求数列通项公式的方法总结(强烈推荐)

合集下载

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。

下面将列举十种常见的方法来求解数列的通项公式。

方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。

通项公式可以直接通过公式计算得出。

方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。

可以通过求和公式推导出等差数列的通项公式。

方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。

通项公式可以直接通过公式计算得出。

方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。

可以通过求和公式推导出等比数列的通项公式。

方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。

例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。

方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。

例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。

方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。

例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。

方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。

例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。

方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

(完整版)数列通项公式方法大全很经典,推荐文档

(完整版)数列通项公式方法大全很经典,推荐文档
所以数列{an}的通项公式为 an n2 。
评注:本题解题的关键是把递推关系式 an1 an 2n 1 转化为 an1 an 2n 1 ,进而 求出 (an an1) (an1 an2 ) (a3 a2 ) (a2 a1) a1 ,即得数列{an}的通项公式。
变式:已知数列{an}满足 an1 an 2 3n 1,a1 3 ,求数列{an}的通项公式。
(3)累乘法
例 3 已知数列{an}满足 an1 2(n 1)5n an,a1 3 ,求数列{an}的通项公式。
解:因为 an1
2(n 1)5n
an,a1
3 ,所以 an
0
,则
an1 an
2(n 1)5n ,故
an
an an1
an1 an2
a3 a2
a2 a1
a1
[2(n 11)5n1][2(n 2 1)5n2 ][2(2 1) 52 ][2(11) 51] 3
变式:
①已知数列{an}满足 an1 3an 5 2n 4,a1 1,求数列{an}的通项公式。
②已知数列{an}满足 an1 2an 3n2 4n 5,a1 1,求数列{an}的通项公式。
(5)对数变换法
例 5 已知数列{an}满足 an1 2 3n an5 , a1 7 ,求数列{an}的通项公式。 解:因为 an1 2 3n an5,a1 7 ,所以 an 0,an1 0 。在 an1 2 3n an5 式两边取 常用对数得 lg an1 5 lg an n lg 3 lg 2 ⑩
an1 5n1 2(an 5n )

由 a1
51
65 1
0 及⑤式得 an
5n
0 ,则
an1 an

求数列通项公式的十种办法

求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。

下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。

通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。

例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。

2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。

例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。

3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。

例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。

4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。

例如斐波那契数列可以通过矩阵的特征值和特征向量求得。

5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。

例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。

6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。

例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。

7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。

例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。

8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。

首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。

求数列通项公式的十一种方法

求数列通项公式的十一种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

((完整版))求数列的通项公式方法总结,推荐文档

((完整版))求数列的通项公式方法总结,推荐文档

an1
an1
an 等形式的递推数列可以用
倒数法将其变形为我们熟悉的形式来求通项公式。
【例 6】.已知数列an满足: a1 1, an an 1 ,求an的通项公式。
3an 1 1
解:原式两边取倒数得: 1 3an 1 1 3 1
an
an 1
an 1
设bn = 1 ,则bn- bn- 1=3, 且b1=1 bn是b1=1 为首项,公差d=2的等差数列
①、一般地对于 an =kan-1 +m(k、m 为常数)型,可化为的形式 an +λ=k(an-1 +λ).重
-1-
数列常见题型总结
新构造出一个以 k 为公比的等比数列,然后通过化简用待定系数法求 λ,然后再求 an 。
【例
3】设
b>0,数列 an 满足
a1=b, an
nban1 an1 2n 2
a4
·
a3
… an an1
= 1 2 3n 1 234 n
1 n
所以 an
1 n
3、构造法:当数列前一项和后一项即 an 和 an-1 的递推关系较为复杂时,我们往往对原
数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或
等差数列)。具体有以下几种常见方法。
(1)、待定系数法:
当 A=C 时,我们往往也会采取另一种方法,即左右两边同除以 Cn +1,重新构造数列,来求
an 。
【例 5】设 a0 为常数,且 an 3n1 2an1 ( n N * ),
证明:对任意
n≥1, an
1 [3n 5
(1) 2n ] (1)n
2n
a0

史上最全的数列通项公式的求法13种

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法数列是高考取的要点内容之一,每年的高考题都会观察到,小题一般较易,大题一般较难。

而作为给出数列的一种形式——通项公式,在求数列问题中特别重要。

本文给出了求数列通项公式的常用方法。

一、直接法依据数列的特点,使用作差法等直接写出通项公式。

二、公式法①利用等差数列或等比数列的定义求通项② 若 已 知 数 列 的 前 n项 和 S n 与 a n 的 关 系 , 求 数 列 a n的 通 项 a n 可 用 公 式a n S 1 n 1S nSn 1n 求解 .2(注意:求完后必定要考虑归并通项)( 1) n , n 1 .求数列 a n 的通项公式 .例 2.①已知数列 a n 的前 n 项和 S n 知足 S n 2a n②已知数列 a n 的前 n 项和 S n 知足 S nn2n 1,求数列 a n 的通项公式 .③ 已知等比数列 a n 的首项 a 1 1,公比 0 q 1,设数列 b n 的通项为 b na n 1 a n2,求数列b n 的通项公式。

③ 分析:由题意, b n 1 a n 2 a n 3 ,又 a n 是等比数列,公比为 q∴bn 1an 2an 3q ,故数列 b n 是等比数列, b 1 a 2 a 3a 1q a 1q 2 q(q 1) ,b na n 1 a n 2∴ b nq(q 1) q n 1 q n (q 1)三、概括猜想法假如给出了数列的前几项或能求出数列的前几项,我们能够依据前几项的规律,概括猜想出数列的通项公式,而后再用数学概括法证明之。

也能够猜想出规律,而后正面证明。

四、累加(乘)法关于形如 a n 1an f ( n) 型或形如 a n 1 f (n)a n 型的数列,我们能够依据递推公式,写出n取 1 到 n 时的全部的递推关系式,而后将它们分别相加(或相乘)即可获得通项公式。

例 4.若在数列 a n 中, a 1 3 , a n 1 a n n ,求通项 a n 。

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 时, =
例6.已知 =1, = (n∈N+),求 .
[解] = ∴
∴ = +C
∵ =1, = ,∴代入,得C=
∴ 为首项为1,d= 的等差数列.
∴ = ∴ = (n∈N+)
8.“已知 , , 的关系,求 ”型
方法:构造与转化的方法.
例8.已知{ }的前n项和为 ,
且 +2 ( - - )=0(n≥2), = ,求 .
[解] = +1
∴{ }为等差数列.
=
∴ =n·
5. =p +q 型(p、q为常数)
特征根法:
(1) 时, = · + ·
(2) 时, =( + ·n)·
例5.数列{ }中, =2, =3,且2 = + (n∈N+,n≥2),求 .
[解] =2 -
∴ ∴
∴ =( + ·n)· = + ·n
∴ ∴

7.“已知 ,求 ”型
方法: = - (注意 是否符合)
例6.设 为{ }的前n项和, = ( -1),求 (n∈N+)
[解]∵ = ( -1)(n∈N+)
∴当n=1时, = ( -1)
∴ =3
当n≥2时,
= -
= ( -1)- ( -1)
∴ =3 ∴ = (n∈N+)
6. = 型(A、B、C、D为常数)
特征根法: =
(1) 时, =C·
方法:(1) + = ,再根据等比数列的相关知识求 .
(2) - =
再用累加法求 .
(3) = + ,先用累加法求 再求 .
例3.已知{ }的首项 =a(a为常数), =2 +1(n∈N+,n≥2),求 .
[解]设 -λ=2( -λ),则λ=-1
∴ +1=2( +1)
∴{ }为公比为2的等比数列.
∴ +1=(a+1)·
[解]依题意,得 - +2 · =0
∴ - =2
∴ =2+2(n-1)=2n
∴ = , =
∴ = -
=-2× ×
= ( )
∴ =
求数列{an}通项公式的方法
1. = + 型
累加法:
=( - )+( - )+…+( - )+
= + +…+ +
例1.已知数列{ }满足 =1, = + (n∈N+),求 .
[解] = - + - +…+ - +
= + +…+ +1
= = -1
∴ = -1(n∈N+)
3. =p +q型(p、q为常数)
∴ =(a+1)· -1
2. 型
累乘法: = · … ·
例2.已知数列{ }满足 (n∈பைடு நூலகம்+), =1,求 .
[解] = · … ·
=(n-1)·(n-2)…1·1=(n-1)!
∴ =(n-1)!(n∈N+)
4. =p + 型(p为常数)
方法:变形得 = + ,
则{ }可用累加法求出,由此求 .
例4.已知{ }满足 =2, =2 + .求 .
相关文档
最新文档