数值分析第四版习题及答案.docx

合集下载

应用数值分析(第四版)张明主编文世鹏主审课后答案

应用数值分析(第四版)张明主编文世鹏主审课后答案
-1,1)T。
5
1 1
1
1 1 1
4 1
解:由 x=sy 得
y-4=s-1x=
1 11
1 1 1
1 1 1
1 11
2 1 1
4 1
4 1
4
8、在 P2 (t ) 中向量 P2 (t ) 1 t 2t 2 ,取基 S t 1, t 2, t 2 ,求 P2(t)在基下的坐标 。
10、试导出计算积分
In
1 0
xn dx
1 4x
(n
1, 2, 3, 4) 的递推计算公式
In
1 4
1 ( n
In1 )
,用此递
推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解: In
1 0
xn dx
1 4x
1 4
1 0
4xn
xn1 1 4x
x n1 dx
11 (
40
x n1dx
设 A 是单位上(下)三角阵。证 A-1 也是单位上(下)三角阵。 证明:A 是单位上三角阵,故|A|=1,∴A 可逆,即 A-1 存在,记为(bij)n×n
n
由 A A-1 =E,则 aijb jk ik (其中 aij 0 j>i 时, aii 1) j 1
故 bnn=1, bni=0 (n≠j) 类似可得,bii=1 (j=1…n) bjk=0 (k>j) 即 A-1 是单位上三角阵 综上所述可得。Rn×n 中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三 角阵”对矩阵求逆是封闭的。 2、试求齐次线行方程组 Ax=0 的基础解系。
2x2
1 2x 1 x (1 2x)(1 x)
(3) (1 cos x) sin2 x

应用数值分析第四版第一章课后作业答案

应用数值分析第四版第一章课后作业答案

第一章1、 在下列各对数中,x 是精确值 a 的近似值。

3.14,7/100)4(143.0,7/1)2(0031.0,1000/)3(1.3,)1(========x a x a x a x a ππ试估计x 的绝对误差和相对误差。

解:(1)0132.00416.01.3≈=≈-=-=a ee x a e r π (2)0011.00143.0143.07/1≈=≈-=-=a ee x a e r (3)0127.000004.00031.01000/≈=≈-=-=aee x a e r π (4)001.00143.03.147/100≈=≈-=-=aee x a e r2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.5019373、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

应用数值分析(第四版)课后习题答案第9章

应用数值分析(第四版)课后习题答案第9章

应⽤数值分析(第四版)课后习题答案第9章第九章习题解答1.已知矩阵=???=4114114114,30103212321A A 试⽤格希哥林圆盘确定A 的特征值的界。

解:,24)2(,33)1(≤-≤-λλ2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞,试证明特征值的估计式∑≠=≤-n i j j ij ii aa 1λ.解:,x Ax λ=∞∞∞∞≤==x A x x Ax i λλ由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11j n j i i ij i ii x ax a ∑≠==-1)(λj n j i i ij j n j i i ij i ii x a x ax a ∑∑≠=≠=≤=-11λ∑∑≠=≠=≤≤-nj i i ij i j n j i i ijii a x x a a 11λ3.⽤幂法求矩阵=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。

解:y=[1,1,1]';z=y;d=0;A=[2,3,2;10,3,4;3,6,1];for k=1:100y=A*z;[c,i]=max(abs(y));if y(i)<0,c=-c;endz=y/cif abs(c-d)<0.0001,break; endd=cend11.0000=c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)===========强特征值为11,特征向量为T 0.7500)1.0000 0.5000(。

数值分析_第四版_课后习题答案_李庆扬

数值分析_第四版_课后习题答案_李庆扬

第一章1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nn xn x x n x x x **1***%2%2)()()()(*⋅=='=-=εε,相对误差为%2)()x ()x (*n *n*n x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

华中科技大学出版社—数值分析第四版—课后习题及答案

华中科技大学出版社—数值分析第四版—课后习题及答案

14. 由于 x1 , x 2 , , x n 是 f ( x ) 的 n 个互异的零点,所以 f ( x) a 0 ( x x1 )( x x 2 ) ( x x n )
a 0 ( x xi ) a 0 ( x x j ) ( x xi ),
i 1 i 1 i j n n
4 7 h 3 时,取得最大值 max | l 2 ( x ) |
10 7 7 x 0 x x3 27 . k x , x , , x n 处进行 n 次拉格朗日插值,则有 6. i) 对 f ( x) x , (k 0,1, , n) 在 0 1 x k Pn ( x ) Rn ( x ) l j ( x) x k j

14.
1000000000 999999998 x1 1.000000, x2 1.000000 999999999 999999999 方程组的真解为 ,
x 1.00, x2 1.00 , 而无论用方程一还是方程二代入消元均解得 1 结果十分可 靠。 s b sin ca a sin cb ab cos cc a b c tan c c s ab sin c a b c 15.
可 得


( f1 ) ln(1
( f 2 ) ln(1

x x 1
2
) )
1 ( x x 2 1) 60 104 3 103 2 x x 1 ,
2


x x 1
2

x x 1
2

1 1 104 8.33 107 60 2

(Y100 ) 100

应用数值分析(第四版)课后习题答案第1章

应用数值分析(第四版)课后习题答案第1章

应用数值分析(第四版)课后习题答案第1章第一章习题解答1.在下列各对数中,某是精确值a的近似值(1)a=π,某=3.1(2)a=1/7,某=0.143(3)a=π/1000,某=0.0031(4)a=100/7,某=14.3试估计某的绝对误差和相对误差。

解:(1)e=∣3.1-π∣≈0.0416,δr=e/∣某∣≈0.0143(2)e=∣0.143-1/7∣≈0.0143δr=e/∣某∣≈0.1(3)e=∣0.0031-π/1000∣≈0.0279δr=e/∣某∣≈0.9(4)e=∣14.3-100/7∣≈0.0143δr=e/∣某∣≈0.0012.已知四个数:某1=26.3,某2=0.0250,某3=134.25,某4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1=某1某2某3和μ1=某3某4/某1的相对误差限。

-2解:某1=26.3n=3δ某1=0.05δr某1=δ某1/∣某1∣=0.19011某10-2某2=0.0250n=3δ某2=0.00005δr某2=δ某2/∣某2∣=0.2某10-4某3=134.25n=5δ某3=0.005δr某3=δ某3/∣某3∣=0.372某10某4=0.001n=1δ某4=0.0005δr某4=δ某4/∣某4∣=0.5n由公式:er(μ)=e(μ)/∣μ∣≦1/∣μ∣Σi=1∣f/某i∣δ某ier(μ1)≦1/∣μ1∣[某2某3δ某1+某1某3δ某2+某1某2δ某3]=0.34468/88.269275=0.00390492er(μ2)≦1/∣μ2∣[-某3某4/某1δ某1+某4/某1δ某3+某3/某1δ某4]=0.497073.设精确数a>0,某是a的近似值,某的相对误差限是0.2,求㏑某的相对误差限。

n解:δr≦Σi=1∣f/某i∣δ某i=1/㏑某·1/某·δ某=δr某/㏑某=0.2/㏑某即δr≦0.2/㏑某4.长方体的长宽高分别为50cm,20cm和10cm,试求测量误差满足什么条件时其表面积的2误差不超过1cm。

数值分析第四版课后答案答案第八章

数值分析第四版课后答案答案第八章

第八章 常微分方程初值问题数值解法1、解:欧拉法公式为221(,)(100),0,1,2+=+=++=n n n n n n n y y hf x y y h x y n代00y =入上式,计算结果为 123(0.1)0.0,(0.2)0.0010,(0.3)0.00501≈=≈=≈=y y y y y y2、解:改进的欧拉法为1112[(,)(,(,))]n n n n n n n n y y h f x y f x y hf x y ++=+++将2(,)=+-f x y x x y 代入上式,得2111111221n n n n n n h hh x x x x y h y +++)+[(-)(+)+(+)]=(-+ 同理,梯形法公式为211122[(1)(1)]-+++++=++++h h n nn n n n h h y y x x x x 将00,0.1y h ==代入上二式,,计算结果见表9—5表 9—5可见梯形方法比改进的欧拉法精确。

3、证明:梯形公式为111[(,)(,)]2n n n n n n hy y f x y f x y +++=++代(,)f x y y =-入上式,得11[]2++=+--n n n n hy y y y解得21110222()()()222n n n n h h h y y y y h h h++----===⋯=+++ 因为01y =,故2()2nn h y h-=+ 对0x∀>,以h 为步长经n 步运算可求得()y x 的近似值n y ,故,,xx nh n h==代入上式有2()2x hn hy h-=+22220000222lim lim()lim(1)lim[(1)]222x x h h xx h h h h hn h h h h h h h y e h h h+-+→→→→-==-=-=+++4、解:令2()xt y x e dt =⎰,则有初值问题2',(0)0x y e y ==对上述问题应用欧拉法,取h=0.5,计算公式为210.5,0,1,2,3n x n n y y e n +=+=由0(0)0,y y ==得1234(0.5)0.5,(1.0) 1.142012708(1.5) 2.501153623,(2.0)7.245021541≈=≈=≈=≈=y y y y y y y y5、解: 四阶经典龙格-库塔方法计算公式见式(9.7)。

应用数值分析(第四版)课后习题答案第2章

应用数值分析(第四版)课后习题答案第2章

第二章习题解答1. ( 1) R n Xn中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。

(2)R n Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

-1设A是nXn的正交矩阵。

证明A也是nXn的正交矩阵。

证明:⑴证明:A为上三角阵,B为上三角阵,A, B R n na ij 0(i j ),b ij 0(i j)nC AB 则G j a ik b kj, C j 0(i j)k1上三角阵对矩阵乘法封闭。

以下证明:A为正交矩阵,B为正交矩阵,A,B R n nAA T A T A E,BB T B T B E(AB)((AB)T) ABB T A T E,( AB)T(AB) B T A T AB EAB为正交矩阵,故正交矩阵对矩阵乘法封闭。

(2) A是nXn的正交矩阵A A-1 =A-1A=E 故(A-1) -1 =AA-1(A1) -1= (A-1) -1A-1 =E 故A-1也是nXn 的正交矩阵。

设A是非奇异的对称阵,证A也是非奇异的对称阵。

A非奇异.A可逆且A-1非奇异又A T=A .( A-1)T=( A T)-1=A-1故A-1也是非奇异的对称阵设 A 是单位上(下)三角阵。

证A-1也是单位上(下)三角阵。

-1证明:A是单位上三角阵,故|A|=1 ,.A可逆,即A存在,记为(b ij ) n Xnn由 A A =E,则a j b jk ik (其中a ij 0 j >i 时,1)j1故b nn=1, b ni=0 (n 丰 j)类似可得,b ii =1 (j=1 …n) b jk=0 (k > j)即A-1是单位上三角阵综上所述可得。

F t Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0 的基础解系。

1 21 41A= 0 11 000 01 4512 1 411 2 1 41 解 : A=1 1 01 0 450 1451451 2 0 0 410 08 140 1 0 4 5 -14 514514581445故齐次线行方程组 Ax=0的基础解系为14, 2510 013. 求以下矩阵的特征值和特征向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论设x>0,x 的相对误差为{,求Inx 的误差.设x 的相对误差为2%,求x"的相对误差.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字:X ; = 1.1021, Xo = 0.031,%3 = 385.6, x ; = 56.430, x ; = 7x1.0.利用公式(3.3)求下列各近直的误差限:计算到Zoo .若取^783 ^27. 982 (五位有效数字),试问计算乙。

将有多大误差? 求方程X 2-56X + 1 = 0的两个根,使它至少具有四位有效数字(^783 ~27. 982).当川充分大时,怎样求加1 + f ?正方形的边长大约为100 cm,应怎样测量才能使其面积误差不超过1 cm? ?设 2 假定&是准确的,而对r 的测量有±0.1秒的误差,证明当打曾加时S 的绝对误差增加,而相对误差却减小.序列}满足递推关系儿=1°儿-一1(n=l, 2,…),若% =血心141 (三位有效数字), 计算到X 。

时误差有多大?这个计算过程稳定吗?计算/ = (V2-1)6;取迈心1.4,利用下列等式计算,哪一个得到的结果最好?/•(x) = ln(x -二I),求并30)的值.若开平方用六位函数表,问求对数时误差有多大?若 改用另一等价公式ln(%_ Jx 2 -1) = _ln(x + yjx 2 +1)计算.求对数时误差有多大?(x 1+101°^2=1010;已知三角形面积 2 其中c 为弧度,2,且测量a ,b ,c 的误差分别为△a,血Ac.证明面积的误差Av 满足S = -gt试用消元法解方程组假定只用三位数计算,问结果是否可靠?计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 设人=28,按递推公式第二章插值法根据(2.2)定义的范德蒙行列式,令匕(X )*_i (Xo ,Xi , ,X”_J(X_Xo ) (x_x”_i )当.¥= 1 , -1,2时,/(x)= 0 , -3,4 ,求/(>)的二次插值多项式. 给岀几t)=lnx 的数值表用线性插X0.40.50.60.70.8lnx-0.916291 -0.693147 -0.510826 -0.357765 -0.223144求cos x 近似值时的总误差界.设Xj为互异节点(戶),1,…,”),求证:工 X./. (x) = x k (k = 0,1,, “);i)切律任)三0伙= 1,2,ii) >° ,设畑乂2丽且/⑷=/(斫0,求证嘿声⑴叫(i)2嗨『创 在-4<%<4上给出/W =『的等距节点函数表.若用二次插值求『的近似值.要使截 断误差不超过10",问使用函数表的步长h 应取多少?若儿=2",求心及&儿.如果/(X )是加次多项式,记纣(劝=/任+〃) — /(*),证明/(x)的£阶差分AV(x)((^ k< m 是m-k 次多项式,并且△ m+7w=o (/为正整数). 证明 ggk) = fASk + gk+Wk.〃一1〃一1^jfk^Sk =fnSn ~ foSo ~ 工 gp+lA/jr 证明7上=0n-1=Ay…-Ay ().证明若 /(.r) = «0 +^%+ + a n _x x n ~' + a n x n有”个不同实根斗,*2,证明15. 证明"阶均差有下列性质:1)若F(x) =(/(%)侧尸[兀,西,,暫]=</[兀,召,,兀”];⑵若 F(x) = /(x) + g(x)侧 F [x (),召,,£] = /[毛,西,,x”] + g|%o ,X ], ,x…]16. /(劝"+八 3卄1,求/[2°2及/[2。

,2[ ,2尊.17. 证明两点三次埃尔米特嗨值余项是R 3(x) = f ⑷ ©(x - 兀尸(X _ %]尸 / 4!,紀(% %]) 并由此求出分段三次埃尔米特插值的误差限.刁一1,1 1证明%(x )是"次多项式,它的根是心,山”-1,且-S,-iX4, X 2设忑=兀+肋,扫o,l, 2, 3,求宀 #2(X )|0,0<A :<H -2;,k=n —l.18.求一个次数不高于4次的多项式P(x),使它满足AO) = P(-々 + 1)并由此求出分段三次埃尔米特插值的误差限.19.试求出一个最高次数不高于4次的函数多项式P。

),以便使它能够满足以下边界条件P(O) =P'(O)=O P(l) = P f(l) = 1 P(2) = 120.设/(力w °国列,把[⑦列分为n等分,试构造一个台阶形的零次分段插值函数必⑴ 并证明当"T 8时,申”(X)在[⑦列上一致收敛到f(X).21.设f°)= 1/(1 + X),在-5<%<5±取“ =10,按等距节点求分段线性插值函数厶°), 计算各节点间中点处的厶°)与/(X)的值,并估计误差.22.求/O)= *在[°问上的分段线性插值函数厶⑴,并估计误差.23.求/W 在[⑦列上的分段埃尔米特插值,并估计误差.试求三次样条插值SO)并满足条件门S'(0.25) = 1.0000, S'(0.53) = 0.6868;⑵S"(0.25) = S"(0.53) = 0.25.若/(X)e/[",切少兀)是三次样条函数,证明D [[/©)]认-][S3]认=[[广3 - S3]认+2[ S3 [厂⑴-S3 比ii)若/U)= S3)(心0,1,必),式中兀为插值节点,且« =<£=冬则f S0)[广 3 - S0)冶=S"⑹[f\b) - S©)] - S"(a)[广(a) - S,(a)]26.编出计算三次样条函数S(Q系数及其在插值节点中点的值的程序框图(S(Q可用©7)式的表达式).第三章函数逼近与计算1.(a)利用区间变换推出区间为[⑦列的伯恩斯坦多项式.(b)对fM = sinx在[0,兀/2]上求1次和三次伯恩斯坦多项式并画岀图形,并与相应的马克劳林级数部分和误差做比较.求证:m < /(x) < M 时,m < B n(/, x) < M .⑹当 /(%) = x 时,B n (/, x) = x 在次数不超过6的(a)当多项式中,求/U) = sin4x在[0,2疋]的最佳一致逼近多项式. 假设/(X)在[°'列上连续,求/°)的零次最佳一致逼近多项式.max x3 - ox选取常数Q ,使o^<i I I达到极小,又问这个解是否唯一?求/(x) = sinx在[0,兀/2]上的最佳一次逼近多项式,并估计误差.求/W =『在[°,1]上的最佳一次逼近多项式.如何选取r,使卩⑴= %2 + r在[71]上与零偏差最小?r是否唯一?设f(x) = x4 + 3x3 -1,在[0,1]上求三次最佳逼近多项式.令T n (x) = T n (2x-1),XG[0,1],求T* (x), T; (x), T; (x),§ (x)在[一1,1]上利用插值极小化求1 /O) = 的三次近似最佳逼近多项式.设/(x) = e*在[-1,1]上的插值极小化近似最佳逼近多项式为L”(x),若II/-4I8有界, 证明对任何存在常数5、卩”.使项式并估计误差.在[一1,1]上利用幕级数项数求/(*)= sinx的3次逼近多项式,使误差不超过0.005./(力是[一⑦可上的连续奇(偶)函数,证明不管"是奇数或偶数,/(力的最佳逼近多项式F:(x)wH”也是奇(偶)函数.求a、0使+ sinx"为最小.并与]题及&题的一次逼近多项式误差作比较./■(*)、gWeC1[a,b] ^义cb (*b(a)(/,g)=J 广(x)g,(x)dx;@)(/,g) = J 广(x)g,(x)dx + /(a)g(a);J a J a问它们是否构成内积?「^-dx用许瓦兹不等式(4.5)估计J(,l + x “的上界,并用积分中值定理估计同一积分的上下界, 并比较其结果.选择化使下列积分取得最小值JZ^2)2则A"他设空间9 =$皿"{1,丹,申2 "卩初忖“,*1],分别在<P1、也上求出一个元素,使得其为X wC[O,l]的最佳平方逼近,并比较其结果.22./(劝胡在[71]上求在◎上的最佳平方逼近.sin[(n + l) arccos x]"” (x) = ―-—1=^ ------------ -23.V1-X- 是第二类切比雪夫多项式.证明它有递推关系"”+i (x) = 2m” (x)-zvj(x)24.将在[一1」]上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画岀误差图形.再计算均方误差.25.把/(%)= ^ccosx在[71]上展成切比雪夫级数.26.27.2:29.编岀用正交多项式做最小二乘拟合的程序框图.30.编出改进FFT算法的程序框图.31.现给出一张记录{无卜{4,321,0丄2,3},试用改进FFT算法求出序列{曲的离散频谱{CJ (^ = 0,1, ,7).第四章数值积分与数值微分1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:ph« A.JC-A) + 4/(0) + A,/(A)(1)J-" ;r2hJ f(x)dx «+ 4/(0) + A,/(/2)£ f(x)dx «[/(-l) + 2/3) +3/(吃)]/3⑷]f{x)dx « h[7(0) + 7(/2)]/l + ah2[广(0)-广(力)]2.分别用梯形公式和辛普森公式计算下列积分:f1 X o fi(l-e')21A— x, n = 8 ------------- dx, n = 10 (l)Jo4 + .r ;⑵ 5 x ;(3) Ji 長吐n = 4 ⑷J-sZ (pdx,n-63.直接验证柯特斯公'式(2.4)具有5次代数精度.Ce x dx4.用辛普森公式求积分并计算误差.5.推导下列三种矩形求积公式:f f(x)dx = (b- a)/(a) + (b-a)2(l)Jfl 2 ;「f{x)dx = (b-a)f(b) - - (b-a)2『f(x)dx = (b —(b - af⑶2 24rb6.证明梯形公式(2.9)和辛普森公式(2.11)当"T8时收敛到积分L /(X)":pb7.用复化梯形公式求积分'«问要将积分区间[%】分成多少等分,才能保证误差不超过& (设不计舍入误差)?&用龙贝格方法计算积分五,要求误差不超过10「'.S = tzpJl-(-)2sin20J09.卫星轨道是一个椭圆,椭圆周长的计算公式是Jo V a,这里Q是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记力为近地点距离,H为远地点距离,7?= 6371公里为地球半径^a^(2R + H + h)/2,c = (H-h)/2^国第一颗人造卫星近地点距离h = 439公里,远地点距离H = 2384公里,试求卫星轨道的周长.3 5.n n nzz sin.——兀------------- 1--------------10.证明等式n 3\n- 5!/?4试依据加11(兀/")(7*3,6,12)的值,用外推算法求兀的近似值.H.用下列方法计算积分| 丁并比较结果.(1)龙贝格方法;(2)三点及五点高斯公式;(3)将积分区间分为四等分,用复化两点高斯公式./(X)=——-—712.用三点公式和五点公式分别求(1 +力「在x = 1.0,l.l和1.2处的导数值,并估计误第五章常微分方程数值解法1.就初值问题V’ = ax + b,y(O) = °分别导岀尤拉方法和改进的尤拉方法的近似解的表达1o , y = —ax +bx 式,并与准确解2 相比较。

相关文档
最新文档