的面积 = 长方形面积
每学到一个数学难点的时候,尝试着对别人讲解这个知识点并让他理解——你能讲清楚才说明你
真的理解了。没有哪门学科能比数学更为清晰地阐明自然界的和谐性。
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 个人简历:/jianli/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
知识梳理
【小练习】求出这个图形的面积。(单位m)
10
20 32
答案:32×10÷2+32×20=800(㎡)
知识梳理
知识点2:添补法。
添补法是通过画辅助线,把组合图形变成一个大的简单图 形,然后再用这个大的简单图形减去一个或几个简单的小图形 求出组合图形面积的方法。
知识梳理
例题:求下图中阴影部分的面积。
知识梳理
知识点1:分割法。
可以把一个组合图形分成几个简单的图形,分别求出这几个 简单图形的面积,再求和。
12cm 6cm
知识梳理
例题:求安全出口标志的面积是多少?(单位cm)
12cm
6cm
【解析】这个组合图形可以把它看成一个三角形和一个长方形,然后 求出各自的面积再加到一起。 答案:12×6+12×6÷2 =108(cm²) 【方法小结】在用分割法计算组合图形的面积时,如果能够直接看出 来就不用做辅助线,如果图形比较繁琐,就要借助于辅助线来分析。
答案:60×45=2700(平方米) (8+10)×7÷2=63(平方米) 2700-63=2637(平方米) 2637×8=21096(千克)
课堂练习
3 . 求下面图形的面积。
2cm 3cm
答案:3×2÷2×5=15(cm2)
课堂练习
4 . 求下面图形阴影区域的面积。
答案:(5+2)×3÷2=10.5(c㎡) 10.5×11=115.5(c㎡)
课后作业
3 . 两个同样的梯形,上底长23厘米,下底长27厘米,高20 厘米。如果把这两个梯形拼成一个平行四边形,这个平行四边 形的面积是多少?
答案: (23+27)×20=1000(平方厘米)
课后作业
4 . 梯形的上底是3.8厘米,高是4厘米,已知它的面积是20 平方厘米,下底是多少厘米?
解:设下底为x厘米。 (3.8+x)×4÷2=20
2.能够选择合理的方法计算出组合图形的面积。
3.培养学生的合作、探索意识及创新精神。
【重难点】学会用多种方法计算组合图形的面积。
在实际生活中,有些图形是由几个简单的图形组合 而成的,我们把这样的图形叫做组合图形。
x=6.2
知识拓展
校园内有一块长方形空地,计划种草坪、铺瓷砖(如右图)。 请你分别求出草坪的面积和铺瓷砖地面的面积。
瓷砖的面积:(3+20)×12÷2=138(m²) 草坪面积:20×12-138=102(m²)
组合图形的面积
人教版 数学 五年级 上册
学习目标
1.明确组合图形的意义。能结合生活实际认识组合图形,会把组合图形分解成已
第六单元 多边形的面积
6.4组合图形的面积
4cm 6cm
课题引入
生活中有许多组合图形,大家观察一下上面的图,这些 组合组图形是由哪些简单图形组成的?如果求它们的面积 可以怎样求?先小组交流一下,然后再全班汇报。
教学新知
表达方式:
方法一: 中间分开就是两 个梯形,队旗的 面积=梯形面积 +梯形面积。
方法二: 把旗子的两角用 直线连起来,变 成一个大长方形 减去一个三角形。
方法三: 把它分成一个大 梯形和一个三角 形。
教学新知
方法总结:分割法和添补法:
【方法小结】数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的 组合图形转变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚 线,以及用铅笔和直尺作图。
答案:16×20-(9+3)×5÷2=290(dm²)
课堂练习
1 . 求阴影部分的面积。
答案:(25+30)×12÷2=330(d㎡) 25×12=300(d㎡) 330-300=30(d㎡)
课堂练习
2 . 有一块青菜地,中间有一个小池塘,如右图,平均每平方 米菜地能产出8千克的青菜,这块地的面积是多少平方米?这块 地能产出多少千克的青菜?
课后作业
1 . 填空。 (1)0.96公顷=(9600)平方米。
(2)一个梯形上底与下底的和是18厘米,高是6.8厘米, 面积是( 61.2 )平方厘米。
(3)平行四边形的底是2.5分米,高是底的1.2倍,它的 面积是( 750 )平方厘米。
课后作业
2 . 求下面图形的面积。(单位:cm)
32×20+32×10÷2=800(cm²) 12×10形。
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
【解析】已用添补法使整个画面成为一个长方形了,阴影的面积即用长方形 的面积减去梯形的面积。答案:54×27-(20+30)×10÷2=1208(平方毫米) 【方法小结】运用添补法计算组合图形的面积时,如果简单一些可以用综合 算式,如果稍复杂就要用分步算式分别计算。
知识梳理
【小练习】求下图阴影部分的面积。(单位:dm)