电能计量装置错误接线检查
低压三相四线电能计量装置错误连接线分析和判断

低压三相四线电能计量装置错误连接线分析和判断低压三相四线电能计量装置是用于测量低压三相四线电能的设备,它的精度、可靠性和安全性对于电力系统的正常运行至关重要。
如果该设备错误连接线,将导致电能计量错误,甚至造成安全隐患。
因此,及时发现和排除错误连接线是电力系统维护和管理的重要任务。
本文将从错误连接线的原因、表现和应对措施等方面展开分析和判断。
一、错误连接线的原因错误连接线的原因非常多样化,主要包括以下几个方面:1.电缆接头或插头接触不良。
2.线路过载或短路,导致连接线烧损。
3.操作人员误判电源柜端子,将三相电线连接到错误的电源柜端子上。
4.操作人员误接三相电线的相序。
5.操作人员误将中性线与地线连接而导致相位错乱等。
以上原因都是由于操作人员的疏忽或者电力设备自身问题导致的。
出现这些问题后,将会引起明显的错误测量和计量数据。
1.电能计量表示值异常:低压三相四线电能计量装置的计量精度高,因此在正确连接线的情况下,其显示值应该非常接近实际值,即误差非常小。
但在错误连接线的情况下,显示值将会出现异常,误差明显。
2.三相电压或电流不平衡:在正常情况下,三相电压或电流应该平衡,而在错误连接线的情况下,往往会导致三相电压或电流不平衡。
这是由于三相电压或电流相位错乱,导致测量出的电能值错误。
3.电器设备损坏:错误连接线可能会导致电器设备受损或故障。
如果在错误连接线的情况下,某些电线过载或短路,将会导致电器设备受损或故障。
以上表现都是错误连接线的明显表现,应当引起操作人员的重视。
当发现错误连接线的情况时,应立即采取措施进行排除。
经验表明,以下措施可以有效解决错误连接线问题:1.检查接线是否正确:如果检查到接线错误,应当立即进行更正。
2.检查电器设备是否受损:如果检查到电器设备受损,应当采取相应措施进行维修或更换。
3.用万用表进行检测:使用万用表可以快速检测出连接线错误,以便确定是否需要进行更正。
4.翻看电力设备的相关手册:电力设备的相关手册中通常会有正确连接线的示意图,可以作为排除错误连接线问题的参考。
浅述电能计量装置的错误接线及检查方法

浅述电能计量装置的错误接线及检查方法摘要:在经济快速发展的新形势下,我国综合国力得以进一步增强,这也对电力企业服务工作提出了更高的要求。
电力计量装置不仅是电力企业为用电客户提供优质服务的重要保障,而且清空对电力企业经济效益的实现具有极为重要的关系。
所以在电能计量装置接线工作中,需要确保接线的正确性,确保电能计量装置运行的稳定性,从而使电力系统能够安全的运行。
关键词:电能计量;错误接线;检查方法一、电能计量装置及错误接线类型1.1计量单相电路有功电能的错误接线在电能计量装置错误接线中,以计量单相电路有功电能的错误接线最为常见,在具体接线过程中,容易出现错误的情况大致有以下几个方面:其一,在进行相线和零线连接过程中,工作人员工作失误从而导致接反的情况发生;其二,在电能计量装置中,工作人员对于进出线没有进行准确的区分;其三,在对电能计量装置进行接线过程中,电流线圈和电源之间出现短路的情况;其四,工作人员在接线过程中工作不认真,忘记对电压钩连片进行连接;其五,工作人员习惯用220V的单相电能表读数与2相乘来对380V单相负载电能进行计量,这种方法欠缺一定规范性和稳定性。
1.2计量三相四线电路有功电能的错误接线在对三相四线有功电能表电压线圈进行连接时,则电压线圈中线很容易出现断线的情况;在其运转过程中,部分工作人员经过两台电流互感器将其连入到电路中,从而导致线错误的发生;在对三相四线电路中有功电能进行计量时,往往会利用三相三线两元件来对有功电能进行计量,这必然会导致计量的结果与实际存在较大的出入。
1.3计量三相三线电路有功电能的错误接线在对三相三线电路有功电能进行计量时,错误接线主要以电流端子进出线接反、电压端子接线顺序不对及电压与电流相位不对应等几种情况较为常见。
1.4计量三相三线电路无功电能的错误接线这是整个电能计量装置接线中最容易出现接线错误的地方,所以在具体接线时需要对相序、负载性质及功率因素等进行综合分析,有效的避免错误接线的发生。
电能计量装置错误接线检测与分析

电能计量装置错误接线检测与分析电能计量装置在运行中经常会出现错误接线,错误接线会造成电量的差错、会出现不正确的计量或多或少,这样给用户或供电部门造成不必要的损失。
电能计量装置正确接线是保证计量准确的必要条件。
因此,电能计量装置接线检查也是一项很重要的任务。
标签:计量装置接线错误电能表的计量准确性可以通过电能计量检定机构(国家授权由电力企业计量检定部门检定,一般是供电企业的计量中心)的校验得到保证,而现场接线的准确性,不仅取决于装表人员的工作责任心、业务水平及工作的熟练程度,而且由于电力客户法律、法规意识谈薄、有意窃电,致使计量装置错误接线,直接影响到计量的准确性。
对于现场接线的检查,一般采用电能表现场校验仪,采用六角图法检查分析判断,但其存在许多不足:①设备投资比较大、仪器较多、携带运输不方便;②接线较多、操作步骤复杂、使用不方便;③需提供操作电源,受现场环境影响较大;④当三相二元件有功电能表错误接线在48种以外时,仪器无法分析判断。
为克服上述缺陷,我们在现场采用了手持式钳形相位表,对计量装置接线现场检查,依据现场检查结果进行分析判断,大大减少了投资和现场工作量,受到了现场检定人员的一致好评。
使用该仪表可以在现场完成诸如感性、容性负荷的判别、电能表接线正确与否、电能表运行快慢判断、测量三相相序、判断变压器接线组别。
可进行三相相电压、线电压、三相电流、相位差、相序及电阻的测量。
解决问题的实践过程描述一、工作前,首先要完善好工作票制度和工作许可制度,认真填写好变电站第二种工作票,并履行好工作许可手续。
完成后,可通过钳形相位表(以使用SMG2000相位表为例)?的相位测量档测量出三相负载的性质(阻性、感性、容性及相角)。
钳形相位表的使用方法:1.将相位表的红笔和黑笔连线的另一端,按颜色分别插入相位表上标有“U1”的两侧插孔内。
2.将相位表电流卡钳连线的另一端,插入相位表上标有“I2”插孔内。
此时应注意:使用相位表时I1和U2是一组,I2和U1是一组。
三相三线电能计量装置接线检查

•
超前U
12
60
为正相序
•
U
32
•
滞后U
12
60
为负相序
2)确定b相: 对地电压为零则为b相。
3)确定电压顺序:遵从电压正相序a、b、c。
4)画出电压电流相量图。 5)综合分析得结论。
•
U 32
•
U 12
•
U 10 (a) • I1 • I2
结论:电压顺序依然
是abc,电流
•
I1
•
I2
•
U 30 (c)
•
IC c
•
Ub
•
Uc
1.伏安相位表简介
伏安相位表是为现场电气测量而设计的一种手持式双通 道工频数字双钳相位万用表。使用该仪表可以在现场完
成: 电流、电压测量;回路通断判别(接线核 对);相位角测量;测量三相电压相序等。
1.伏安相位表简介(实物图)
2.仪表使用前的检查及使用注意事项
1)相位表
开机前检查档位开关是否灵活; 使用前用电阻蜂鸣档测量表笔是否通断; 正确选择测量档位进行测量; 数值稳定后抄读数据,电压、电流值保留一位 小数; 测量中不得转换档位; 测量完毕,旋钮放在交流电压最大档位或OFF 档后关机。
课堂纪律
守时、踊跃发言二月才能保持 保持氛围、手机静20音14年6月
瓦秒法判断电能计量装置误差
1、估算用电负荷的功率因数 2、投入合适的用电负荷 3、测量电压、电流 4、测量N个转数(脉冲)的实际时间 5、计算出N个转数(脉冲)的理论时间 6、计算电能表的误差 r=(T0-Tx)/TxX100%
一、相关知识 二、伏安相位表的正确使用 三、三相三线计量装置接线检查
三相四线电能计量装置常见错误接线及判断

三相四线电能计量装置常见错误接线及判断摘要:电能计量装置是电力企业实现电量结算及线损考核的重要工具,电能计量准确与否直接关系到发、供电企业的经济效益和社会效益,各发、供电企业在提高计量准确性方面都越来越重视。
而计量装置的接线是否正确,将直接影响到计量的准确性。
因此,掌握电能计量装置错误接线的分析方法极为重要。
关键词:计量装置三相四线电能表接线类型一、引言为确保供电企业和广大电力用户的利益不受损失,对于准确计量电能,使电能计量装置准确、稳定运行在计量管理工作中显得十分重要。
掌握电能计量装置接线检查是每个计量工作者必须具备的。
因此,计量人员、用电检查人员必须学会错误接线的判断方法。
造成电能计量装置的故障原因:1.构成电能计量装置的各组成部分出现故障。
2.电能计量装置接线错误。
3.人为抄读电能计量装置或进行电量计算出现的错误。
4.窃电行为引起的计量失准。
5.外界不可抗力因素造成的电能计量装置故障。
二、计量装置的原理电能计量是通过二次电路、互感器以及电能表按一定的结构组合从而实现在线电能计量功能。
在竞争愈发激烈的今天,在现代电力市场条件下为了能够保证公平、公正、公开的电能生产者和使用提供优越的服务,建立现代化的电能计量、交易以及电力系统是非常必要的。
作为提供电能计量的源头,对于电能的管理和计量是非常至关重要的作用。
电能计量装置是为计量电能所必须的计量器具和辅助设备的总体,包括电能表、负荷管理终端、配变监测终端、集中抄表集中器、计量柜(计量表箱)、电压互感器、电流互感器、实验接线盒以及二次回路等。
电能表按接线方式不同可分为:单相表、三相三线电能表、三相四线电能表。
三、常见的错误接线类型三相四线电能表四根电压线钳分别夹电能表2、5、8、10号接线端子,三根电流线钳夹1、4、7号端子,校验仪上则按颜色和顺序依次接好即可。
三相四线电能表在正确接线的情况下,计量功率为:P=P1+P2+P3=3IpUpcosφ电能表计量正常,若接线出现错误,则会出现漏计或错计电量,从而造成相应的损失。
电能计量装置现场检验

2.测量电能表接线端子处电压相序 可利用相序指示器或相位表等进行测量,以 面对电能表端子,电压相位排列自左至右为A、B、 C相时为正相序。 由于相序表只能判断三相电能表接线端子电 压的排列顺序,不能判明相位,且通常电流互感 器均接在A、C两相,加上判断接线只要求确定电 压、电流相量的相对位置,具体相位名称与电源 是否一致并无关系,如图5-4-1(a)中A、B、C标
ab U
ab I
a U
Ia
600
1200
bc U
A
B C
容 性 负 荷
cb I
c U
Ic Βιβλιοθήκη b U图5-4-2 无功电能表接线及相量图 (a)正相序,对称容性负载下的附加电流线圈型接线、相量
ab U
600
ab I
a U
cb I
cb U
Ia
功和无功电能表不一定都正转或反转。例如在联络 线路内或同步电动机过励磁运行时,就容易发生两 者转向不一致的情况。 当无功表接线端子电源侧为正相序而负载为容 性,或电源侧为逆相序而负载为感性时,常用的无 功电能表都会反转,现以附加电流线圈型及内相角 60°型无功电能表为例来说明。 根据图5-4-2(a)、(b)所示相量图,附加电流 线圈型无功电能表在上述两种情况下所测得无功功 率都是负值。
第一节
电能计量装置的接线检查
一、电能表运行情况 1.电能表正常运行时 电能表接线正确时,如果有功功率未改变输送 方向,不管负载是感性还是容性,也不管三相电路 连接至电能表接线端子的相序如何排列,单相和三 相有功电能表都应当正转。例如:在对称容性负载 或逆相序(指连接至电能表接线端子的相序改变,电 源相序并未改变,使与实际情况一致,以下均同,
电能计量装置接线检查几种方法解析

电能计量装置接线检查几种方法解析摘要:电能计量装置在运行中经常会出现错误接线,错误接线会造成电量的差错、会出现不正确的计量或多或少,这样给用户或供电部门造成不必要的损失。
电能计量装置正确接线是保证计量准确的必要条件。
因此,电能计量装置接线检查也是一项很重要的任务。
所以,电能计量装置在运行前和运行中要定期进行接线检查。
关键词:电能、装置检查。
接线检查分为两种情况:停电检查、带电检查。
一、停电检查:对于新装或更换互感器以及二次回路的电能计量装置在投运前必须在停电的情况下进行接线检查。
当无法判断接线是否正确或需要进一步核实带电检查的结果时也要进行停电检查。
停电检查的主要内容有:检查互感器变比、极性、接线组别有无错误。
进行二次电缆导线和接线端子标志的核对。
对于所有已经过停电检查的电能计量装置在投运后要进行带电检查。
二、带电检查:1、单相电能表只有一组电磁元件,接线简单,误接线容易发现,所以在这不用阐述。
2、三相四线电能表的检查高供低量电能计量装置一般由三相四线有功、无功电能表和Yy12接线电流互感器等组成。
检查三相四线有功电能表接线是否有错有以下几种方法:(1)实负载比较法。
通过实际功率与电能表反映的功率比较,相对误差大大超过了基本误差范围,则可判断接线有错,运用条件是负载功率比较稳定,最好其波动小于±2%。
(2)逐相比较法。
接进电能表的三根火线中只保留A相,断开B、C相电压,电能表应正转此时也可结合实际负载比较法检查A相接线;同理断开A、C相电压进线检查B相接线;断开A、B相电压进线,检查C相接线。
运用此方法时每相负载不低于额定负载的10%。
(3)三相四线电能表可分解成三只单相单能表,可以采用分相法来检查接线的正确性。
指保持其中任一元件的电压和电流,而断开其余元件所加的电压,转盘应正转,转速约为原转速的1/3,若反转或转速相差很大,则可能有误接线。
(4)可用现场校验仪从电能表的端钮盒取电压,电流用钳形电流互感器从电流互感器的二次侧钳入采样,校验时注意观察校验仪显示屏上的相量图、所出现的误差、功率,这样有助于判断接线、电流、电压是否正常。
电能计量装置错误接线的原因与措施

DX2型电能表。所有的无功电能表都呈正 转。
通过以上描述不难了解,在无功电能 表反转的情况下。不仅受到了功率输送方 向的影响。还受到了负载、相序的影响. 所以必须进行具体、深入地检查分析。
1.3电能表异常运行情况 在功率传输方向及负载性质没有发生 变化的前提下,除了接错线等其他原因会 使电能表出现反转、不转或者功率发生变 化的情况外,电能表还会出现时而正转、 时而反转、时而不转的异常情况。非常容 易判断。当发生接线错误导致的电能表正 转的情况,就应根据负载对用电量进行有 效核实,并且对接线进行检查。从中发现 问题。 二、带电检查接线步骤 检查具体内容如下: (1)一次线路和二次线路的接线是否 正确: (2)负载情况下电能表的运行误差; (3)倍率问题。 正常情况下,只要在三相四线有功电 能表的每个元件中加入对应相别的相电压 和相电流,不管负载是感性还是容性,也 不管电路的相序如何,都会产生正向驱动 力矩。如果接线正确,当将其中任一元件 保持接入相电压和负载电流,而断开其余 元件所加电压时,转盘将正转,负载对称
囵艇
智能电力与应用
电能计量装置错误接线的原冈与措施
徐欣
盐城市计量测试所,江苏盐城224000
摘要:随着厂网分离等电力企业体制改革的逐步推进.发电厂、电力用户密切关注电能计量装置,电力企业对经济效益的考核也越来 越重视,其核心就是保障贸易结算过程中电能计量的准确和可靠,因此电能计量装置的错误接线问题尤其重要。本文分析了错误接线的原 因并提出了相应的解决措施
2.3检测负载电流 检测负载电流,就是将电流表与电能 表中的电流回路依次进行串联,以了解三 相负载电流的情况,判断有无倍正常相电 流存在,根据负载情况断定与电能表连接 的外部电流回路有无断路和短路。这项工 作通常同测定电流相位同时进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电能计量装置现场检验 页脚内容- 1 - 目 录
实例一 错误现象为表尾电压正相序WUV;电流相序Iu Iw
方法一:使用相位表,采用对地测量电压的方法确定V
相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线 方法三:利用在向量图上对电压电流进行分析,判断错误接线 实例二 错误现象为表尾电压逆相序VUW;电流相序Iu Iw;U相电流极性反 方法一:使用相位表,采用对地测量电压的方法确定V相电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法,分析判断错误接线 方法三:采用在相量图上对电压电流进行分析,判断错误接线 实例三 错误现象为表尾电压正相序WUV;电流相序Iw Iu ;功率因数为容性 方法一:使用相位表,采用对地测量电压的方法确定V相
电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法确定V电能计量装置现场检验 页脚内容- 2 - 相电压,分析判断错误接线 方法三:使用相位表,利用向量图分析判断错误接线
实例四 错误现象为表尾电压逆相序UWV;电流相序Iu Iw ;电流W相极性反;功率因数为容性 方法一:使用相位表,采用对地测量电压的方法确定V相
电压,分析判断错误接线 方法二:使用相位表,采用不对地测量电压的方法确定V
相电压,分析判断错误接线 方法三:使用相位表,利用向量图分析判断错误接线
实例五 错误现象为表尾电压正相序VWU;电流相序Iu Iw ;
TV二次侧U相极性反 方法一:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线 方法二:使用相位伏安表测量数据,分析TV二次侧不断相极性反时的错误接线 方法三:使用相位伏安表测量数据,利用原理图分析TV二次侧不断相极性反时的错误接线 实例六 错误现象为表尾电压逆相序UWV;电流相序Iw Iu ;
W相电流极性反;TV二次侧W相极性反 方法一:使用相位表测量数据,分析TV二次侧不断相极性反时的错误接线 方法二:使用相位表测量数据,分析TV二次侧不断相极性反电能计量装置现场检验 页脚内容- 3 - 时的错误接线 方法三:使用相位伏安表测量数据,利用原理图分析TV二次侧不断相极性反时的错误接线 实例七 错误现象为表尾电压正相序VWU;电流相序Iu -Iw ;
W相电流极性反;U相电压断 方法一:使用相位表,采用对地测量确定V相电压的分析方法 方法二:使用相位表,采用不对地测量确定V相电压的分析方法 实例八 错误现象为表尾电压逆相序WVU;电流相序Iw Iu ;
W相电压断 方法一:使用相位表,采用对地测量确定V相电压的分析方法 方法二:使用相位表,采用不对地测量确定V相电压的分析方法
附录一 常用数学有关公式 附录二 怎样画向量图 电能计量装置现场检验
页脚内容- 4 - 实例一 错误现象为表尾电压正相序WUV;电流相序Iu Iw
方法一:使用相位表,采用对地测量电压的方法确定V相电压,
分析错误接线 一、测量操作步骤: 1.将相位表用于测量电压的红笔和黑笔分别插入U1侧相对应的两个孔中。电流卡钳插入I2孔中,相位表档位应打在I2的10A档位上。将电流卡钳(按卡钳极性标志)依次分别卡住两相电流线,可测得I1和I3的电流值,并作记录。 2.相位表档位旋转至U1侧的200V档位上。此时,假设电能表表尾的三相电压端子分别是U1、U2、U3。将红笔触放在表尾的U1端子,黑笔触放在U2端子,可测得线电压U12的电压值。按此方法再分别测得U32
和U31的电压值,并作记录。
3.将红笔触放在表尾U1端,黑笔触放在对地端(工作现场的接地线),可测得相电压U10的电压值。然后,黑笔不动,移动红笔测得U20和U30的相电压,其中有一相为零,并作记录。 4.相位表档位旋转至φ的位置上,电流卡钳卡住I1的电流进线。相位表的黑笔触放在测得的相电压等于零的电压端子上,红笔放在某一相电压端子上,测得与I1相关的一个角度φ1;然后将红笔再放在另一相电压端子上,又测得与I1相关的一个角度φ2。按此方法,将电流改变用I3又可测得与I3相关的两个角度φ3和φ4。并作记录。 二、数据分析步骤: 1.测得的电流I1和I3都有数值,且大小基本相同时,说明电电能计量装置现场检验 页脚内容- 5 - 能表无断流现象,是在负载平衡状态下运行的。 2.测量的线电压U12=U32=U31=100V时,说明电能表电压正常,无电压断相情况。 3.测量的相电压若其中两个值等于100V,一个值等于零,说明电压值正常。并且其中等于零的那一相就是电能表实际接线中的V相。 4.对测量的电压和电流的夹角进行比较。φ1和φ2比较,(或φ3
和φ4比较)角度小的就是电能表实际接线中的U相电压。那么,另一
相电压就是W相,此时,电能表的实际电压相序就可以判断出来。 5.画出向量图。在向量图上用测得的两组角度确定电流I1和I3的位置。在向量图上先用和I1有关的两个实际线电压为基准,顺时针旋转φ1和φ2两个角度,旋转后两个角度基本重合在一起,该位置就是电流I1在向量图上的位置。同样,顺时针旋转φ3和φ4的角度,得到电流I3在向量图上的位置,此时就可以确定电流的相序。 6.依据判断出的电压相序和电流相序,可以作出错误接线的结论。并根据结论写出错误接线时的功率表达式。 三、实例分析 错误现象为表尾电压正相序WUV;电流相序Iu Iw
图1-1是三相三线有功电能表的错误接线。电压Uuv与Uwv分别
接于第一元件和第二元件电压线圈上。由于电压互感器二次侧互为反极性,使得U相元件电压线圈两端实际承受的电压为Uwu;W相元件电压线圈两端实际承受的电压则为Uvu;第一元件和第二元件电流线圈通电能计量装置现场检验 页脚内容- 6 - 入的电流分别为Iu和Iw。
UVW.
....
..
.
..
.. UVW
图1-1 1.按照测量操作步骤测得数据,并将测量数据记录在表1-1中。 表1-1 电流(A) 电压(V) 角度(o)
I1 2.36 U12 99.8 U10 99.8 U13I1 109 U13I3 350 U32 100 U20 100 U23I1 49 U23I3 290 I3 2.36 U31 99.9 U30 0
2.分析并确定电压相序: (1)因为U12=100V,U32=100V,U31=100V可以断定电能表三相电压正常。 电能计量装置现场检验 页脚内容- 7 - (2)确定V相位置。由于表1-1中U30=0V,即可断定表尾U3所接的电压为电能表的实际V相电压。 (3)确定电压的相序。角度中U13和I1夹角等于1090,U23和I1的夹角等于490,比较两个角度,角度小的即为U相,即表尾U2端子为实际接线中的U相。此时即可确定电能表所接的电压相序为WUV。 3.分析并确定电能表两个元件所通入的实际电流,如图1-2所示: (1) 电能表电压相序为WUV,可将表1-1中U13I1=1090、U23I1=490、U13I3=3500、U23I3=2900相应的替代为UwvI1=1090、UuvI1=490、UwvI3=3500、UuvI3=2900。 (2)在向量图上,以实际电压Uwv为基准顺时针旋转109O,再以实际电压Uuv为基准顺时针旋转49O。两次落脚点基本重合,由此点按画向量的方法,在向量图上画出其向量方向,由此得到第一元件所通入的电流Iu。 (3)在向量图上,同样用(2)方法分别按顺时针方向旋转350O和290O,即可得到第二元件所通入的电流Iw。 4.画出错误接线时的实测向量图:
Uu
UvUw.
..
Iu..Iw
1090
3500 Uwv.
.Uuv 电能计量装置现场检验
页脚内容- 8 - 图1-2 5.画出错误接线向量图:
Uu
UvUw.
..
Iu..Iw
(900+φ)
(1500+φ) φ
φ
Uwu.Uvu. 图1-3 6.写出错误接线时测得的电能(以功率表示): 正确接线时,第一元件的电压为Uuv,第二元件为Uwv。当错误接线时,由于电压相序为WUV,那么第一元件的实际电压是Uwu,第二元件的实际电压是Uvu。对两个元件所计量的电能分别进行分析(以功率表示),并设P1,为第一元件错误计量的功率, P2,为第二元件错误计量的功率. 第一元件测量的功率: P1,=UwuIuCos(150O+φ) 第二元件测量的功率: P2,=UvuIwCos(90O+φ) 在三相电路完全对称,两元件测量的总功率为: P,= P1,+ P2,