第五章 (1) 若干数据类型的回归分析
回归分析概述

例 1:某保险公司承保汽车 x 万辆,每辆保费
为 1000 元,如果记保险公司的承保总收入为
y ,则 y 与 x 之间表现为一种确定性的关系:
y 1000x
变量之间具有密切关联而又不能由一个 或若干个变量唯一确定另外一个变量, 这样 的一种联系称为变量之间的相关关系.
例如,父亲身材较高时儿子的身材也较高,但是 父子身高之间的关系不能用一个确定的函数关系 来表达.又如,人的血压与年龄之间有密切的关 系,但是两者之间的关系不能用一个确定的函数 关系来表达.
回归分析是考察两个变量之间统计联系的一种重要 方法,它在许多领域中都有极其广泛的应用。本章 主要介绍回归分析中最基本的部分 — —(线性)回 归分析,内容包括一元(线性)回归分析与多元 (线性)回归分析,以及某些可以线性化的非线性 回归分析问题,回归分析的基本形式仍然是估计与 检验。因此,不妨把本章的内容视作估计与检验方 法在特殊的一类统计问题中的应用。
概率论中简化处理随机变量的常用方法是求其
数学期望.因此,我们来研究自变量 x 与因变量
Y 的均值E Y 之间的关系.当自变量x 的值给定 时,相应的均值E Y 跟着确定,即x 与给定 x 时
Y 的均值 E Y x ˆ y 之间存在一种函数关系, 记
这个函数关系为 y f x,并称它为回归函数.
回归函数反映了自变量 x 与因变量 Y 的均值E Y
之间的函数关系, 因此它近似地描述了自变量 x 与 因变量Y 之间的数量关系.
回归函数f x是未知的,为了数学上处理的方便,
首先假定回归函数是线性的,即 y 0 1x, 其中 0 , 1 待定, 称1 为这个一元线性回归函数的回归
系数.也即E Y 0 1x, 引进随机误差项 ,那么
高三数学回归分析知识点

高三数学回归分析知识点回归分析是数学中一种重要的数据分析方法,主要用于研究变量之间的关系以及预测未来的趋势。
它在高三数学中也是一个重要的知识点。
本文将介绍高三数学回归分析的基本概念、方法和应用。
一、回归分析的基本概念回归分析是通过对一组相关变量的观测数据进行统计分析,建立一个数学模型,从而揭示变量之间的关系和规律。
在回归分析中,通常将一个或多个自变量与一个因变量进行关联,通过构建回归方程来描述这种关系。
回归分析可以帮助我们理解和预测变量之间的相互作用。
二、回归分析的方法1. 简单线性回归分析简单线性回归分析是回归分析的最基本形式,它研究两个变量之间的关系。
在简单线性回归中,假设自变量和因变量之间存在一个线性关系。
通过最小化残差平方和来确定最佳拟合直线,从而建立回归方程。
2. 多元线性回归分析多元线性回归分析是简单线性回归的扩展,它研究多个自变量与一个因变量之间的关系。
在多元线性回归中,需要选择合适的自变量,并进行变量筛选和模型检验,以建立具有良好拟合度和预测能力的回归方程。
3. 非线性回归分析非线性回归分析是在回归分析的基础上,考虑变量之间的非线性关系。
它通常通过将自变量进行变换或引入非线性项来拟合数据。
非线性回归可以更好地适应非线性数据的变化,提高模型的拟合度。
三、回归分析的应用1. 预测分析回归分析在预测分析中有着广泛的应用。
通过建立回归模型,我们可以根据已有的数据来预测未来的趋势和结果。
这在金融、经济学、市场营销等领域都有重要的应用价值。
2. 产品开发和优化回归分析可以用于产品开发和优化过程中。
通过分析自变量与因变量之间的关系,可以确定对于产品性能的重要影响因素,从而改进产品的设计和质量。
3. 策略制定在管理和决策层面,回归分析可以帮助制定策略和决策。
通过分析不同变量之间的关系,可以找到最佳决策方案,并预测其效果。
四、总结高三数学回归分析是一门重要的知识点,它可以帮助我们理解和分析变量之间的关系,并应用于实际问题的解决。
回归分析法

1
§5-1 一元线性回归
一、什么叫回归分析
(一)两种不同类型的变量关系、函数与相关
简单的说,回归分析就是一种处理变量与变量之间关系的 数学方法。 例:自由落体运动中,物体下落的距离S与所需时间t之间,有 如下关系
S
1 2 gt 2
(0 t T )
2
变量S的值随t而定,这就是说,如果t给了固定值, 那么S的值就完全确定了 这种关系就是所谓的函数关系或确定性关系
(二)相关系数检验法
由U ( yi y ) U [(a bxi ) (a b x )]2
2 i=1 N i=1 N ^ _ N _
b ( xi x) 2
2 i=1
_
代入 Lyy [( yi yi ) ( yi y )]2整理后可得
i=1
23
相关系数临界值表 n-2 0.05
1 2 3 4 5 6 7 8 9 10
0.01
1.000 0.990 0.959 0.917 0.874 0.834 0.798 0.765 0.735 0.708
n-2 0.05
11 12 13 14 15 16 17 18 19 20
0.01
0.684 0.661 0.641 0.623 0.606 0.590 0.575 0.561 0.549 0.537
6
设y* a bx是平面上的一条任意直线,(xi , yi )(i 1,2, ..., N )是变量x,y的一组观测数据。 那么,对于每一个xi,在直线y* a bx上确可以确定一 个yi a bxi的值,yi 与xi处实际观测值yi的差: yi yi yi (a bx) 就刻画了yi与直线偏离度
回归分析数据

回归分析数据回归分析是一种经济学和统计学中常用的方法,用于研究两个或更多变量之间的关系。
这种分析方法广泛应用于各个领域,包括市场研究、金融分析、经济预测等。
在此文档中,我们将介绍回归分析数据以及如何使用它们进行分析和解释。
回归分析的基本概念是研究一个或多个自变量对某个因变量的影响。
自变量是独立变量,而因变量则是依赖于自变量的变量。
通过分析自变量与因变量之间的关系,我们可以得出它们之间的数学模型,用于预测或解释因变量。
在进行回归分析之前,我们首先需要收集回归分析数据。
这些数据包括自变量和因变量的观测值。
通常,我们会收集一组样本数据,其中包含自变量和对应的因变量的数值。
这些数据可以是经过实验或观测得到的,也可以是从其他来源获取的。
一旦我们收集到回归分析数据,接下来就可以使用统计软件或编程语言进行数据分析。
常见的回归分析方法包括简单线性回归、多元线性回归和非线性回归。
在简单线性回归中,我们将自变量和因变量之间的关系建模为一条直线。
在多元线性回归中,我们可以考虑多个自变量对因变量的影响。
非线性回归则允许我们考虑更复杂的关系模型。
回归分析的结果通常包括回归方程、参数估计和统计显著性检验。
回归方程描述了自变量和因变量之间的数学关系。
参数估计给出了回归方程中的系数估计值,用于解释自变量与因变量之间的关系。
统计显著性检验则用于判断回归方程的有效性和模型的拟合度。
当我们得到回归分析的结果后,我们可以进行解释和预测。
通过解释回归方程中的系数估计值,我们可以了解自变量与因变量之间的关系强度和方向。
通过预测模型,我们可以根据自变量的数值预测因变量的数值。
回归分析数据在许多实际应用中具有重要的价值。
在市场研究中,回归分析数据可以帮助我们理解产品价格与销售量之间的关系。
在金融分析中,回归分析数据可以用于预测股票价格或汇率变动。
在经济预测中,回归分析数据可以用于预测GDP增长率或失业率。
总而言之,回归分析数据是一种强大的工具,用于研究自变量与因变量之间的关系。
高中信息技术浙教版:回归分析教学课件(共17张PPT)

如符合,请通过回归分析计算出摄氏温度和华氏温度之间的线性回归方程。
本课小结
拓展链接——最小二乘法
最小二乘法是一种机器学习的优化技术,其将残差平方之和最小化作为目标
,找到最优模型来拟合已知的观测数据,使得模型所预测的数据与实际数据之间
误差的平方和最小,一般有线性最小二乘法和非线性最小二乘法两种方法。
用线性最小二乘法来解决线性回归模型存在封闭形式(closed-formsolution)
之间
差的绝对值|-y|,将这个差的绝对值作为对应的真实值(即y)和模型预测值(即
)
之间的误差,这个误差通常称为“残差”。
2而不是|-y|引作为“残差”。这样
为了计算方便,在实际中一般使用(-y)
对于给定的n组(x,y)数据,可用不同的a和b来刻画这n组数据所隐含的y=ax+b关
系。对于这些不同的参数,最佳回归模型是最小化残差平方和的均值,即要求n
1
组(x,y)数据得到的残差平均值 σ( − y)2最小。
从残差的定义可看出,残差平均值最小只与参数a和b有关,最优解即使得残
差最小所对应的a和b的值。
2.5.2回归分析中参数计算
可通过最小二乘法(leastsquare)来求解使得残差最小的a和b。
型称为回归模型。
一旦确定了回归模型,就可以进行预测等
分析工作,如从碳排放量预测气候变化程度、
从广告投人量预测商品销售量等。
2.5.1回归分析的概念
二氧化碳浓度在逐年缓慢增加,→二氧化碳浓度=a*年份+b
设时间年份为x、二氧化碳浓度为y,即y=ax+b。
使用数据分析工具进行回归分析

使用数据分析工具进行回归分析回归分析是一种常用的统计分析方法,用于研究变量之间的关系。
而数据分析工具是回归分析的重要辅助手段,可以帮助我们进行数据处理、模型建立和结果解释等工作。
本文将探讨如何使用数据分析工具进行回归分析,并通过案例介绍其具体操作流程。
一、数据准备在进行回归分析之前,首先需要收集相关变量的数据。
这些数据可以来自实验观测、调查问卷、企业数据库等不同的来源。
确保数据的质量和完整性是进行回归分析的前提条件。
接下来,将数据导入数据分析工具,比如常用的统计软件如SPSS、R、Python等。
二、探索性数据分析在进行回归分析前,常常需要对数据进行探索性数据分析,以了解变量之间的关系和数据的特征。
常用的探索性数据分析方法包括描述统计、绘图等。
其中,描述统计可以用来计算变量的均值、标准差、最大最小值等,帮助我们对数据进行概括性描述。
绘图方法可以用来可视化数据分布和变量之间的关系,比如散点图、直方图等。
三、模型建立在进行回归分析时,需要明确因变量和自变量之间的关系。
根据研究目的和理论基础,选择合适的模型进行建立。
常见的回归模型包括线性回归、多项式回归、逻辑回归等。
在模型建立过程中,需要注意自变量的选择和变量之间的线性关系。
如果存在多个自变量,还需要进行变量筛选和模型优化,以提高模型解释力和预测准确性。
四、回归分析在模型建立完成后,可以使用数据分析工具进行回归分析。
回归分析可以通过估计模型参数来描述自变量和因变量之间的关系,并进行显著性检验。
根据回归结果,可以得到各个自变量的系数、标准误差、显著性水平等信息。
此外,还可以通过回归方程进行预测和解释。
需要注意的是,回归分析结果的解释要符合实际问题的背景和逻辑。
五、结果解释在进行回归分析后,需要对结果进行解释和讨论。
要特别注意回归系数的解释和统计显著性的判断。
此外,还可以通过模型拟合度来评估模型的好坏,比如确定系数、残差分析等。
对于回归分析的结果,可以通过绘图和报告等方式进行展示,帮助他人理解和使用。
回归知识点总结归纳

回归知识点总结归纳随着社会的发展和科技的进步,人们对于回归知识点的重视日益增加。
回归分析是一种用来探索变量之间关系的统计方法,它可以帮助我们理解变量之间的关系,并对未来的趋势进行预测。
在本文中,我们将对回归知识点进行总结归纳,以便读者更好地掌握这一重要的统计学方法。
一、回归分析的基本概念1.1 回归分析的定义回归分析是指通过确定两个或多个变量之间的数理关系,来预测一个或多个变量的方法。
在回归分析中,通常将要预测的变量称为因变量,而用来预测的变量称为自变量。
1.2 回归分析的类型回归分析可以分为线性回归分析和非线性回归分析两种类型。
其中,线性回归分析是指因变量和自变量之间的关系是线性的,而非线性回归分析则是指因变量和自变量之间的关系是非线性的。
1.3 回归分析的应用领域回归分析广泛应用于各个学科领域,如经济学、金融学、社会科学、生物学等。
它可以帮助研究者了解变量之间的关系,并为决策提供依据。
二、线性回归分析2.1 简单线性回归分析简单线性回归分析是指只包含一个自变量和一个因变量的回归分析方法。
其数学表达式可以表示为Y = α + βX + ε,其中Y表示因变量,X表示自变量,α和β分别为截距和斜率,ε为误差。
2.2 多元线性回归分析多元线性回归分析是指包含两个或多个自变量和一个因变量的回归分析方法。
其数学表达式可以表示为Y = α + β1X1 + β2X2 + … + βnXn + ε,其中X1、X2、…、Xn为自变量,β1、β2、…、βn为自变量的系数。
2.3 线性回归分析的模型拟合线性回归分析的模型拟合是指通过最小二乘法来拟合模型,使得因变量Y和自变量X之间的残差平方和最小化。
这样可以得到最优的模型参数估计值。
2.4 线性回归分析的检验线性回归分析的检验包括回归系数的显著性检验、模型拟合度的检验、残差的独立性检验等。
这些检验可以帮助我们判断模型的有效性和可靠性。
三、非线性回归分析3.1 非线性回归分析模型非线性回归分析模型包括指数模型、对数模型、幂函数模型等。
回归分析——精选推荐

回归分析回归分析(Regression Analysis )是研究因变量y 和自变量x 之间数量变化规律,并通过一定的数学表达式来描述这种关系,进而确定一个或几个自变量的变化对因变量的影响程度。
简约地讲,可以理解为用一种确定的函数关系去近似代替比较复杂的相关关系,这个函数称为回归函数,在实际问题中称为经验公式。
回归分析所研究的主要问题就是如何利用变量X ,Y 的观察值(样本),对回归函数进行统计推断,包括对它进行估计及检验与它有关的假设等。
在SPSS 中的“Analyze ”菜单下的“Regression ”项是专门用于回归分析的过程组。
单击该项,将打开“Regression ”的右拉式菜单,菜单包含如下几项:1.Linear 线性回归。
2.Curve Estimation 曲线估计。
3.Binary Logistic 二元逻辑分析。
4.Multinomial Logistic 多元逻辑分析。
5.Ordinal 序数分析。
6.Probit 概率分析。
7.Nonlinear 非线性估计。
8.Weight Estimation 加权估计。
9.2-Stage Least Squares 两段最小二乘法。
本课程将介绍其中的“Linear ”、“Curve Estimation ”和“Nonlinear ”项过程的应用。
一元回归分析在数学关系式中只描述了一个变量与另一个变量之间的数量变化关系,则称其为一元回归分析。
其回归模型为i i i bx a y ε++=,y 称为因变量,x 称为自变量,ε称为随机误差,a ,b 称为待估计的回归参数,下标i 表示第i 个观测值。
若给出a 和b 的估计量分别为b aˆ,ˆ则经验回归方程:ii x b a y ˆˆˆ+=,一般把i i i y y e ˆ-=称为残差, 残差i e 可视为扰动ε的“估计量”。
例:湖北省汉阳县历年越冬代二化螟发蛾盛期与当年三月上旬平均气温的数据如表1-1,分析三月上旬平均温度与越冬代二化螟发蛾盛期的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科学历
一般地,在虚拟变量的设置中:
•比较类型、肯定类型取值为1; •基础类型,否定类型取值为0。
概念: 同时含有一般解释变量与虚拟变量的模型称为 虚拟变量模型或者方差分析 (analysis-of variance: ANOVA)模型。 一个以性别为虚拟变量考察企业职工薪金的模型:
Yi 0 1 X i 2 Di i
1 冬季 D4t 0 其他
则冷饮销售模型变量为:
Yt 0 1 X 1t k X kt 1 D1t 2 D2t 3 D3t 4 D4t t
其矩阵形式为:
β Y (X, D) μ α
如果只取六个观测值,其中春季与夏季取了 两次,秋、冬各取到一次观测值,则式中的:
ˆ ˆ ˆ 当t<t*=1979年, Yt 0 1 X t
当tt*=1979年,
ˆ ˆ ˆ ˆ ˆ Yt ( 0 2 X i* ) ( 1 2 ) X t
三、虚拟变量的设置原则
虚拟变量的个数须按以下原则确定: 每一定性变量所需的虚拟变量个数要比该定性变 量的类别数少1,即如果有m个类别数,只在模型中 引入m-1个虚拟变量。 例。已知冷饮的销售量Y除受k种定量变量Xk的影 响外,还受春、夏、秋、冬四季变化的影响,要考察 该四季的影响,只需引入三个虚拟变量即可:
1990年后:
3、临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指标的 虚拟变量模型来反映。 例如,进口消费品数量Y主要取决于国民收入X 的多少,中国在改革开放前后,Y对X的回归关系明 显不同。 这时,可以t*=1979年为转折期,以1979年的国 民收入Xt*为临界值,设如下虚拟变量:
反常年份:
E (Ct | X t , Dt 0) 0 1 X t
当截距与斜率发生变化时,则需要同时引入加 法与乘法形式的虚拟变量。 • 例5.1.1,考察1990年前后的中国居民的总储蓄-收 入关系是否已发生变化。
表5.1.1中给出了中国1979~2001年以城乡储蓄存 款余额代表的居民储蓄以及以GNP代表的居民收入 的数据。
• 大学及其以上: E (Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i 假定3>2,其几何意义:
大学教育 保健 支出 高中教育 低于中学教育
收入
• 还可将多个虚拟变量引入模型中以考察多种“定 性”因素的影响。
如在上述职工薪金的例中,再引入代表学历的虚拟 变量D2:
如,设
消费模型可建立如下:
Ct 0 1 X t 2 Dt X t t
• 这里,虚拟变量D以与X相乘的方式引入了模型中, 从而可用来考察消费倾向的变化。 • 假定E(i)= 0,上述模型所表示的函数可化为:
正常年份:
E (Ct | X t , Dt 1) 0 ( 1 2 ) X t
在E(i)=0 的初始假定下,高中以下、高中、大学 及其以上教育水平下个人保健支出的函数:
• 高中以下: • 高中:
E (Yi | X i , D1 0, D2 0) 0 1 X i
E (Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
E (Yi | X i , Di 0) 0 1 X i
企业男职工的平均薪金为:
E (Yi | X i , Di 1) ( 0 2 ) 1 X i
几何意义:
• 假定2>0,则两个函数有相同的斜率,但有不同 的截距。意即,男女职工平均薪金对教龄的变化 率是一样的,但两者的平均薪金水平相差2。 • 可以通过传统的回归检验,对2的统计显著性进 行检验,以判断企业男女职工的平均薪金水平是 否有显著差异。
90 年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
以Y为储蓄,X为收入,可令:
• 1990年前: Yi=1+2Xi+1i i=1,2…,n1 • 1990年后: Yi=1+2Xi+2i i=1,2…,n2 则有可能出现下述四种情况中的一种: (1) 1=1 ,且2=2 ,即两个回归相同,称为重合回归 (Coincident Regressions); (2) 11 ,但2=2 ,即两个回归的差异仅在其截距, 称为平行回归(Parallel Regressions); (3) 1=1 ,但22 ,即两个回归的差异仅在其斜率, 称为汇合回归(Concurrent Regressions); (4) 11,且22 ,即两个回归完全不同,称为相异 回归(Dissimilar Regressions)。
其中:Yi为企业职工的薪金,Xi为工龄, Di=1,若是男性,Di=0,若是女性。
二、虚拟变量的引入
虚拟变量做为解释变量引入模型有两种基本方式: 加法方式和乘法方式。
1、加法方式
上述企业职工薪金模型中性别虚拟变量的引入采 取了加法方式。 在该模型中,如果仍假定E(i)=0,则 企业女职工的平均薪金为:
0 1 1 2 β α 3 4 k
显然,(X,D)中的第1列可表示成后4列的线性组合, 从而(X,D)不满秩,参数无法唯一求出。 这就是所谓的“虚拟变量陷井”,应避免。
§5.2
E (Yi | X i , D1 1, D2 0) ( 0 2 ) 1 X i
•女职工本科以上学历的平均薪金:
E (Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i
•男职工本科以上学历的平均薪金:
E (Yi | X i , D1 1, D2 1) ( 0 2 3 ) 1 X i
• 为了在模型中能够反映这些因素的影响,并提高 模型的精度,需要将它们“量化”,
这种“量化”通常是通过引入“虚拟变量”来 完成的。根据这些因素的属性类型,构造只取“0” 或“1”的人工变量,通常称为虚拟变量(dummy variables),记为D。
• 例如,反映文化程度的虚拟变量可取为:
1
D= 0 非本科学历
横截面数据的分析
一、横截面数据的回归分析要点 二、横截面数据实例分析
一、横截面数据的回归分析要点
横截面数据是指在某一特定时点上所收集的有关研
1 春季 D1t 0 其他 1 夏季 D2t 0 其他 1 秋季 D3t 0 其他
则冷饮销售量的模型为:
Yt 0 1 X 1t k X kt 1 D1t 2 D2t 3 D3t t
• 在上述模型中,若再引入第四个虚拟变量
年中国居民储蓄与收入数据 (亿元) 90 年后 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 储蓄 9107 11545.4 14762.4 21518.8 29662.3 38520.8 46279.8 53407.5 59621.8 64332.4 73762.4 GNP 21662.5 26651.9 34560.5 46670.0 57494.9 66850.5 73142.7 76967.2 80579.4 88228.1 94346.4
表 5.1.1 储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
1979~2001 GNP 4038.2 4517.8 4860.3 5301.8 5957.4 7206.7 8989.1 10201.4 11954.5 14922.3 16917.8 18598.4
1 Dt 0 t t* t t
*
则进口消费品的回归模型可建立如下:
Yt 0 1 X t 2 ( X t X t* ) Dt t
ˆ ˆ ˆ ˆ Yt 0 1 X t 2 ( X t X t* ) Dt
则两时期进口消费品函数分别为:
(-6.11) (22.89) (4.33) (-2.55)
R 2 =0.9836 由3与4的t检验可知:参数显著地不等于0, 强烈示出两个时期的回归是相异的,
储蓄函数分别为:
1990年前:
ˆ Yi 1649 .7 0.4116 X i
ˆ Yi 15452 0.8881 X i
E (Yi | Di 1, X i ) ( 0 3 ) ( 1 4 ) X i
可分别表示1990年后期与前期的储蓄函数。
在统计检验中,如果4=0的假设被拒绝,则 说明两个时期中储蓄函数的斜率不同。 • 具体的回归结果为:
ˆ Yi 15452 0.8881 X i 13802 .3Di 0.4765 Di X i
可以运用邹氏结构变化的检验。这一问题也可通 过引入乘法形式的虚拟变量来解决。 将n1与n2次观察值合并,并用以估计以下回归:
Yi 0 1 X i 3 Di 4 ( Di X i ) i
Di为引入的虚拟变量:
于是有:
E (Yi | Di 0, X i ) 0 1 X i
第五章 若干数据类型的回归分析
§5.1 §5.2 §5.3
虚拟变量数据的分析 横截面数据的分析 平行数据的分析
§5.1 虚拟变量模型
一、虚拟变量的基本含义 二、虚拟变量的引入 三、虚拟变量的设置原则
一、虚拟变量的基本含义
• 许多经济变量是可以定量度量的,如:商品需求 量、价格、收入、产量等 • 但也有一些影响经济变量的因素无法定量度量, 如:职业、性别对收入的影响,战争、自然灾害 对GDP的影响,季节对某些产品(如冷饮)销售 的影响等等。