2011年山东高考数学答案(理科)
2011山东高考数学试卷(文、理)及答案

2011年普通高等学校招生全国统一考试(山东卷)理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回.注意事项:1. 答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在自己的答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高.圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长.球的体积公式V=34R 3π, 其中R 是球的半径.球的表面积公式:S=4πR2,其中R 是球的半径.用最小二乘法求线性回归方程系数公式1221ˆˆˆ,niii ni i x yn x ybay b x x n x==-⋅==--∑∑. 如果事件A B 、互斥,那么()()()P A B P A P B +=+.第1卷(共60分)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3] (2)复数z=22i i-+(i 为虚数单位)在复平面内对应的点所在象限为(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为:(A )0 (B )33(C )1 (D )3(4)不等式|x-5|+|x+3|≥10的解集是(A )[-5,7] (B)[-4,6] (C)(-∞,-5]∪[7,+∞) (D )(-∞,-4]∪[6,+∞)(5)对于函数y=f (x ),x ∈R ,“y=|f(x)|的图像关于y 轴”是“y=f (x )是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A )3 (B )2 (C )32(D )23(7)某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元)4 2 3 5销售额y (万元)49 26 39 54根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为(A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元 (8)已知双曲线22221x y ab-=(a>0,b>0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A )22154xy-= (B )22145xy-= (C )221xy36-= (D )221xy63-=(9)函数2sin 2x y x =-的图象大致是(10)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y=f (x )的图像在区间[0,6]上与x 轴的交点个数为 (A )6(B )7(C )8(D )9(11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A )3 (B )2(C )1 (D )0(12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R),1412A A A A μ= (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是(A )C 可能是线段AB 的中点 (B )D 可能是线段AB 的中点 (C )C ,D 可能同时在线段AB 上(D )C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,输入2l =,m=3,n=5,则输出的y 的值是 . (14)若62a x x ⎛⎫-⎪⎪⎝⎭展开式的常数项为60,则常数a 的值为 . (15)设函数()2x f x x =+(x >0),观察: ()()12x f x fx x ==+f 2 (x)=f(f 1(x ))= 34xx + f 3 (x)=f(f 2(x ))= 78x x + f 4 (x)=f(f 3(x ))=1516xx +……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f m (x )=f (f m-1(x ))= . (16)已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A -2cos C2c-a =cos Bb.(Ⅰ)求sin sin C A的值;(Ⅱ)若cosB=14,b=2, 求△ABC 的面积S.(18)(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
2011山东高考数学(理)word版、可编辑、高清无水印

2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.7.根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得 9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A.9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R),1412A A A A μ= (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=,故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若62(x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616(r rr r T C x -+=⋅⋅,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,15x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 . 【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2s i n a R A =2s i n b R B =2s i n c R C =所以c o s A -2c o s C 2c -a=c o s B b =2sin sin sin C A B-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c C a A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
高考理科数学试题及详细答案山东卷

2011 年一般高等学校招生全国一致考试 ( 山东卷 )理科数学第 I 卷(共 60 分)一 . 选择题:本大题共 12 小题,每题5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.( 2011?山东)设会合 2)M={x|x +x ﹣ 6< 0} , N={x|1 ≤x ≤3} ,则 M ∩N=(A .[1, 2)B .[1, 2]C .( 2, 3]D .[2, 3]2.( 2011?山东)复数 z=( i 是虚数单位)在复平面内对应的点位于象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.( 2011?山东)若点( a , 9)在函数y=3x的图象上,则 tan 的值为()A .0B .C . 1D .4.( 2011?山东)不等式 |x ﹣ 5|+|x+3| ≥10 的解集是()A .[﹣ 5, 7]B .[ ﹣4, 6]C .(﹣ ∞,﹣ 5]∪ [7, +∞)D .(﹣ ∞,﹣ 4]∪ [6, +∞)5.( 2011?山东)对于函数y=f ( x ),x ∈ R , “y=|f ( x ) |的图象对于 y 轴对称 ”是 “y=f ( x )是奇函数 ”的()A .充足而不用要条件B .必需而不充足条件C .充要条件D .既不充足也不用要条件6.( 2011?山东) 若函数 f ( x )=sin ωx ( ω> 0)在区间 上单一递加, 在区间上单一递减, 则 ω=()A .8B . 2C .D .7.( 2011?山东)某产品的广告花费x 与销售额 y 的统计数据以下表 广告花费 x (万元) 4 2 3 5 销售额 y (万元) 49263954依据上表可得回归方程中的 为,据此模型预告广告花费为6 万元时销售额为()A .63.6 万元B .65.5 万元C . 67.7 万元D .72.0 万元8.( 2011?山东)已知双曲线=1( a > 0,b > 0)的两条渐近线均和圆C : x 2+y 2﹣ 6x+5=0 相切,且双曲线的 右焦点为圆 C 的圆心,则该双曲线的方程为()A .B .=1C .=1 D . =19.( 2011?山东)函数 的图象大概是( )1A .B.C.D .10.( 2011?山东)已知 f( x)是 R 上最小正周期为 2 的周期函数,且当0≤x< 2 时, f ( x)=x 3﹣x,则函数y=f (x)的图象在区间 [0, 6]上与 x 轴的交点的个数为()A .6B. 7C. 8D. 911.(2011?山东)如图是长和宽分别相等的两个矩形.给定以下三个命题:① 存在三棱柱,其正(主)视图、俯视图以以下图;② 存在四棱柱,其正(主)视图、俯视图以以下图;③ 存在圆柱,其正(主)视图、俯视图以以下图.此中真命题的个数是()A .3B. 2C. 1D. 012.(2011?山东)设 A ,A ,A,A4是平面直角坐标系中两两不一样的四点,若(λ∈ R),123(μ∈ R),且,则称 A 3, A 4调解切割 A 1,A 2,已知点 C( c, 0),D ( d, O)( c, d∈R)调解切割点 A ( 0, 0), B( 1,0),则下边说法正确的选项是()A .C 可能是线段 AB 的中点 B .D 可能是线段 AB 的中点C.C, D 可能同时在线段AB 上D .C, D 不行能同时在线段AB 的延伸线上第 II卷(共90分)2二、填空题:本大题共 4 小题,每题 4 分,共 16 分.13.( 2011?山)行如所示的程序框,入l=2 , m=3, n=5 ,出的y 的是_________.14.( 2011?山)若( x)6式的常数60,常数 a 的_________.15.( 2011?山)函数 f ( x) =(x>0),察:1,f (x) =f ( x)=f 2(x) =f ( f1( x))=,f 3(x) =f ( f2( x))=,f 4(x) =f ( f3( x))=,⋯依据以上事,由推理可得:当 n∈ N* 且 n≥2 , f n( x) =f ( f n﹣1( x)) = _________.16.( 2011?山)已知函数f( x)=log a x+x b( a>0,且 a≠1).当 2< a< 3< b< 4 ,函数 f( x)的零点 x0∈( n,*三、解答(共 6 小,分74 分)17.( 2011?山)在ABC 中,内角 A , B ,C 的分a, b, c,已知(Ⅰ )求的;(Ⅱ)若,b=2,求△ ABC的面S.318.( 2011?山东)红队队员甲、乙、丙与蓝队队员 A 、B 、 C 进行围棋竞赛,甲对 A ,乙对 B,丙对 C 各一盘,已知甲胜 A ,乙胜 B,丙胜 C 的概率分别为,,,假定各盘竞赛结果互相独立.(Ⅰ )求红队起码两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的散布列和数学希望Eξ.19.( 2011?山东)在以下图的几何体中,四边形 ABCD 为平行四边形,∠ ACB=90 °,EA ⊥平面 ABCD ,EF∥ AB ,FG∥ BC ,EG∥ AC . AB=2EF .(Ⅰ)若 M 是线段 AD 的中点,求证:GM ∥平面 ABFE ;(Ⅱ)若 AC=BC=2AE ,求平面角 A ﹣ BF﹣ C 的大小.20.( 2011?山东)等比数列 {a n} 中. a1,a2,a3分别是下表第一、二、三行中的某一个数.且a1?a2?a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(Ⅰ)求数列 {a n} 的通项公式;(Ⅱ)如数列 {b n} 知足 b n=a n+(﹣ 1)lna n,求数列b n的前 n 项和 s n.21.( 2011?山东)某公司拟建筑以下图的容器(不计厚度,长度单位:米),此中容器的中间为圆柱形,左右两端均为半球形,依据设计要求容器的体积为立方米,且l≥2r.假定该容器的建筑花费仅与其表面积相关.已知圆柱形部分每平方米建筑花费为 3 千元,半球形部分每平方米建筑花费为c(c> 3)千元.设该容器的建筑花费为y 千元.(Ⅰ)写出 y 对于 r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建筑花费最小时的r.22.( 2011?山东)已知直线 l 与椭圆 C:交于 P( x1,y1),Q( x2,y2)两不一样点,且△ OPQ 的面积 S△OPQ=,此中 O 为坐标原点.(Ⅰ)证明 x12+x 22和 y12+y 22均为定值;(Ⅱ)设线段 PQ 的中点为 M ,求 |OM|?|PQ|的最大值;(Ⅲ)椭圆 C 上能否存在点 D,E,G,使得 S△ODE=S△ODG=S△OEG=?若存在,判断△ DEG 的形状;若不存在,请说明原因.42011 年一般高等学校招生全国一致考试( 山东卷 )理科数学参照答案与试题分析一 . 选择题:本大题共12 小题,每题5 分,共 60 分。
2011年山东高考理科数学试题及答案(word版)

2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分。
考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按能上能下要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh ,其中S 是柱体的底面积,h 是柱体的高。
圆柱的侧面积公式:S cl ,其中c 是圆柱的底面周长,l 是圆柱的母线长。
球的体积公式:343V R ,其中R 是球的半径。
球的表面积公式:24S R ,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:12241??,ni ii n i x y nx yb a y bx xnx ,如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的.1.设集合M ={x|260x x },N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3] 2.复数z=22ii (i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3x y 的图象上,则tan=6a 的值为A .0 B .33C .1 D .34.不等式|5||3|10x x 的解集是A .[-5,7]B .[-4,6]。
2011年山东高考数学理科试卷(带详解)

2011年普通高等学校全国统一考试(山东卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的的四个选项中,只有一个项是符合题目要求的.1.设集合2{60}M x x x =+-<,{13}N x x =≤≤,则M N = ( )A.[1,2)B. [1,2]C. (2,3]D. [2,3] 【测量目标】集合的基本运算.【考查方式】给出两集合(描述法),求解两集合的交集. 【难易程度】容易 【参考答案】A【试题解析】{32}M x x =-<<,[1,2)M N = ,答案应选A. 2.复数2i(i 2iz -=+为虚数单位)在复平面内对应的点所在的象限为 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【测量目标】复平面.【考查方式】给出复数的分数形式,通过化简判断复数对应的点在第几象限. 【难易程度】容易 【参考答案】D【试题解析】22i (2i)34i2i 55z ---===+对应的点为34(,)55-在第四象限,答案应选D.3.若点(,9)a 在函数3xy =的图象上,则πtan6a 的值为 ( )A.0B.3C. 1D. 【测量目标】任意角的三角函数值.【考查方式】给出函数图象上的点,判断出a 的值,求π3的正切值. 【难易程度】容易 【参考答案】D【试题解析】2393a ==,2a =,ππtantan 63a == D. 4.不等式5310x x -++≥的解集是 ( ) A.[5,7]- B. [4,6] C. (,5][7,)-∞-+∞ D. (,4][6,)-∞-+∞ 【测量目标】绝对值不等式.【考查方式】直接求解绝对值不等式. 【难易程度】中等【参考答案】D【试题解析】当5x >时,原不等式可化为2210x -≥,解得6x ≥;(步骤1) 当35x -≤≤时,原不等式可化为810≥,不成立;(步骤2)当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D.(步骤3)另解1:可以作出函数53y x x =-++的图象,(步骤1) 令5310x x -++=可得4x -=或6x =,(步骤2)观察图象可得6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D.(步骤3)另解2:利用绝对值的几何意义,53x x -++表示实数轴上的点x 到点3x =-与5x =的距离之和,要使点x 到点3x =-与5x =的距离之和等于10,只需4x -=或6x =,于是当6x ≥,或4x -≤可使5310x x -++≥成立,答案应选D.5.对于函数()y f x =,x ∈R ,“()y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ( ) A 充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】判断已知两个命题的关系. 【难易程度】容易 【参考答案】B【试题解析】若()y f x =是奇函数,则()y f x =的图象关于y 轴对称;反之不成立,比如偶函数()y f x =,满足()y f x =的图象关于y 轴对称,但不一定是奇函数,答案应选B.6.若函数()sin (0)f x x ωω=>在区间π[0,]3上单调递增,在区间ππ[,]32上单调递减,则ω= ( ) A.3 B. 2 C.32 D. 23【测量目标】三角函数的单调性.【考查方式】给出含参量的三角函数的单调区间,求解未知参量. 【难易程度】容易 【参考答案】C【试题解析】函数()sin (0)f x x ωω=>在区间π[0,]2ω上单调递增,在区间π3π[,]22ωω上单调递减, 则ππ23ω=,即32ω=,答案应选C. 另解1:令ππ[2π,2π]()22x k k k ω∈-+∈Z 得函数()f x 在2ππ2ππ[,]22k k x ωωωω∈-+为增函数,同理可得函数()f x 在2ππ2π3π[,]22k k x ωωωω∈++为减函数,则当ππ0,23k ω==时符合题意,即32ω=,答案应选C.另解2:由题意可知当π3x =时,函数()sin (0)f x x ωω=>取得极大值,则π()03f '=,即πco s 03ωω=,即πππ()32k k ω=+∈Z ,结合选择项即可得答案应选C. 另解3:由题意可知当π3x =时,函数()sin (0)f x x ωω=>取得最大值,则ππ2π()32k k ω=+∈Z ,36()2k k ω=+∈Z ,结合选择项即可得答案应选C.7.某产品的广告费用与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元是销售额为( ) A.63.6万元 B. 65.5万元 C. 67.7万元 D. 72.0万元【测量目标】线性回归方程.【考查方式】给出实际应用中的数学模型数据,建立线性回归方程,求对应的函数值. 【难易程度】容易 【参考答案】B【试题解析】由题意可知 3.5,42x y ==,则 429.4 3.5,9.1,a a =⨯+= 9.469.165.5y =⨯+=,答案应选B.8.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( )A.22154x y -= B. 22145x y -= C. 22136x y -= D. 22163x y -= 【测量目标】双曲线的标准方程.【考查方式】给出双曲线的两条渐近线与圆的位置关系,判断双曲线的标准方程. 【难易程度】容易 【参考答案】A【试题解析】圆22:(3)4C x y -+=,3,c =而32bc=,则22,5b a ==,答案应选A. 9.函数2sin 2xy x =-的图象大致是 ( )A B C D 【测量目标】三角函数的图象.【考查方式】给出三角函数解析式判断其图象.【难易程度】中等 【参考答案】C【试题解析】函数2sin 2x y x =-为奇函数,且12cos 2y x '=-,令0y '=得1cos 4x =,(步骤1) 由于函数cos y x =为周期函数,而当2πx >时,2sin 02x y x =->,当2πx <-时,2sin 02xy x =-<,则答案应选C.(步骤2)10.已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()f x 的图象在区间[0,6]上与x 轴的交点的个数为 ( ) A.6 B.7 C.8 D.9【测量目标】函数的零点.【考查方式】给出函数一个区间内的函数解析式及函数周期,判断函数在某个区间段内函数图象与x 轴的交点.【难易程度】中等 【参考答案】B【试题解析】当02x <≤时32()(1)f x x x x x =-=-,则(0)(1)0f f ==,(步骤1)而()f x 是R 上最小正周期为2的周期函数,则(2)(4)(6)(0)0f f f f ====,(3)(5)(1)0f f f ===,答案应选B.(步骤2)11.如图是长和宽分别相等的两个矩形.给定三个命题: ①存在三棱柱,其正(主)视图、俯视图如图; ②存在四棱柱,其正(主)视图、俯视图如图; ③存在圆柱,其正(主)视图、俯视图如图.其中真,命题的个数是 ( )第11题图A.3B.2C.1D.0 【测量目标】平面图形的直观图与三视图.【考查方式】给出正(主)视图、俯视图,判断可能的几何体图形. 【难易程度】容易 【参考答案】A【试题解析】①②③均是正确的,只需①底面是等腰直角三角形的直四棱柱, 让其直角三角形直角边对应的一个侧面平卧;②直四棱柱的两个侧面 是正方形或一正四棱柱平躺;③圆柱平躺即可使得三个命题为真, 答案选A.12.设1234,,,A A A A 是平面直角坐标系中两两不同的四点,若1312()A A A A λλ=∈R,1412()A A A A μμ=∈R ,且112λμ+=,则称34,A A 调和分割12,A A ,已知平面上的点(,0),(,0),(,C c D d c d ∈R 调和分割点(0,0),A B ,则下面说法正确的是( )A. C 可能是线段AB 的中点B. D 可能是线段AB 的中点C. C 、D 可能同时在线段AB 上D. C 、D 不可能同时在线段AB 的延长线上 【测量目标】向量的线性运算.【考查方式】给出平面向量的数量关系,判断平面中线段的数量关系. 【难易程度】中等 【参考答案】D【试题解析】根据题意可知112c d +=,若C 或D 是线段AB 的中点,则12c =,或12d =,矛盾;(步骤1)若C,D 可能同时在线段AB 上,则01,01,c d <<<<则112c d +>矛盾,(步骤2) 若C,D 同时在线段AB 的延长线上,则1,1c d >>,1102c d<+<,故C,D 不可能同时在线段AB 的延长线上,答案选D.(步骤3) 二、填空题:本大题共4小题·,每小题4分,共16分. 13.执行如图所示的程序框图,输入2,3,5l m n ===, 则输出的y 的值是 .第13题图【测量目标】循环结构程序框图.【考查方式】给出程序框图输入值,判断输出值. 【难易程度】容易 【参考答案】68【试题解析】1406375278,y =++=(步骤1)278105173,17310568y y =-==-=.(步骤2)答案应填:68.14.若6(x 展开式的常数项为60,则常数a 的值为 .【测量目标】二项式定理【考查方式】给出二项式常数项的值,判断二项式中未知参量的值. 【难易程度】中等 【参考答案】4【试题解析】6(x 的展开式616C (k kk k T x -+=636C (kk k x -=,(步骤1)令630,2,k k -==226C (1560,4a a ===,答案应填:4.(步骤2)15.设函数()(0)2xf x x x =>+,观察: 1()()2x f x f x x ==+,21()(())34x f x f f x x ==+,32()(())78x f x f f x x ==+, 43()(())1516xf x f f x x ==+,……根据上述事实,由归纳推理可得:当*n ∈N ,且2n ≥时,1()(())n n f x f f x -== . 【测量目标】已知递推关系求通项.【考查方式】给出()f x 函数解析式,利用递推关系判断()n f x 的函数关系式. 【难易程度】较难 【参考答案】(21)2n nxx -+【试题解析】2122()(())(21)2x f x f f x x ==-+,3233()(())(21)2xf x f f x x ==-+, 4344()(())(21)2x f x f f x x ==-+,以此类推可得1()(())(21)2n n n nxf x f f x x -==-+. 答案应填:(21)2n nxx -+. 16.已知函数()log (0,a f x x x b a =+->且1)a ≠.当234a b <<<<时函数()f x 的零点为*0(,1)()x n n n ∈+∈N ,则n = .【测量目标】对数函数的图象与性质.【考查方式】给出含参量的对数函数关系式,通过对参量的范围讨论,判断函数零点的取值范围. 【难易程度】较难 【参考答案】2【试题解析】根据(2)log 22log 230a a f b a =+-<+-=,(3)log 32log 340a a f b a =+->+-=,(步骤1)而函数()f x 在(0,)+∞上连续,单调递增,故函数()f x 的零点在区间(2,3)内,故2n =.答案应填:2.(步骤2)三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角,,A B C 的对边分别为,,a b c ,已知cos 2cos 2cos A C c aB b--=,(Ⅰ)求sin sin C A 的值;(Ⅱ)若1cos ,24B b ==,求ABC △的面积S . 【测量目标】正弦定理,两角和的正弦,余弦定理.【考查方式】给出一个三角形内角边的三角函数关系式,通过三角函数变换,求解两个角的正弦比值及三角形面积.【难易程度】中等【试题解析】(Ⅰ)在ABC △中,由cos 2cos 2cos A C c aB b--=及正弦定理可得cos 2cos 2sin sin cos sin A C C AB B--=,(步骤1)即cos sin 2cos sin 2sin cos sin cos A B C B C B A B -=-则cos sin sin cos 2sin cos 2cos sin A B A B C B C B +=+(步骤2)sin()2sin()A B C B +=+,而πA B C ++=,则sin 2sin C A =,即sin 2sin CA=.(步骤3) 另解1:在ABC △中,由cos 2cos 2cos A C c aB b--=可得cos 2cos 2cos cos b A b C c B a B -=-(步骤1)由余弦定理可得22222222222222b c a a b c a c b a c b c a a c +-+-+-+--=-,整理可得2c a =,由正弦定理可得sin 2sin C cA a==.(步骤2) 另解2:利用教材习题结论解题,在ABC △中有结论cos cos ,cos cos ,cos cos a b C c B b c A a C c a B b A =+=+=+.(步骤1) 由cos 2cos 2cos A C c aB b--=可得cos 2cos 2cos cos b A b C c B a B -=-(步骤2)即cos cos 2cos 2cos b A a B c B b C +=+,则2c a =,由正弦定理可得sin 2sin C cA a==.(步骤3) (Ⅱ)由2c a =及1cos ,24B b ==可得22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,(步骤4)S 11sin 1222ac B ==⨯⨯=,即S =(步骤5)18.(本题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. 【测量目标】离散型随机变量的分布列,期望和方差.【考查方式】给出数学模型,列出随机变量的分布列并求数学期望. 【难易程度】中等【试题解析】(Ⅰ)记甲对A 、乙对B 、丙对C 各一盘中甲胜A 、乙胜B 、丙胜C 分别为事件,,D E F ,则甲不胜A 、乙不胜B 、丙不胜C 分别为事件,,D E F ,(步骤1) 根据各盘比赛结果相互独立可得故红队至少两名队员获胜的概率为()()()()P P DEF P DEF P DEF P DEF =+++()()()()()()()()()()()()P D P E P F P D P E P F P D P E P F P D P E P F =+++0.60.5(10.5)0.6(10.5)0.5(10.6)0.50.50.60.50.5=⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯0.55=.(步骤2)(Ⅱ)依题意可知0,1,2,3ξ=,(0)()()()()(10.6)(10.5)(10.5)0.1P P DEF P D P E P F ξ====-⨯-⨯-=; (1)()()()P P DEF P DEF P DEF ξ==++0.6(10.5)(10.5)(10.6)0.5(10.5)(10.6)(10.5)0.50.35=⨯-⨯-+-⨯⨯-+-⨯-⨯=;(2)()()()P P DEF P DEF P DEF ξ==++0.60.5(10.5)(10.6)0.50.50.6(10.5)0.50.4=⨯⨯-+-⨯⨯+⨯-⨯=; (3)()0.60.50.50.15P P DEF ξ===⨯⨯=.故ξ的分布列为(步骤3)故00.110.3520.430.15 1.6E ξ=⨯+⨯+⨯+⨯=.(步骤4) 19. (本小题满分12分)在如图所示的几何体中,四边形ABCD 为平行四边形,90ACB ∠= ,EA ⊥平面ABCD ,//EF AB , //FG BC ,//EG AC ,2AB EF =.(I )若M 是线段AD 的中点,求证://GM 平面ABFE ; (II )若2AC BC AE ==,求二面角A BF C --的大小第19题图【测量目标】空间立体几何线面平行,二面角.【考查方式】给出空间几何体线面垂直,线线平行及线段之间的长度关系,判断线面平行及二面角大小. 【难易程度】中等【试题解析】几何法:证明:(Ⅰ)//EF AB ,2AB EF =可知延长BF 交AE 于点P ,而//FG BC ,//EG AC ,则P BF ∈⊂平面,BFGC P AE ∈⊂平面AEGC ,即P ∈平面BFGC 平面AEGC GC =,(步骤1) 于是,,BF CG AE 三线共点,1//2FG BC ,若M 是线段AD 的中点,而//AD BC , 则//FG AM ,(步骤2)四边形AMGF 为平行四边形,则//GM AF ,又GM ⊄平面ABFE ,所以//GM 平面ABFE ;(步骤3)(Ⅱ)由EA ⊥平面ABCD ,作C H A B ⊥,则CH ⊥平面ABFE ,作H T B F ⊥,连接CT ,则CT B F ⊥,于是CTH ∠为二面角A BF C --的平面角.(步骤4)若2AC BC AE ==,设1AE =,则2A C B C==,AB CH ==,H 为AB 的中点,2t a n2AE AE FBA AB EF AB ∠====-,sin FBA ∠=(步骤5)sin HT BH ABF =∠==Rt CHT △中tan CH CTH HT ∠==则60CTH ∠=,即二面角A BF C --的大小为60.(步骤6)坐标法:(Ⅰ)证明:由四边形ABCD 为平行四边形, 090ACB ∠=,EA ⊥平面ABCD ,可得以点A 为坐标原点,,,AC AD AE 所在直线分别为,,x y z 建立直角坐标系,(步骤1)设=,,AC a AD b AE c ==,则(0,0,0)A ,1(,0,0),(0,,0),(0,,0),(,,0)2C aD b M b B a b -.(步骤2)由//EG AC 可得()EG AC λλ=∈R ,1(,,)2GM GE EA AM a b c λ=++=-- (步骤3)由//FG BC 可得()FG BC AD μμμ==∈R,1122GM GF FA AM AD BA EA AD μ=++=-+++1(,(1),)2a b c μ=---,则12λμ==,12GM BA EA =+,而GM ⊄平面ABFE ,所以//GM 平面ABFE ;(步骤4)(Ⅱ)若2AC BC AE ==,设1AE =,则2AC BC ==,(2,0,0),(0,0,1),(2,2,0),(1,1,1)C E B F --,则(0,2,0)BC AD == ,(1,1,1)BF =-,(步骤5) (2,2,0)AB =-,设11112222(,,),(,,)x y z x y z =n =n 分别为平面ABF 与平面CBF 的法向量.则11111220x y x y z -=⎧⎨-++=⎩,令11x =,则111,0y z ==,1(1,1,0)n =;2222200y x y z =⎧⎨-++=⎩,令21x =,则220,1y z ==,2(1,0,1)=n .(步骤6) 于是1212121cos 2<>== n n n ,n n n ,则1260<>= n ,n ,即二面角A BF C --的大小为60.(步骤7)20. (本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:()1ln nn n n b a a =+-,求数列{}n b 的前n 项和n S . 【测量目标】数列的通项及前n 项和.【考查方式】给出等比数列前三项求数列的通项,并求组合数列{}n b 的前n 项和. 【难易程度】较难【试题解析】(Ⅰ)由题意可知1232,6,18a a a ===,公比32123a a q a a ===, 通项公式为123n n a -= ;(步骤1) (Ⅱ)()1111ln 23(1)ln 2323(1)[ln 2(1)ln 3]nn n n n n n n n b a a n ---=+-=+-=+-+-当*2()n k k =∈N 时,122n k S b b b =+++212(133)[1(23)((22)(21))]ln3k k k -=+++++-+++--+- 2132ln 331ln 3132k n nk -=+=-+-(步骤2)当*21()n k k =-∈N 时1221n k S b b b -=+++222(133)[(12)((23)(22))]ln3ln 2k k k -=++++-++----21132(1)ln 3ln 213k k --=----(1)31ln 3ln 22n n -=---(步骤3) 故31ln 3,2(1)31ln 3ln 22nn n n n S n n ⎧-+⎪⎪=⎨-⎪---⎪⎩为偶数;,为奇数.(步骤4)另解:令11(1)ln 23nnn n T -=-⋅∑,即11(1)ln 2(1)(1)ln 3nnnn n T n =-+--∑∑(步骤1)223[1(1)(1)]ln 2[(1)1(1)2(1)(1)]ln3n n n T n =-+-++-+-+-++-- 231341[(1)(1)(1)]ln 2[(1)1(1)2(1)(1)]ln3n n n T n ++-=-+-++-+-+-++--则12312[1(1)]ln 2[(1)(1)(1)(1)(1)]ln3n n n n T n ++=---+-+-++----211111(1)(1)[1(1)]ln 2[(1)(1)]ln 3222n n n n T n +++---=---+---12111[1(1)]ln 2[(1)(1)(21)]ln 324n n n T n ++=---+----(步骤2)故1122(133)n n n n S b b b T -=+++=++++1211131[1(1)]ln 2[(1)(1)(21)]ln 324n n n n ++=-+---+----.(步骤3)21. (本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且2l r ….假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (3c >)千元.设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .第21题图【测量目标】函数单调性的综合应用.【考查方式】给出实际问题,建立函数模型运用导数解决实际问题. 【难易程度】较难【试题解析】(Ⅰ)由题意可知2324π80ππ()33r l r l r +=…,即2804233l r r r =-≥,则02r <≤.(步骤1)容器的建造费用为2228042π34π6π()4π33y rl r c r r r c r =⨯+⨯=-+, 即22160π8π4πy r r c r=-+,定义域为{02}r r <≤.(步骤2)(Ⅱ)2160π16π8πy r rc r '=--+,令0y '=,得r =令2,r ==即 4.5c =,(步骤3)(1)当34.5c <≤2,当02r <≤,0y '<,函数y 为减函数,当2r =时y 有最小值;(步骤4)(2)当 4.5c >2,<当0r <<0y '<;当r >0y '>,此时当r =y 有最小值.(步骤5) 22. (本小题满分12分)已知动直线l 与椭圆C :22132x y +=交于()()1122,,,P x y Q x y 两不同点,且OPQ △的面积2OPQ S =△O 为坐标原点.(Ⅰ)证明:2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求OM PQ 的最大值;(Ⅲ)椭圆C 上是否存在三点,,D E G ,使得ODE ODG OEG S S S ===△△△?若存在,判断DEG △的形状;若不存在,请说明理由.【测量目标】椭圆的简单几何性质.【考查方式】给出直线与椭圆的位置关系,根据椭圆的几何性质,讨论坐标的定值及线段积的最值等综合问题.【难易程度】较难【试题解析】(Ⅰ)当直线l 的斜率不存在时,,P Q 两点关于x 轴对称,则1212,x x y y ==-,(步骤1)由()11,P x y 在椭圆上,则2211132x y +=,而11OPQ S x y ==△,则111x y == 于是22123x x +=,22122y y +=.(步骤2)当直线l 的斜率存在,设直线l 为y kx m =+,代入22132x y +=可得(步骤3) 2223()6x kx m ++=,即222(23)6360k x km m +++-=,0>△,即2232k m +>2121222636,2323km m x x x x k k -+=-=++(步骤4)12PQ x =-==d =1122POQS d PQ === △(步骤5) 则22322k m +=,满足0>△222221212122263(2)()2()232323km m x x x x x x k k -+=+-=--⨯=++,222222*********(3)(3)4()2333y y x x x x +=-+-=-+=, 综上可知22123x x +=,22122y y +=.(步骤6)(Ⅱ))当直线l的斜率不存在时,由(Ⅰ)知12OM x PQ === (步骤7)当直线l 的斜率存在时,由(Ⅰ)知12322x x km+=-, 2121231()222y y x x k k m m m m ++=+=-+=,(步骤8) 222212122229111()()(3)2242x x y y k OM m m m++=+=+=- 22222222224(32)2(21)1(1)2(2)(23)k m m PQ k k m m +-+=+==++(步骤9)22221125(3)(2)4OMPQ m m =-+≤,当且仅当221132m m -=+,即m =时等号成立,综上可知OM PQ 的最大值为52.(步骤10)(Ⅲ)假设椭圆上存在三点,,D E G ,使得2ODE ODG OEG S S S ===△△△, 由(Ⅰ)知2222223,3,3D E E G G D x x x x x x +=+=+=,2222222,2,2D E E G G D y y y y y y +=+=+=.解得22232D E G x x x ===,2221D E G y y y ===,(步骤11)因此,,D E G x x x 只能从,,D E G y y y 只能从1±中选取,因此,,D E G 只能从(,1)±中选取三个不同点,而这三点的两两连线必有一个过原点,这与2O D E O D G O E GS S S ===△△△相矛盾,故椭圆上不存在三点,,D E G ,使得2ODE ODG OEG S S S ===△△△.(步骤12)。
2011年山东高考数学理科解答题答案

2011年普通高等学校招生全国统一考试(山东卷)理 科 数 学参考公式:柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高. 圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长. 球的体积公式V=343V R π=, 其中R 是球的半径. 球的表面积公式:24S R π=,其中R 是球的半径.用最小二乘法求线性回归方程系数公式1221ˆˆˆ,ni ii nii x y nx ybay bx xnx==-⋅==--∑∑ . 如果事件A B 、互斥,那么()()()P A B P A P B +=+.解答题:本大题共6小题,共74分. (17)(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(Ⅰ)求sin sin CA的值; (Ⅱ)若1cos 4B =2b =,求ABC ∆的面积S . (Ⅰ)sin 2sin C A =(Ⅱ)154S = (18)(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ. (Ⅰ)0.55 (Ⅱ)1.6 (19)(本小题满分12分)在如图所 示的几何体中,四边形ABCD 为平行四边形,90ACB ∠=︒,EA ⊥平面ABCD ,EF ∥AB ,ADEFGMFG ∥BC ,EG ∥AC ,2AB EF =.(Ⅰ)若M 是线段AD 的中点,求证:GM ∥平面ABFE ; (Ⅱ)若2AC BC AE ==,求二面角A BF C --的大小. 3π(20)(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前n 项和n S .(Ⅰ)123n n a -=(Ⅱ)()()3ln 31213ln 3ln 212nn n n n S n n ⎧+-⎪⎪=⎨-⎪---⎪⎩为偶数为奇数(21)(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r . (Ⅰ)()2160=42,02y c r r rππ-+<≤ (Ⅱ)()'328220,022c y r r r c π-⎛⎫=-<< ⎪-⎝⎭3332020200,,0222r r m c c c -===>---令 则()()()'22282c y r m r rm m rπ-=-++ (1)902,,2m c <<>',0;r m y ==()'0,,0;r m y ∈<所以,r m =是极小值点,也是最小值点C (2)当92,32m c ≥<≤时,当()0,2r ∈,'0;y <函数单调递减,所以,2r =是函数最小值点。
[VIP专享]2011年山东高考数学答案(理科)
![[VIP专享]2011年山东高考数学答案(理科)](https://img.taocdn.com/s3/m/1bfb2faf910ef12d2af9e7ce.png)
《机械加工工艺与夹具》课程设计说明书题目:双联齿轮目录一、设计要求及参考………………………………………………………二、零件的分析……………………………………………………………三、工艺规程的设计………………………………………………………(一)确定毛坯的制作形式………………………………………………(二)基准的选择…………………………………………………………………………………………(三)工艺路线的拟定及工艺方案的分析……………………(四)机械加工余量、工序尺寸及毛坯尺寸的确定………………………(五)各工序的定位夹紧方案及切削用量的选择(六)各工序的基本工时…………………………………………………四、主要参考文献…………………………………………………………五、设计总结…………………………………………………………一.编制零件的工艺规程及设计夹具:双联齿轮如下图所示,成批生产(每批100件),材料为40Cr 钢。
编制此双联齿轮的工艺规程并为加工花键设计夹具。
要求:零件毛坯图夹具装配图(A0或A1)设计说明书(附有工艺卡和工序卡)二、零件分析(一)零件的作用双联齿轮是一些机械设备变速箱中,通过操作机构相结合,滑动齿轮,从而实现变速。
Φ32花键孔有较高精度。
(二)零件的工艺分析该零件属于齿轮类零件,形状规则,尺寸精度和形位精度要求均较高,零件的主要技术分析如下:(1)齿轮端面对准A的圆跳动公差不超过0.05mm,主要是保证端面平整光滑,双联是利用花键轴和花键孔进行配合定位,因此必须保证花键孔的尺寸精度。
双联齿轮之间啮合要求严格,要保证双联齿轮的齿形准确及同轴度较高。
(2)由于零件是双联齿轮,轴向距离较小,根据生产纲领是选择合理的加工工艺(3)齿轮要求加工精度高,要严格控制好定位(4)Φ32的花键孔是一比较重要的孔,也是以后机械加工各工序中的主要定位基准。
因此加工花键孔的工序是比较重要的。
要在夹具设计中考虑保证到此孔精度及粗糙度要求三、工艺规程的设计(一)确定毛坯的制造形式由于零件结构简单,尺寸较小,且有台阶轴,力学性能要求较高,精度较高且要进行大量生产所以选用模锻件,其加工余量小,表面质量好,机械强度高,生存率高。
2011山东高考数学(理)word版带详解

2011年普通高等学校招生全国统一考试(山东卷)理科数学解析版注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证 号条形码粘贴在答题卡上的指定位置,用2B 铅笔将答题卡上试卷类型B 后的方框涂黑。
2选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
咎在试题卷、草稿纸上无效。
3填空题和解答题用0 5毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区 域内。
答在试题卷、草稿纸上无效。
4考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.【解析】因为22(2)34255i i iz i ---===+,故复数z 对应点在第四象限,选D. 3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )0 (B) (C) 1 (D) 【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D.5. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要 【答案】C【解析】由奇函数定义,容易得选项C 正确. 6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.7.根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A)63.6万元 (B)65.5万元 (C)67.7万元 (D)72.0万元 【答案】B【解析】由表可计算4235742x +++==,49263954424y +++==,因为点7(,42)2在回归直线ˆˆˆybx a =+上,且ˆb 为9.4,所以7ˆ429.42a =⨯+, 解得 9.1a =,故回归方程为ˆ9.49.1y x =+, 令x=6得ˆy=65.5,选B. 8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=【答案】A【解析】由圆C:22650x y x +-+=得:22(3)4x y -+=,因为双曲线的右焦点为圆C 的圆心(3,0),所以c=3,又双曲线的两条渐近线0bx ay ±=均和圆C 相切,2=,即32bc=,又因为c=3,所以b=2,即25a =,所以该双曲线的方程为22154x y -=,故选A.9. 函数2sin 2xy x =-的图象大致是【答案】C 【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.10. 已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 【答案】A【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为6个,选A.11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.12.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=(λ∈R),1412A A A A μ= (μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O) (c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是 (A)C 可能是线段AB 的中点(B)D 可能是线段AB 的中点(C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上 【答案】D【解析】由1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R)知:四点1A ,2A ,3A ,4A 在同一条直线上,因为C,D 调和分割点A,B,所以A,B,C,D 四点在同一直线上,且112c d+=,故选D.二、填空题:本大题共4小题,每小题4分,共16分. 13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新的y=173;第二次得新的y=68<105,输出y.14. 若62(x x -展开式的常数项为60,则常数a 的值为 .【答案】4【解析】因为616(r rr r T C x -+=⋅⋅,所以r=2, 常数项为26a C ⨯=60,解得4a =.15. 设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== . 【答案】22(1)xn x n-+ 【解析】观察知:四个等式等号右边的分母为2,34,78,15x x x x ++++,即(21)2,(41)4,(81)8,(161)16x x x x -+-+-+-+,所以归纳出分母为1()(())n n f x f f x -=的分母为22(1)n x n -+,故当n N +∈且2n ≥时,1()(())n n f x f f x -==22(1)xn x n-+. 16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 . 【答案】5【解析】方程log (0a 1)a x x b a +-≠>,且=0的根为0x ,即函数log (23)a y x a =<<的图象与函数(34)y x b b =-<<的交点横坐标为0x ,且*0(,1),x n n n N ∈+∈,结合图象,因为当(23)x a a =<<时,1y =,此时对应直线上1y =的点的横坐标1(4,5)x b =+∈;当2y =时, 对数函数log (23)a y x a =<<的图象上点的横坐标(4,9)x ∈,直线(34)y x b b =-<<的图象上点的横坐标(5,6)x ∈,故所求的5n =.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在 ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A-2cos C 2c-a=cos B b.(I ) 求sin sin CA的值; (II )若cosB=14,2b =,求ABC ∆的面积.【解析】(Ⅰ)由正弦定理得2s i n a R A =2s i n b R B =2s i n c R C =所以c o s A -2c o s C 2c -a=c o s B b =2sin sin sin C A B-,即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=-,即有sin()2sin()A B B C +=+,即sin 2sin C A =,所以sin sin CA=2.(Ⅱ)由(Ⅰ)知: sin sin c C a A==2,即c=2a,又因为2b =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以c=2,又因为cosB=14,所以sinB=4,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4.18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分。
考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按能上能下要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。
圆柱的侧面积公式:S cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:24S Rπ=,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:12241ˆˆ,ni ii ni x y nx ybay bx xnx==-==--∑∑, 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3]2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为A .0B .3C .1D 4.不等式|5||3|10x x -++≥的解集是A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞D .(][),46,-∞-+∞5.对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 42 3 5销售额y (万元)49 26 3954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 9.函数2sin 2xy x =-的图象大致是10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .911.右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是14.若62(x x-展开式的常数项为60,则常数a 的值为 .15.设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值; (II )若cosB=14,b=2,ABC ∆的面积S 。
18.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。
(Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.19.(本小题满分12分)在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n b a a =+-,求数列{}n b 的前n 项和n S .21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元,设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .22.(本小题满分14分)已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得ODE ODG OEG S S S ∆∆∆===若存在,判断△DEG 的形状;若不存在,请说明理由.参考答案一、选择题1—12 ADDDBCBACBAD 二、填空题13.68 14.4 15.(21)2n nxx -+ 16.2 三、解答题 17.解:(I )由正弦定理,设,sin sin sin a b ck A B C=== 则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B---==所以cos 2cos 2sin sin .cos sin A C C AB B--=即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=,所以sin 2sin C A =因此sin 2.sin CA = (II )由sin 2sin CA=得2.c a = 由余弦定理22222212cos cos ,2,4144.4b ac ac B B b a a =+-==+-⨯及得4=a解得a=1。
因此c=2 又因为1cos ,.4B G B π=<<且所以sin B =因此11sin 122244S ac B ==⨯⨯⨯=18.解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则,,D E F分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件。
因为()0.6,()0.5,()0.5,P D P E P F === 由对立事件的概率公式知()0.4,()0.5,()0.5,P D P E P F ===红队至少两人获胜的事件有:,,,.DEF DEF DEF DEF由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55.P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3。
又由(I )知,,DEF DEF DEF是两两互斥事件,且各盘比赛的结果相互独立,因此(0)()0.40.50.50.1,P P DEF ξ===⨯⨯=(1)()()()P P DEF P DEF P DEF ξ==++0.40.50.50.40.50.50.60.50.50.35=⨯⨯+⨯⨯+⨯⨯=(3)()0.60.50.50.15.P P DEF ξ===⨯⨯=由对立事件的概率公式得(2)1(0)(1)(3)0.4,P P P P ξξξξ==-=-=--=所以ξ的分布列为:ξ0 1 2 3 P0.10.350.40.15因此00.110.3520.430.15 1.6.E ξ=⨯+⨯+⨯+⨯= 19.(I )证法一:因为EF//AB ,FG//BC ,EG//AC ,90ACB ∠=︒,所以90,EGF ABC ∠=︒∆∽.EFG ∆ 由于AB=2EF , 因此,BC=2FC ,连接AF ,由于FG//BC ,1,2FG BC =在ABCD 中,M 是线段AD 的中点, 则AM//BC ,且1,2AM BC =因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。