回归分析讲义
合集下载
回归分析实例PPT课件

通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值
。
解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。
《回归分析》PPT课件

在回归分析中,若自变量间中/高相关,则某些与因变量有关系的变量会被排除在回 归模型之外
多元共线性
即数学上的线性相依,指在回归模型中 预测变量本身间有很高的相关。
有很多评价指标,如容差(容忍度)、 VIF,特征值
特征值若小于0.01,预测变量间可能存在多元共线性;
方差比例:若有两个或多个自变量在一个特征值上高于0.8 或 0.7以上,表示 可能存在多元共线性
整理成表格
表1 福利措施、同侪关系、适应学习对组织效能的影响
Beta
t
福利 0.180 5.513*
措施
**
同侪 0.264 8.166*
关系
**
适应 0.369 12.558
学习
***
R=0.73 R2=0.5 F=464.
阶层回归
如第一层自变量为福利措施 第二层为同辈关系 第三层为适应学习
学习完毕请自行删除
什么是回归分析
用一定的数学模型来表述变量相关关系 的方法。
一元线性回归
最简单的回归是只涉及一个因变量和一个自变量一元 线性回归,此时的表达式为:
y= 0+ 1 x+ y为因变量,x为自变量或预测变量, 0为截距即当
x=0时y的值, 1为斜率即1个单位的x变化对应 1个单 位y的变化。 是误差,服从N(0, σ2)的正态分布,不 同观察值之间是相互。
练习
“组织效能.sav”
15回归系数及检验组织效能0180福利措施0264同侪关系0369适应学习在回归分析中若自变量间中高相关则某些与因变量有关系的变量会被排除在回归模型之外容差及方差膨胀系数vif检验多元回归分析的共线性问题
《回归分析》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用
多元共线性
即数学上的线性相依,指在回归模型中 预测变量本身间有很高的相关。
有很多评价指标,如容差(容忍度)、 VIF,特征值
特征值若小于0.01,预测变量间可能存在多元共线性;
方差比例:若有两个或多个自变量在一个特征值上高于0.8 或 0.7以上,表示 可能存在多元共线性
整理成表格
表1 福利措施、同侪关系、适应学习对组织效能的影响
Beta
t
福利 0.180 5.513*
措施
**
同侪 0.264 8.166*
关系
**
适应 0.369 12.558
学习
***
R=0.73 R2=0.5 F=464.
阶层回归
如第一层自变量为福利措施 第二层为同辈关系 第三层为适应学习
学习完毕请自行删除
什么是回归分析
用一定的数学模型来表述变量相关关系 的方法。
一元线性回归
最简单的回归是只涉及一个因变量和一个自变量一元 线性回归,此时的表达式为:
y= 0+ 1 x+ y为因变量,x为自变量或预测变量, 0为截距即当
x=0时y的值, 1为斜率即1个单位的x变化对应 1个单 位y的变化。 是误差,服从N(0, σ2)的正态分布,不 同观察值之间是相互。
练习
“组织效能.sav”
15回归系数及检验组织效能0180福利措施0264同侪关系0369适应学习在回归分析中若自变量间中高相关则某些与因变量有关系的变量会被排除在回归模型之外容差及方差膨胀系数vif检验多元回归分析的共线性问题
《回归分析》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用
回归分析专题教育课件

第十二章 回归分析
学习目的 掌握简朴线性回归模型基本原理。 掌握最小平措施。 掌握测定系数。 了解模型假定。 掌握明显性检验 学会用回归方程进行估计和预测。 了解残差分析。
1
习题
1. P370-1 2. P372-7 3. P380-18
4. P380-20 5. P388-28 6. P393-35
2
案例讨论: 1.这个案例都告诉了我们哪些信息? 2.经过阅读这个案例你受到哪些启发?
3
根据一种变量(或更多变量)来估计 某一变量旳措施,统计上称为回归分析 (Regression analysis)。
回归分析中,待估计旳变量称为因变 量(Dependent variables),用y表达;用来 估计因变量旳变量称为自变量 (Independent variables),用x表达。
yˆ b0 b1 x (12.4)
yˆ :y 旳估计值
b0 :0 旳估计值
b1 : 1 旳估计值
18
19
第二节 最小平措施
最小平措施(Least squares method), 也称最小二乘法,是将回归模型旳方差之 和最小化,以得到一系列方程,从这些方 程中解出模型中需要旳参数旳一种措施。
落在拒绝域。所以,总体斜率 1 0 旳假
设被拒绝,阐明X与Y之间线性关系是明显
旳。
即 12 条 航 线 上 , 波 音 737 飞 机 在 飞 行
500公里和其他条件相同情况下,其乘客数
量与飞行成本之间旳线性关系是明显旳。
57
单个回归系数旳明显性检验旳几点阐明
为何要检验回归系数是否等于0?
假如总体中旳回归系数等于零,阐明相应旳自变 量对y缺乏解释能力,在这种情况下我们可能需 要中回归方程中去掉这个自变量。
学习目的 掌握简朴线性回归模型基本原理。 掌握最小平措施。 掌握测定系数。 了解模型假定。 掌握明显性检验 学会用回归方程进行估计和预测。 了解残差分析。
1
习题
1. P370-1 2. P372-7 3. P380-18
4. P380-20 5. P388-28 6. P393-35
2
案例讨论: 1.这个案例都告诉了我们哪些信息? 2.经过阅读这个案例你受到哪些启发?
3
根据一种变量(或更多变量)来估计 某一变量旳措施,统计上称为回归分析 (Regression analysis)。
回归分析中,待估计旳变量称为因变 量(Dependent variables),用y表达;用来 估计因变量旳变量称为自变量 (Independent variables),用x表达。
yˆ b0 b1 x (12.4)
yˆ :y 旳估计值
b0 :0 旳估计值
b1 : 1 旳估计值
18
19
第二节 最小平措施
最小平措施(Least squares method), 也称最小二乘法,是将回归模型旳方差之 和最小化,以得到一系列方程,从这些方 程中解出模型中需要旳参数旳一种措施。
落在拒绝域。所以,总体斜率 1 0 旳假
设被拒绝,阐明X与Y之间线性关系是明显
旳。
即 12 条 航 线 上 , 波 音 737 飞 机 在 飞 行
500公里和其他条件相同情况下,其乘客数
量与飞行成本之间旳线性关系是明显旳。
57
单个回归系数旳明显性检验旳几点阐明
为何要检验回归系数是否等于0?
假如总体中旳回归系数等于零,阐明相应旳自变 量对y缺乏解释能力,在这种情况下我们可能需 要中回归方程中去掉这个自变量。
数理统计CH回归分析课件

2024/10/4
21
回归最小二乘估计
(2)最小二乘思想
n
n
| i |
2 i
i 1
i 1
残差计算:
yi a bxi i
i yi a bxi
➢用残差(误差)平 方和代表试验点与 回归直线旳总距离
2024/10/4
➢回归方程旳最小二乘
估计可归结为求解下
面旳优化模型:
n
Min a,b
n i 1
yi
a
bxi
2
n i 1
b
yi a bxi
2
n
2 yi a bxi xi i 1
2024/10/4
24
回归最小二乘估计
(3)回归最小二乘估计
x
1 n
n i 1
xi
y
1 n
n i 1
yi
Q 0 a aˆ,b bˆ a
n
即 2 yi aˆ bˆxi 0 i 1
2024/10/4
40
回归明显性检验
(3)模型和假设
线性回归模型 线性有关假设
➢由线性回归模型可推论:
E yi E a bxi i a bxi
Var yi Var a bxi i Var i 2
2024/10/4
10
7.2 一元线性回归
(1)案例和问题
x称作自变量 y称作响应变量
案例:某特种钢抗拉强度试 抗拉强度试验成果 验,控制某稀有金属含量x
x(%) y(MPa) 测得不同抗拉强度y,试验
2.07 128 成果如表所示。
3.10 194 4.14 273 5.17 372 6.20 454
yi
应用统计方法第四章-回归分析PPT课件

应用统计方法第四章-回归分 析ppt课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数
《回归分析三》课件

观察残差的分布、正态性、异方差性和自相关性 等特征,以检验模型的假设是否成立。
03 诊断工具
如残差图、杠杆值、DW检验等,用于进一步诊 断模型的潜在问题。
模型的预测与评估
1 2
预测
基于已知的自变量x值,使用回归模型预测因变 量y的值。
预测精度评估
通过计算预测值与实际值之间的均方误差(MSE )或均方根误差(RMSE)来评估预测精度。
半参数回归在处理复 杂数据和解释性建模 方面具有广泛应用, 如生物医学、环境科 学和经济学等领域。
THANKS
感谢观看
3
模型评估
将模型应用于新数据或实际情境中,以评估模型 的实用性和预测能力。
03
多元线性回归分析
多元线性回归模型
多元线性回归模型
模型形式
假设条件
描述因变量与多个自变量之间 的关系,通过最小二乘法估计 参数。
$Y = beta_0 + beta_1X_1 + beta_2X_2 + ... + beta_pX_p + epsilon$,其中$Y$是因变 量,$X_1, X_2, ..., X_p$是自 变量,$beta_0, beta_1, ..., beta_p$是待估计的参数, $epsilon$是误差项。
分位数回归在金融、医学、环境科学 等领域有广泛应用。
半参数回归分析
半参数回归是一种非 完全参数化的回归分 析方法,它结合了参 数回归和非参数回归 的优点。
半参数回归模型既包 含参数部分,也包含 非参数部分,能够更 好地拟合数据的复杂 性和不确定性。
常见的半参数回归模 型包括部分线性模型 、可加模型和单指标 模型等。
01 预测模型
通过回归分析建立预测模 型,预测未来的趋势和结 果。
03 诊断工具
如残差图、杠杆值、DW检验等,用于进一步诊 断模型的潜在问题。
模型的预测与评估
1 2
预测
基于已知的自变量x值,使用回归模型预测因变 量y的值。
预测精度评估
通过计算预测值与实际值之间的均方误差(MSE )或均方根误差(RMSE)来评估预测精度。
半参数回归在处理复 杂数据和解释性建模 方面具有广泛应用, 如生物医学、环境科 学和经济学等领域。
THANKS
感谢观看
3
模型评估
将模型应用于新数据或实际情境中,以评估模型 的实用性和预测能力。
03
多元线性回归分析
多元线性回归模型
多元线性回归模型
模型形式
假设条件
描述因变量与多个自变量之间 的关系,通过最小二乘法估计 参数。
$Y = beta_0 + beta_1X_1 + beta_2X_2 + ... + beta_pX_p + epsilon$,其中$Y$是因变 量,$X_1, X_2, ..., X_p$是自 变量,$beta_0, beta_1, ..., beta_p$是待估计的参数, $epsilon$是误差项。
分位数回归在金融、医学、环境科学 等领域有广泛应用。
半参数回归分析
半参数回归是一种非 完全参数化的回归分 析方法,它结合了参 数回归和非参数回归 的优点。
半参数回归模型既包 含参数部分,也包含 非参数部分,能够更 好地拟合数据的复杂 性和不确定性。
常见的半参数回归模 型包括部分线性模型 、可加模型和单指标 模型等。
01 预测模型
通过回归分析建立预测模 型,预测未来的趋势和结 果。
《回归分析 》课件

参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。
中级经济师—经济基础 第二十六章 回归分析-课件新

19
二、最小二乘法
(一)最小二乘法 ★
最小二乘法就是使得因变量的观测值yi与估计值yෝ i之间的离 差(又称残差)平方和最小来估计参数β0和β1 的方法。
y
yi
yi - yෝ i
ෝy i = β 0 +β 1X
yi
值yෝ i
0
x1
xi
x
20
小试一下
【单选题】最小二乘法就是使得因变量的( β0和β1的方法。 A.平均值与估计值之间的离差平方和 B.观测值与真值之间的离差平方和
小试一下 【单选题】在一元线性回归模型Y=β0 +β1X+ε中, ε反映的是 ( )。 A.X和Y的线性关系对Y的影响 B.由自变量X的变化引起的因变量Y的变化 C.X和Y的线性关系对X的影响 D.除X和Y的线性关系之外的随机因素对Y的影响
14
小试一下 【答案】D 【解析】误差项ε是个随机变量,表示除线性关系之外的随机因素 对Y的影响,它是不能由X和Y的线性关系所解释的Y的变异性。
《经济基础知识》中级
1
目录 CONTENT
第一部分:经济学基础 第二部分:财政 第三部分:货币与金融
第四部分:统计 第五部分:会计 第六部分:法律
2
第四部分 统计
3
23.统计与数据科学 24.描述统计
25.抽样调查
目录内容
26.回归分析 27.时间序列分析
4
第二十六章 回归分析
5
本章教材结构
一般情况下,在使用估计的回归方程之前,需要对模型进行检
验:
①结合经济理论和经验分析回归系数的经济含义是否合理; ②分析估计的模型对数据的拟合效果如何; ③对模型进行假设检验。
24
二、最小二乘法
(一)最小二乘法 ★
最小二乘法就是使得因变量的观测值yi与估计值yෝ i之间的离 差(又称残差)平方和最小来估计参数β0和β1 的方法。
y
yi
yi - yෝ i
ෝy i = β 0 +β 1X
yi
值yෝ i
0
x1
xi
x
20
小试一下
【单选题】最小二乘法就是使得因变量的( β0和β1的方法。 A.平均值与估计值之间的离差平方和 B.观测值与真值之间的离差平方和
小试一下 【单选题】在一元线性回归模型Y=β0 +β1X+ε中, ε反映的是 ( )。 A.X和Y的线性关系对Y的影响 B.由自变量X的变化引起的因变量Y的变化 C.X和Y的线性关系对X的影响 D.除X和Y的线性关系之外的随机因素对Y的影响
14
小试一下 【答案】D 【解析】误差项ε是个随机变量,表示除线性关系之外的随机因素 对Y的影响,它是不能由X和Y的线性关系所解释的Y的变异性。
《经济基础知识》中级
1
目录 CONTENT
第一部分:经济学基础 第二部分:财政 第三部分:货币与金融
第四部分:统计 第五部分:会计 第六部分:法律
2
第四部分 统计
3
23.统计与数据科学 24.描述统计
25.抽样调查
目录内容
26.回归分析 27.时间序列分析
4
第二十六章 回归分析
5
本章教材结构
一般情况下,在使用估计的回归方程之前,需要对模型进行检
验:
①结合经济理论和经验分析回归系数的经济含义是否合理; ②分析估计的模型对数据的拟合效果如何; ③对模型进行假设检验。
24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回
一元线性回归分析 线性回归分析
归
多元线性回归分析
分 析
非线性回归分析
2020/9/19
9
一元线性回归:
例1 测16名成年女子的身高与腿长所得数据如下:
身 高1 4 31 4 51 4 61 4 71 4 91 5 01 5 31 5 41 5 51 5 61 5 71 5 81 5 91 6 01 6
2020/9/19
10
散点图
2020/9/19
腿长
102
100
98
96
94
92
90
88
86
84
140
150
身高
160
11 170
一元线性回归spss:
2020/9/19
12
2020/9/19
13
Estim:a默te认的输出项。 j、S输 j和出 其与 相伴概率值等。
Modfeilt:默认的输 .输出出项(调整), 判回 定归 系方 数程的。 标准误 Rsquarcehdan: ge方程引入或个 者自 踢变 出量 一以后。 的变化量 C2a02s0e/9/w 19 disieagnoss:输 tic出标准化残差 3的绝样对本值点的相1关 4 信息
2020/9/19
7
回归分析的基本思想
变量之间的关系
确定性关系 相 关关系
Sr2
身高和体重
确定性关系 相关关系
相关关系的特征是:变量之间的关系很难用一 种精确的方法表示出来.
回归分析——处理变量之间的相关关系的一 种数学方法,它是最常用的数理统计方法.
2020/9/19
8
起源:英国统计学家F.GALTON和K.PEARSON研究 身高问题时总结出来的。
腿 长8 8 8 5 8 8 9 1 9 2 9 3 9 3 9 5 9 6 9 8 9 7 9 6 9 8 9 91 0
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
102
解答
100
98
y01x
96
94
92
90
88
86
84
140
145
150
155
160
165
2020/9/19
15
0.05:F统计量的相S伴 ig概 0.0率 , 5 应该引入回归方程; 0.1:F统计量的相S伴 ig概 0.1, 率应该从回归; 方程剔除
2020/9/19Leabharlann 162020/9/19
17
2020/9/19
18
显示:相R= 关 0.9系 9, 5R 数 2= 0.91, 3 经调R2整 = 0.9的 0, 6 估计标准 1.82误 。 49差 表明身高与 存腿 在长 线之 性间 相关
以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi) 在平面直角坐标系上标出.
102
解答
100
98
y01x
96
94
92
90
88
86
84
140
145
150
155
160
165
2020/9/19
3
散点图
多元线性回归:
20000
10000
人 均 GNP
0
70
60 50
2020/9服/1产9 比
40
13212.76
52.16
38.2 44.37
12099.78 8830.92
452.78 43.32
一元非线性回归:
高教入学率
60
50
40
30
20
10
0
-10
-10000
0
人 均 GDP
10000
20000
30000
40000
2020/9/19
5
11
10.5
10
9.5
9
8.5
8
7.5
7
6.5
6
30
0
10
20
30 40 50 60
高教入学
70
服务业产值
高校入学率 人均GNP
比
0.97
348.42
25.01
2.21
375.46
31.16
4.19
603.14
35.44
6.3
698.42
35.68
8.74
666.86
39.45
10.48
1501.88
43.92
12.36
1851.18
47.18
14.55
参 数 a和 b .采 用 的 方 法 是 通 过 变 量 代 换 把 非 线 性 回 归 化 成 线 性 回 归 , 即 采 用
非 线 性 回 归 线 性 化 的 方 法 .
2020/9/19
6
通常选择的六类曲线如下:
( 1 ) 双 曲 线 1 a b y x
( 2 ) 幂 函 数 曲 线 y = a x b , 其 中 x > 0 , a > 0
数学建模与数学实验
回归分析
2020/9/19
1
目的
1、了解回归分析基本内容。 2、掌握用数学软件求解回归分析问题。
一元线性回归:
例1 测16名成年女子的身高与腿长所得数据如下:
身 高1 4 31 4 51 4 61 4 71 4 91 5 01 5 31 5 41 5 51 5 61 5 71 5 81 5 91 6 01 6 21 6 4 腿 长8 8 8 5 8 8 9 1 9 2 9 3 9 3 9 5 9 6 9 8 9 7 9 6 9 8 9 91 0 01 0 2
1811.18
45.85
16.25
2099.16
46.3
19.05
3709.54
44.45
21.46
3592.09
36.98
23.59
4940.4
49.4
25.64
5899.97
51.89
27.59
9742.41
54.04
29.55
8462.23
52.88
31.55
14371.63
54.88
34.94
2020/9/19
19
表中显示方方 差和 来、 源自 、由 平 F度 比、 以均 及方 显、 著性
F的值 13为 .652, 0 其相伴 0.0概 0, 0率 即为 检验 H0: 假回 设归 “ j= 系 0”数
成立的概 0.0率 0, 0等 从于 而应 H0, 该说 拒明 绝回归效果显
2
4
6
8
10
12
14
16
散 点 图
此即非线性回归或曲线回归 问题(需要配曲线) 配曲线的一般方法是:
先 对 两 个 变 量 x 和 y作 n 次 试 验 观 察 得 (x i,y i)i ,1 ,2 ,.n .画 .出 ,散 点 图 ,
根 据 散 点 图 确 定 须 配 曲 线 的 类 型 .然 后 由 n 对 试 验 数 据 确 定 每 一 类 曲 线 的 未 知
( 3 ) 指 数 曲 线 y = a e b 其 中 参 数 a > 0 x .
( 4) 倒 指 数 曲 线 y=aeb/x 其 中 a>0,
( 5 ) 对 数 曲 线 y = a + b l o g x , x > 0 ( 6 ) S 型 曲 线 y 1
a b x e
也可根据专业知识直接确定类型,进而估计参数即可(logstic) 当然,多项式形式是一个通用的选择,但可能精度不高。