生物化学计算题

生物化学计算题
生物化学计算题

生物化学计算题:

1、 计算赖氨酸得 20%被解离时得溶液pH 。

解答:

80% 20%

9.941lg 53.10][][lg 3.510][][lg =+=+=+=±-lys lys pKa pH 质子供体质子受体 2、计算谷氨酸得三分之二被解离时得溶液pH 。

解答:

1 2

3、向1 L 1 mol/L 得处于等电点得甘氨酸溶液加入0、3 m ol HCl, 问所得溶液得pH 值就是多少?如果加入0。3 mol NaOH 以代替HCl 时,pH 将就是多少? 解答:(1)

1-0。3 0、3 0。3

(2)

0。7 0.。3

4、计算0、25 mol/L 得组氨酸溶液在pH 6。4时各种离子形式得浓度(mol /L)。 解答:

同理得:

设解上述方程得:

组氨酸主要以形式存在。

5、分别计算谷氨酸、精氨酸与丙氨酸得等电点。

解答:

(1)根据谷氨酸得解离曲线,其pI 应该就是它得羧基与侧链羧基得pKa 之与得算术平均

值。即:pI=(2。19 + 4。25)/2 =3.22;

(2)精氨酸p I应该就是它得氨基与侧链胍基得p Ka 之与得算术平均值,即

pI =(9。04 + 12、48)/2 =10、76;

(3)丙氨酸pI 应该就是它得氨基与羧基pKa 值之与得算术平均值,即

pI=(2。34 + 9.69)/2 =6.02;

6、计算下列肽得等电点。

(1)天冬氨酰甘氨酸

(2)谷胱甘肽

62

.9,66.8,53.3,12.23=-=-=-=-+SHpK pK NH COOHpK Gly COOHpK Glu 末端末端α(3)丙氨酰丙氨酰赖氨酰丙氨酸

末端—COOH pK=3、58,末端pK=8。01,pK =10、58

解答:

(1)Asp -G ly 二肽得解离情况如下:

两性离子

(2)谷胱甘肽中Glu 得γ—羧基形成γ—肽键,解离情况如下:

(3)Al a—Ala —L ys—Ala 四肽得解离情况如下:

7、 (a)计算一个含有78个氨基酸得α螺旋得轴长。(b)计算此螺旋完全伸展时有多长?

解答:

(a)含有78个氨基酸得α螺旋得轴长为l =78×0.15 nm =11、7nm

(b)此螺旋完全伸展时得长度为L=78×0.36 nm =28。08nm

8、某一蛋白质得多肽链除一些区段为α螺旋外,其余区段均为β构象。该蛋白质为240 000,多肽链外形得长度为c m、试计算α螺旋占该多肽链得百分数(假设β构象中每氨基酸残基得长度为0、35nm)。

解答:设该多肽链中α螺旋得氨基酸残基数为x,氨基酸残基总数为y 。

解得 即α螺旋占该多肽链得百分数为59%。

9、某油脂得碘值为68,皂化值为210。计算该油脂每个分子中含有多少个双键、

解答:该油脂得平均相对分子质量:

根据碘值得定义:100g 油脂卤化时所能吸收得碘得克数。在本题中,皂化1mol 油脂需要

吸收碘得克数为:。得相对分子质量=2×126。9=253、8。 g /mo l 544/253、8=2、14(mo l)。因此平均每分子油脂含有两个双键。

10、从植物种子中提取1g 油脂,分成两份,分别测定该油脂得皂化值与碘值。测定皂化值得样品消耗KO H 65 mg,测定碘值得样品消耗510mg 。试计算该油脂得平均相对分子质量与碘值。

解答:皂化值:就是指皂化1g 油脂所需KOH 得质量(mg)。

因此该油脂得皂化值:65 mg /0、5g=130;

油脂得平均相对分子质

量:mol g M r /1292301/)1000563(/)1000563(=??=??=皂化值。

碘值:指100g 油脂卤化时所能吸收得碘得克数。

该油脂得碘值=(100/0。5)×0。51=102、

11、 称取25mg 蛋白酶配成25mL 溶液,取2m L溶液测得含蛋白氮0、2mg,另取0。1m

L溶液测酶活力,结果每小时可以水解酪蛋白产生1500μg 酪氨酸,假定1个酶活力单位

定义为每分钟产生1μg酪氨酸得酶量,请计算:

(1)酶溶液得蛋白浓度及比活力。(2)每克纯酶制剂得总蛋白含量及总活力。

解答:(1)蛋白浓度=0。2×6.25mg/2mL=0。625mg/mL;

(2)比活力=(1500/60×1ml/0。1mL)÷0。625mg/mL=400U/mg;

(3)总蛋白=0。625mg/mL×1000mL=625mg;

(4)总活力=625mg×400U/mg=2、5×105U。

12、对于一个遵循米氏动力学得酶而言,当[S]=K m时,若V=35μmol/min,V max就是多少μmol/min?当[S]=2×10—5mol/L,V=40μmol/min,这个酶得Km就是多少?若I 表示竞争性抑制剂,KI=4×10—5mol/L,当[S]=3×10—2mol/L与[I]=3×10-5mol/L时,V就是多少?

解答:(1)当[S]=K m时,V=1/2Vmax,则Vmax=2×35=70μmol/min;

(2)因为V=Vmax/(1+K m/[s]),所以Km=(V max/V-1)[s]=1.5×10 -5mol/L;

(3)因为[S]>〉K m,[I],所以V=V max=70μmol/min;

13、如果人体有1014个细胞,每个体细胞得DNA含量为6、4×109个碱基对、试计算人体DNA得总长度就是多少?就是太阳-地球之间距离(2.2×109公里)得多少倍?已知双链DNA每1000个核苷酸对重1×10-18g,求人体得DNA得总质量、

每个体细胞得DNA得总长度为:6。4×109×0。34nm=2。176×109nm=2。176m

人体内所有体细胞得DNA得总长度为:

2。176m×1014 = 2。176×1011km

这个长度与太阳-地球之间距离(2.2×109公里)相比为:

2。176×1011/2.2×109 =99倍、

每个核苷酸对重:1×10-18g/1000=10-21g

总DNA质量: 6。4×1023×10—21=6.4×102=640g。

14、1mol甘油完全氧化成CO2与H2O时净生成多少mol ATP?假设在线粒体外生成得NADH都通过磷酸甘油穿梭进入线粒体。(要求:有分析步骤,可用简图示出所经历得主要代谢过程)

甘油磷酸化消耗—1ATP

磷酸甘油脱氢+NADH+1.5ATP(NADH穿梭)

磷酸甘油醛脱氢+NADH +1、5 ATP(NADH穿梭) 1,3-二磷酸甘油酸+1ATP

磷酸烯醇式丙酮酸+ 1ATP

丙酮酸氧化生成乙酰CoA +NADH +2.5ATP

乙酰CoA进入三羧酸循环彻底氧化+10ATP

乙酰CoA+3NAD+ +FAD+GDP +Pi→2 CO2 +3 NADH+3H++FADH2+GTP

1mol甘油完全氧化成CO2与H2O时净生成A TP +16、5molATP

乙酰CoA进入三羧酸循环彻底氧化涉及能量产生得主要代谢过程:

1分子乙酰Co A通过三羧酸循环可直接生成1分子GTP 、3分子N ADH +H+

、1分子。

1分子N ADH+H + 通过氧化磷酸化生成2。5分子A TP,1分子生成1、5分子ATP。

所以1分子乙酰CoA 彻底氧化生成1+3×2。5+1×1。5=10分子A TP 、

15、1mol 乳酸完全氧化成CO 2与H 2O 时净生成多少mo l ATP ?假设在线粒体外生成得NA DH 都通过磷酸甘油穿梭进入线粒体。(要求:有分析步骤,可用简图示出所经历得主要代谢过程) 乳酸脱氢酶

乳酸+N AD 丙酮酸+NADH,此反应在细胞溶胶(细胞浆)中进行。在肝脏细胞匀浆体系中,细胞溶胶中生成得N ADH 就是通过磷酸甘油穿梭系统进入线粒体内氧化、

丙酮酸+NAD→乙酰C oA + N AD H(线粒体,丙酮酸脱氢酶系)

乙酰C oA进入三羧酸循环

乙酰C oA+3 NA D+ +FA D+GDP +P i→2 C O2 +3 NADH+3H + +FADH 2+G TP 1摩尔乳酸彻底氧化成C O2与H 2O 生成AT P得摩尔数为:10+1.5+2、5 =14 ATP 16、试比较硬脂肪酸、油酸、亚油酸以及亚麻酸完全氧化产生得A TP数、

解答:硬脂肪酸为18碳饱与脂肪酸,经8次β-氧化产生8分子NAD H+H +、8分子与9分子

得乙酰CoA,脂肪酸得激活消耗2个A TP,所以硬脂肪酸完全氧化产生得ATP数:

含有一个或多个不饱与双键得脂肪酸完全氧化除了需要β—氧化得酶以外,还需要△3—顺

—△2—反烯脂酰—CoA 异构酶、2,4—二烯酰脂—CoA 还原酶与2,3—二烯酰脂—CoA异构酶参与。从能量角度瞧,多1个双键,会少1次酰基CoA 脱氢酶催化得脱氢反应,少生成1个,因此亚油酸完全氧化产生得ATP 总数应就是120—3=117(个),同理,油酸应产生120—1。5=118、5个A TP,亚麻酸应该产生120—4.5=115。5个ATP 。

17、试比较1分子软脂肪酸与8分子丙酮酸彻底氧化所生成ATP 得数量,并简要写出与能量相关得反应过程。

解答:软脂肪酸氧化时与能量相关得反应过程:

能量过程:,

A TP A MP 与产能相关得过程:2CoA FADH CoA FAD CoA +-??

???→?+--烯脂酰脂酰脱氢酶

脂酰 +-+++-?????→?+-H NADH CoA NAD CoA CoA 酮脂酰羟脂酰脱氢酶羟脂酰 1分子软脂酸含16个碳原子,每一次β—氧化生成1分子、1分子NADH +H+,脱下1分子乙酰CoA,最后一次丁酰Co A彻底氧化生产2分子乙酰Co A,故软脂酸彻底氧化共进行7次β—氧化,产生7分子,7分子NAD H+H +与8分子乙酰Co A,

1分子NADH 通过呼吸链生成2。5分子ATP,1分子通过呼吸链生成1。5分子A TP,故生成总数为:

7×1、5+7×2。5+8×10—2=106分子ATP 。

丙酮酸氧化时与能量相关得反应过程:

故1分子丙酮酸通过三羧酸循环可直接生成1分子GTP 、4分子NADH +H +、1分子。 1分子NADH+H+ 通过氧化磷酸化生成2、5分子AT P,1分子生成1。5分子AT P。 所以1分子丙酮酸彻底氧化生成1+4×2、5+1×1、5=12、5分子AT P。

高中生物计算题专项解析

高中生物计算题归类解析 高中生物多个章节的知识与数学关系密切,在题目设计进行知识考查时,需借助数学方法来解决问题。而且,计算题在近几年的高考试题中逐渐增加,尤其是在单科试卷中。为培养学生应用相关数学知识分析解决生物学问题的能力,真正实现学科内知识的有机结合和跨学科知识的自然整合,现将高中生物常见计算题归类解析: 1.与质白质有关的计算 (1)蛋白质的肽键数=脱去水分子数=氨基酸分子数一肽链数; (2)蛋白质中至少含有的氨基(-NH2)数=至少含有羧基(-COOH)数=肽链数; (3)蛋白质的相对分子质量=氨基酸平均相对分子质量×氨基酸个数-18×脱去水分子数; (4)不考虑DNA上的无遗传效应片段、基因的非偏码区、真核细胞基因的内含子等情况时,DNA(基因)中碱基数:中碱基数:蛋白质中氨基酸数=6:3:1 例1.某蛋白质由n条肽链组成,氨基酸的平均分子量为a,控制蛋白质合成的基因含b个碱基对,则该蛋白质的分子量约() 解析:蛋白质分子量=氨基酸的分子量总和—脱去水分子质量总和。此题关键是求氨基酸个数,由转录、翻译知识可知,基因中碱基数:mRNA碱基数:氨基酸数=6:3:1,故氨基酸数为b/3,失去水分子数为(b/3-n)。 答案:D 2.物质通过生物膜层数的计算 (1)1层生物膜=1层磷脂双分子层=2层磷脂分子层 (2)在细胞中,核糖体、中心体、染色体无膜结构;细胞膜、液泡膜、内质网膜、高尔基体膜是单层膜;线粒体、叶绿体和细胞核的膜是双层膜,但物质是从核孔穿透核膜时,则穿过的膜层数为0。 (3)肺泡壁、毛细血管壁和消化道管壁都是由单层上皮细胞构成,且穿过1层细胞则需穿过2次细胞膜(生物膜)或4层磷脂分子层。 例2.葡萄糖经小肠粘膜上皮进入毛细血管,需透过的磷脂分子层数是() A.4层 B.6层 C.8层 D.10层 解析:葡萄糖从消化道进入毛细血管需经过上皮细胞和毛细血管壁细胞两个细胞,进出时共穿过4层膜,8层磷脂分子。答案:C 例3.一分子CO2从叶肉细胞的线粒体基质中扩散出来,进入一相邻细胞的叶绿体基质内,共穿过的生物膜层数是() A.5 B.6 C.7 D.8

生物化学练习题及答案(全部)

第一章蛋白质化学 一、选择题 1、下列氨基酸哪个含有吲哚环? a、Met b、Phe c、Trp d、Val e、His 2、含有咪唑环的氨基酸是: a、Trp b、Tyr c、His d、Phe e、Arg 3、氨基酸在等电点时,应具有的特点是: a、不具正电荷b、不具负电荷c、溶解度最大d、在电场中不泳动 4、氨基酸与蛋白质共有的性质是: a、胶体性质b、沉淀反应c、变性性质d、两性性质e、双缩脲反应 5、维持蛋白质三级结构主要靠: a、疏水相互作用b、氢键c、盐键d、二硫键e、范德华力 6、蛋白质变性是由于: a、氢键被破坏b、肽键断裂c、蛋白质降解 d、水化层被破坏及电荷被中和e、亚基的解聚 7、高级结构中包含的唯一共价键是: a、疏水键b氢键c、离子键d、二硫键

8、八肽Gly-Tyr-Pro-Lys-Arg-Met-Ala-Phe用下述那种方式处理不产生任何更小的肽? a、溴化氰 b、胰蛋白酶 c、胰凝乳蛋白酶 d、盐酸 9、在蛋白质的二级结构α-螺旋中,多少个氨基酸旋转一周? a、0.15 b、5.4 c、10 d、3.6 二、填空题 1、天然氨基酸的结构通式是。 2、具有紫外吸收能力的氨基酸有、、,其中以的吸收最强。 3、盐溶作用是 。 盐析作用是 。 4、维持蛋白质三级结构的作用力是,,和盐键。 5、蛋白质的三种典型的二级结构是,,。

6、Sanger反应的主要试剂是。 7、胰蛋白酶是一种酶,专一的水解肽链中 和的 形成的肽键。 8、溴化氢(HBr)是一种水解肽链肽键的化学试剂。 三、判断题 1、天然存在的氨基酸就是天然氨基酸。 2、氨基酸在中性水溶液中或在晶体状态时都以两性离子形式存在。 3、维系蛋白质二级结构的最重要的作用力是氢键。 4、所有蛋白质分子中氮元素的含量都是16%。 5、利用盐浓度的不同可以提高或降低蛋白质的溶解度。 6、能使氨基酸净电荷为0时的pH值即pI值就一定是真正的中性pH值即pH=7。 7、由于各种天然氨基酸都有280nm的光吸收特性,据此可以作为紫外吸收法定性 检测蛋白质的依据。 8、氨基酸的等电点可以由其分子上解离基团的解离常数来确定。 9、一般变性的蛋白质都产生沉淀现象,而沉淀的蛋白质一定是变性蛋白质。 10、某氨基酸的等电点为6.5,当它在pH=4.8的缓冲液中

高中生物 计算题的完全解题策略及分类汇集 新人教版

生物计算题的解题策略及分类汇集 一、蛋白质方面的计算题: 1、解题策略: ①求蛋白质分子中的氨基酸个数、所含的碱基数或失去的水分子数时,依据公式:氨基酸数=肽链数+肽键数(=失去的水分子数) ②求蛋白质分子中含有游离的氨基或羧基数时,一方面依据是一条多肽链中至少含有游离的氨基、羧基各1 个;另一方面是依据公式 :一条多肽链中的氨基(羧基)数=R 基中的氨基(羧基)数+1。 ③求蛋白质分子的相对分子量时,依据公式:蛋白质的相对分子量=所含氨基酸的总分子量-失去水的分子量 ④求多肽中某种氨基酸的个数时,首先观察各种氨基酸的分子式,一般情况下,所求氨基酸与其它氨基酸不同,通常表现为氧元素或氮元素等比其它的多;然后设所求氨基酸的个数为X ,其余氨基酸总数为Y ,用所求氨基酸的特殊元素的数量列式计算。 2、典例精析: 例1、血红蛋白是由574个氨基酸构成的蛋白质,含四条多肽链,那么在形成过程中,失去的水分子数为( ) A .570 B .571 C .572 D .573 答案:A 精析:利用公式:氨基酸数=肽链数+肽键数(=失去的水分子数),574=4+失去的水分子数,可求出失去的水分 子数为570。 例2|、下列为构成人体的氨基酸,经脱水缩合形成的化合物中含有游离的氨基、羧基数依次为( ) ①COOH 2CH 2NH -- ②COOH 2CH CH 2NH --- COOH ③ COOH CH 2NH -- 3CH ④2NH 32CH CH 2NH ---)( COOH A .2、2 B .3、3 C .4、3 D .3、4 答案:A 精析:②氨基酸的R 基中有一个羧基,④氨基酸的R 基中有一个氨基;再加上形成的四肽中两端分别游离一个氨基和一个羧基。 例3、已知20种氨基酸的平均分子量是128,现有一蛋白质分子由两条多肽链组成,共有肽键98个,该蛋白质的 分子量接近于( ) A .12800 B .12544 C .11036 D .12888 答案:C 精析:蛋白质中的肽键数等于失去的水分子数;依据公式:氨基酸数=肽链数+肽键数,可求得此蛋白质分子中的氨基酸数=100个;由此,蛋白质的相对分子量=128×100—18×98=11036。 例4、有一条由12个氨基酸组成的多肽,分子式为C x H y N z O w S (z ﹥12,w ﹥13),这条多肽链经过水解后的产物中有 5种氨基酸:半胱氨酸(C 3H 7NO 2S )、丙氨酸(C 3H 6NO 2)、天冬氨酸(C 4H 7NO 4)、赖氨酸(C 6H 14N 2O 2)、苯丙氨酸(C 9H 11NO 2)。求水解产物中天冬氨酸的数目是( ) A .y+12 B .z+12 C .w+13 D .(w -13)/2 答案:D 精析:设天冬氨酸的个数为M ,其余四种氨基酸的总数为N ,则有方程:M+N=12;然后依据天冬氨酸所含氧元素数 目与其它的不同,用5种氨基酸的氧元素列方程:4M+2N=w+11,(方程中的11是失去水分子中的氧分子数)。

《生物化学》作业及答案

《生物化学》作业 一、填空 1. 组氨酸的pK1(α-COOH)是1.82,pK2 (咪唑基)是6.00,pK3(α-NH3+)是9.17,其pI是(1)。 2. 低浓度的中性盐可以增强蛋白质的溶解度,这种现象称(2),而高浓度的中性盐则使蛋白质的溶解度下降,这种现象称(3)。 3. 对于符合米氏方程的酶,v-[S]曲线的双倒数作图(Lineweaver-Burk作图法)得到的直线,在横轴的截距 为__(4)__。 4. 维生素B1的辅酶形式为(5),缺乏维生素(6)易患夜盲症。 5. 在pH >pI的溶液中,氨基酸大部分以(1)离子形式存在。 6. 实验室常用的甲醛滴定是利用氨基酸的氨基与中性甲醛反应,然后用碱(NaOH)来滴定(2)上放出的(3)。 7. 对于符合米氏方程的酶,v-[S]曲线的双倒数作图(Lineweaver-Burk作图法)得到的直线,纵轴上的截距 为__(4)_。 8. FAD含有维生素(5),NDA+含有维生素(6)。 9. 在pH<pI的溶液中,氨基酸大部分以(1)离子形式存在。 10. 在α螺旋中C=O和N-H之间形成的氢键与(2)基本平行,每圈螺旋包含(3)个氨基酸残基。 11. 假定某酶的v-[S]曲线服从米-门氏方程,当[S]等于0.5 K m时,v是V max的(4)。 12. 氨基移换酶的辅酶含有维生素(5),缺乏维生素(6)_易患恶性贫血。 13. 蛋白质在酸性溶液中带净(1)电荷。 14. 蛋白质中的α螺旋主要是(2)手螺旋,每圈螺旋含(3)个氨基酸残基。 15. 缺乏维生素(5)易患佝偻病,维生素C和维生素(6)是天然抗氧化剂。 填空 1.(1)7.59 2. (2)盐溶(3)盐析 3. (4)1/Km 4. (5)TPP (6)A 5.(1)负 6.(2)氨基(3)H+ 7.(4)1/V 8.(5)B2 (6)PP 9.(1)正10.(2)螺旋轴(3)3.6 11.(4)1/3 12.(5)B6(6)B12 13.(1)正14.(2)右(3)3.6 15. (5)D (6)E (二)判断 1. 错 2. 对 3. 对 4. 错 5. 错 6. 错 7. 对 8. 对 9. 对10. 错11. 错12. 对13. 错14. 错15. 错16. 错17. 对18. 对19. 对20. 错21. 错22. 对23. 错24. 错 二、判断 1. 糖蛋白的O-糖肽键是指氨基酸残基的羧基O原子与寡糖链形成的糖苷键。 2. 在水溶液中,蛋白质折叠形成疏水核心,会使水的熵增加。 3. 当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。 4. 生物氧化只有在氧气存在的条件下才能进行。 5. H+顺浓度差由线粒体内膜内侧经ATP酶流到外侧,释放的能量可合成ATP。

生物工程设备

生物工程设备 教学大纲 生物科学与工程学院 生物工程教研室编2009年9月第三次修改

编写说明 生物工程设备是生物工程专业的专业核心课程之一,在我系的专业课教学中占有特别重要的地位。生物工程设备是专门研究生物工厂设备的一门学科,是生物工程专业的专业课,在学过的生物工艺,化工原理,生物化学的基础上开设的。生物技术是以基因工程为先导,结合发酵工程、酶工程和生化工程等技术,构成现代生物技术。生物工程设备则是生物工程技术和化学工程与设备交叉的结合体。具体内容包括:生化反应器、生化反应物料处理及产物分离纯化设备和辅助系统设备的原理和设计及计算。通过本课程的学习使学生能够了解和掌握发酵工厂常用的发酵设备、分离提取原理及设备。并为学习其他工艺学奠定基础。 为了规范教学,提高我系的生物工程专业课的教学质量,特编写此大纲。 生物工程设备教学大纲,全面系统的介绍发酵工艺的内容,结合本学科的最新成果组织编写。本大纲的内容有:教学目的与要求、教学重点与难点、教学内容、并提供了思考题、教学参考书及课时分配表等。 本大纲由李树立老师编写,教研室集体审定。 生物工程教研室 2009年9月

课时分配表

目录理论教学部分: 第一章概述 第二章物料处理和输送设备 第一节固体物料的处理与粉碎设备 第二节固体物料输送设备 第三节液体物料的输送设备 第三章空气净化除菌设备 第一节空气净化除菌的方法与原理 第二节空气过滤除菌设备及计算 第四章培养基的制备设备 第一节糖蜜原料的稀释与澄清 第二节淀粉质原料的蒸煮糖化设备 第三节啤酒生产麦芽汁的制备 第四节培养基的灭菌 第五章通风发酵设备 第一节机械搅拌通风发酵罐 第二节气升式发酵罐(ALR) 第三节自吸式发酵罐 第四节通风固相发酵设备 第五节其他类型的通风发酵反应器简介第六章嫌气发酵设备 第一节酒精发酵设备 第二节啤酒发酵设备 第三节连续发酵 第七章植物细胞(组织)和动物细胞培养反应器第一节植物细胞(组织)培养反应器 第二节动物细胞培养反应器 第三节微藻培养反应器 第八章生物反应器的比拟放大 第一节生物反应器的放大目的及方法 第二节通气发酵罐的放大设计 第九章过滤、离心与膜分离设备 第一节过滤速度的强化 第二节过滤设备 第三节离心分离设备 第四节膜分离设备 第十章离子交换分离原理及设备 第一节离子交换树脂 第二节离子交换分离原理 第三节离子交换设备 第十一章蒸发与结晶设备 第一节常压与真空蒸发设备

生化工程试卷二

生化工程试卷二 一、单项选择题(10 分,每小题1分) 1. SC-CO2萃取常用的基本工艺流程为() A、等温法 B、等压法 C、吸附法 D、层析法 2. 下列破碎方法中不属于化学法的为() A、调节pH值 B、有机溶剂 C、表面活性剂 D、渗透压冲击 3. 下列关于碟片式离心机的说法不正确的是() A、是一种应用最为广泛的离心机 B、可加长分离液体的流程 C、增大了沉降面积 D、缩短了沉降距离 4. 可以直接从整细胞中提取胞内酶的是() A、双水相萃取 B、反胶束萃取 C、有机溶剂萃取 D、超临界萃取 5. 超临界流体萃取常用的非极性的萃取剂为() A、CO B、NO C、CO2 D、NO2 6. 下列关于珠磨机的说法正确的是() A、转盘外缘速度越大,细胞破碎效率越高。 B、其可用于酵母和细菌,但对于真菌菌丝和藻类的破碎更为合适。 C、珠粒越小越有利于细胞破碎。 D、珠粒装填的越多越有利于细胞破碎。 7. 工业上制备超纯水所采用的膜分离技术是() A、反渗透 B、微滤 C、渗透蒸发 D、电渗析 8. 下列关于离心的四个选项中,不正确的是() A、可用于互不相溶液—液分离。 B、不同密度固体或乳浊液的密度梯度分离。 C、分离得到的是滤饼一样的半干物。 D、设备复杂,价格贵,分离成本高。 9. 萃取过程的理论基础是() A、达西定理 B、分配定律 C、质量守恒定律 D、平衡定律 10. 通常去除液体中细菌等微生物的膜分离技术是() A、超滤 B、微滤 C、反渗透 D、渗析 二、多项选择题(10 分,每小题2分) 1.生化工程的主要分支是。 A生化反应工程B生化控制工程C生化分离工程 D 生化系统工程 2. 生化(物)反应工程的别名有。 A发酵工程B酶反应工程C动、植物细胞培养工程D生物工程

高中生物常见计算题总结

高中生物常见计算题总结 德州跃华学校张国花 2010年7月25日 10:08 高中生物中的计算题分散在各个章节,不利于学生的系统复习,在复习过程中,如果将这些知识系统地集中起来复习,会受到事半功倍的效果。下面是我在复习过程中总结的一点方法,希望和各位老师同学共享。 一、有关蛋白质的计算: 公式: 3、蛋白质的分子量=氨基酸的平均分子量×氨基酸数-18×水分子数 例1:现有氨基酸600个,其中氨基总数为610个,羧基总数为608个,则由这些氨基酸合成的含有2条肽链的蛋白质共有肽键、氨基和羧基的数目依次为() A、598,2和2 B、598,12和10 C、599,1和1 D、599,11和9

解析:由条件可以得出R基上的氨基数是10个、羧基数是8个;由前面的公式可得出肽键数=600-2=598;氨基数=2+10=12;羧基数=2+8=10。所以选B。 例2、某三十九肽中共有丙氨酸4个,现去掉其中的丙氨酸得到4条长短不等的多肽(如图所示),这些多肽中共有的肽键数为() A、31 B、32 C、34 D、 35 解析:切去4个丙氨酸后氨基酸总数为35,肽链数为4,所以肽键数为35-4=31。选A。 例3、测得氨基酸的平均分子量为128,又测得胰岛素分子量约为5646,由此推断含有的肽链条数和氨基酸个() A.1和44 B.1和51 C.2和 51 D.2和44. 解析:依据蛋白质的平均分子量计算公式即可求出。选C。 二、物质分子的穿膜问题: 需注意的问题: 1、膜层数=磷脂双分子层数=2×磷脂分子

2、线粒体、叶绿体双层膜(2层磷脂双分子层、4层膜) 3、一层管壁是一层细胞是两层膜(2层磷脂双分子层、4层膜) 4、在血浆中O2通过红细胞运输,其他物质不通过。 5、RNA穿过核孔进入细胞质与核糖体结合共穿过0层膜。 6、分泌蛋白及神经递质的合成和分泌过程共穿过0层生物膜,因为是通过膜泡运输的,并没有穿膜。 7、(一)吸入的O2进入组织细胞及被利用时的穿膜层数:1层肺泡壁+2层毛细 血管壁+红细胞2层膜+组织细胞的细胞膜=2+2×2+2+1=9层膜=9层磷脂双分子层=18层磷脂分子。注:若是“被利用”需加线粒体两层膜。 (二)CO2从组织细胞至排出体外时的穿膜层数:1层组织细胞膜+2层毛细血管壁+1层肺泡壁=1+2×2+2=7层膜=7层磷脂双分子层=14层磷脂分子。 注:若是“从产生场所”需加线粒体两层膜。 (三)葡萄糖从小肠吸收至组织细胞需穿膜的层数:1层小肠上皮细胞+2层毛细血管壁+组织细胞膜=2+2×2+1=7层膜=7层磷脂双分子层=14层磷脂分子。 例1、若某一植物细胞线粒体中产生的一个CO2扩散进入一个相邻细胞进行光合作用,则该CO2分子穿过层生物膜(层磷脂双分子 层;层磷脂分子)。

生物化学习题及答案_酶

酶 (一)名词解释 值) 1.米氏常数(K m 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) (二)英文缩写符号 1.NAD+(nicotinamide adenine dinucleotide) 2.FAD(flavin adenine dinucleotide) 3.THFA(tetrahydrofolic acid) 4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide) 6.CoA(coenzyme A) 7.ACP(acyl carrier protein) 8.BCCP(biotin carboxyl carrier protein) 9.PLP(pyridoxal phosphate) (三)填空题

1.酶是产生的,具有催化活性的。2.酶具有、、和等催化特点。3.影响酶促反应速度的因素有、、、、和。 4.胰凝乳蛋白酶的活性中心主要含有、、和基,三者构成一个氢键体系,使其中的上的成为强烈的亲核基团,此系统称为系统或。 5.与酶催化的高效率有关的因素有、、、 、等。 6.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。 7.变构酶的特点是:(1),(2),它不符合一般的,当以V对[S]作图时,它表现出型曲线,而非曲线。它是酶。 8.转氨酶的辅因子为即维生素。其有三种形式,分别为、、,其中在氨基酸代谢中非常重要,是、和的辅酶。 9.叶酸以其起辅酶的作用,它有和两种还原形式,后者的功能作为载体。 10.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到个多肽。 11.全酶由和组成,在催化反应时,二者所起的作用不同,其中决定酶的专一性和高效率,起传递电子、原子或化学基团的作用。12.辅助因子包括、和等。其中与酶蛋白结合紧密,需要除去,与酶蛋白结合疏松,可以用除去。13.T.R.Cech和S.Alman因各自发现了而共同获得1989年的诺贝尔奖(化学奖)。 14.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类、、、、、和。

(生物科技行业)生物工程设备复习思考题

生物工程设备部分习题 复习思考题: 1、通风发酵设备比拟放大的基本概念,说明以k d 及 为基准的 比拟放大的程序。 2、机械通风发酵罐中挡板的作用及全档板概念。 3、机械通风发酵罐的换热装置常用的有哪几种形式,并简要说明其特点。 4、发酵过程的热量计算方法有几种,并列出简单算式。 5、气升式发酵罐的结构工作及原理及特点。 6、搅拌器常用的形式有哪几种?在发酵罐中选取的流型有何特点,功率准数N P 的选定。 7、什么是牛顿型流体,什么是非牛顿型流体,非牛顿型流体有哪几种各自特点如何? 8、复述双膜理论,写出传氧速率与气、液溶氧浓度关系式。 9、兼气酒精发酵设备常用结构,冷却面积的计算方法及步骤。 10啤酒圆筒锥体发酵罐的特点,及设计时需要考虑哪几方面问题。 11、写出生化过程5个参变量的检测目的及常用检测仪器。 12、什么叫生物传感器?生物敏感材料常用哪几种? 13、生物传感器主要由哪几部分组成及工作原理。 14、生物传感器敏感膜的成膜方法通常有几种?说出其中一种的制作过程。 15、生物传感器在发酵生产中有何重要意义,举例说明。 16、简述搅拌周线速度(πND )搅拌液流速度H 搅拌循环量Q L 对发酵缸比拟放大的影响。 1 2 p v

计算题|: 1、某通风发酵罐直径=液柱高度=2m N=2.0/s=120r/min 螺旋浆搅拌D i=0.33D=0.66m 通风比=0.5m3/m3minρ=1000kg/m3μ=0.001 牛.秒/m2求pg 2、某细菌醪发酵罐——牛顿流体 罐径=1.8米 园盘六弯叶涡轮直径D=0.60m,一只涡轮 罐内装器块标准挡板 搅拌四转速N=168转/分 通气量Q=1.42m3/分(罐内状态流量) 罐压ρ=1.5绝对大气压 醪液粘度:μ=1.96×10-3牛·秒/㎡ 醪液密度:ρ=1020kg/m3 求:Pg 3、有一个5m3生物反应器,罐径为1.4m,装液量为4m3,液深 为 2.7m,采用六弯叶涡轮搅拌器,叶径为0.45m,搅拌转速N=190r/min,通风比为1:0.2,发酵液密度为1040kg/m3,发酵液粘度:1.06×10-3Pa·s,现需放大至50 m3罐进行生产,试求大罐尺寸和主要工艺条件(列表) 4、一台连续灭菌设备,培养液流量为18m3/小时,发酵罐装 料36m3,原始污染度为105个/ml,要求灭菌度Ns=10-3个/罐,灭菌温度为398开(此温度下K=11/分,求维持时间ι和维持罐容积)

生化工程习题

1.发酵罐直径D=1.8m,圆盘六弯叶涡轮直径Di=0.6m,一只涡轮,罐内装4块标准挡板,搅拌器转速n=168r/min,通气量Q=1.42m3/min,罐压P=1.5绝对大气压,醪液粘度μ=1.96×10-3 N·s/m2,醪液密度ρ=1020kg/m3。计算Pg。 已知;P0=NpDi5n3ρ(W);ReM=Di2nρ/μ 圆盘六平直叶涡轮Np≈6;圆盘六弯叶涡轮Np≈4.7;圆盘六箭叶涡轮Np≈3.7。 设与电机传动相关的参数:三角皮带效率为0.92,滚动轴承效率为0.99,滑动轴承效率为0.98端面轴封增加功率为1.0%。 2.在分批培养中,培养基组成时刻都在变化,某一时刻的瞬时得率YX/S=dX/dS=μ/qS,YP/S=dP/dS=qP/qS,试计算葡萄糖生成乙醇发酵中的得率系数。已知该发酵过程限制性培养基中细胞生长方程和产物生成量计量式及底物比消耗速率可分别表示如下(X ATP代表能量的消耗与生成)。 (1)1.12CH2O+0.15NH3+0.507XA TP=CH1.62O0.88N0.15+0.12CO2+其他 (2)1.5CH2O=CH3O0.5+0.5CO2+0.5X ATP(假定产物除CO2只有乙醇,且生成的ATP全部用于细胞生长过程的耗能即不考虑维持代谢) (3)q S=1.12μ+1.5 q P 英汉互译 1. 生物技术 2. 生长曲线 3. 洗出 4. 亚单位 5. 关键酶 6. 迟滞期 7. 分批培养8. Immobilized enzyme 9. Optimal temperature 10. Product inhibitor 11. Allosteric effect 12. Dilution rate 13. K G a 14. Sterilization 15. On-line 常用的酶固定化的方法有哪些?简述去固定化原理。 1.请问以下结论是否正确?并阐明原由。 在同一温度下灭菌,连续式全混流型反应器(CFSTR)的灭菌时间要比活塞流模型反应器(PFR)的长得多,比批式全混流反应器的灭菌时间长得同样多。 2.发酵工业中,空气除菌的方法有哪些?广泛采用的是哪种方法? 3.空气过滤器设计的理论基础是什么? 4.测量体积溶氧系数k L a的方法有哪些?动态法用溶氧电极测体积溶氧系数的原理是什么? 5.下图是均相酶反应动力学方程的E-H图形,直线1代表该酶反应得类型是无抑制的酶反应,请标出未知直线所代表的酶反应类型。

高中生物遗传计算题讲课教案

1、拉布拉多犬(二倍体)的毛色由两对位于常染色体上且独立遗传的等位基因E、e和F、f控制,不存在显性基因F则为黄色,其余情况为黑色或棕色。一对亲本生下四只基因型分别为EEFF、Eeff、EEff和eeFF的小犬,则这对亲本的基因型是;这对亲本若再生下两只小犬,其毛色都为黄色的概率是。若基因型为Eeff的精原细胞通过有丝分裂产生了一个基因型为Eff的子细胞,则同时产生的另一个子细胞基因型是(不考虑基因突变)。 2、图10是人类某一类型高胆固醇血症的分子基础示意图(控制该性状的基因位于常染色体上,以D和d表示).根据有关知识回答下列问题。 (1)控制LDL受体合成的是__________性基因,基因型为__________的人血液中胆固醇含量高于正常人。 (2)由图可知携带胆固醇的低密度脂蛋白(LDL)进入细胞的方式是___________,这体现了细胞膜的结构特点是___________________________________。 (3)图11是对该高胆固醇血症和白化病患者家庭的调查情况,Ⅱ7与Ⅱ8生一个同时患这两种病的孩子的几率是_____________。

3、(16分)克氏综合征是一种性染色体数目异常的疾病。现有一对表现型正常的夫妇生了一个患克氏综合征并伴有色盲的男孩,该男孩的染色体组成为44+XXY。请回答: (1)画出该家庭的系谱图并注明每个成员的基因型(色盲等位基因以B 和b 表示)。 (2)导致上述男孩患克氏综合征的原因是:他的(填“父亲”或“母亲”)的生殖细胞在进行分裂形成配子时发生了染色体不分离。 (3)假设上述夫妇的染色体不分离只是发生在体细胞中,①他们的孩子中是否会出现克氏综合征患者? ②他们的孩子患色盲的可能性是多大? (4)基因组信息对于人类疾病的诊治有重要意义。人类基因组计划至少应测条染色体的碱基序列。 4、(16分)图16是某家系甲、乙、丙三种单基因遗传病的系谱图,其基因分别用A、a,B、b和D、d表示。甲病是伴性遗传病,Ⅱ7不携带乙病的致病基因。在不考虑家系内发生新的基因突变的情况下,请 回答下列问题: ⑴甲病的遗传方式是,乙病的遗传方式是,丙病的遗传方式是,Ⅱ6的基因型是。 ⑵Ⅲ13患两种遗传病的原因是。 ⑶假如Ⅲ15为乙病致病基因的杂合子、为丙病致病基因携带者的概率是1/100,Ⅲ15和Ⅲ16结婚,所生的子女只患一种病的概率是,患病的概率,是患丙病的女孩的概率是。

生物化学习题(含答案解析)

1变性后的蛋白质,其主要特点是 A、分子量降低 B、溶解度增加 C、一级结构破坏 D、不易被蛋白酶水解 E、生物学活性丧失 正确答案:E 答案解析:蛋白质变性的特点:生物活性丧失溶解度降低粘度增加结晶能力消失 易被蛋白酶水解。 蛋白质变性:是蛋白质受物化因素(加热、乙醇、强酸、强碱、重金属离子、生物碱试剂等)的影响,改变其空间构象被破坏,导致其理化性质的改变和生物活性的丧失。一级结构不受影响,不分蛋白质变性后可复性。 2下列蛋白质通过凝胶过滤层析柱时,最先被洗脱的是 A、MB(Mr:68500) B、血清白蛋白(Mr:68500) C、牛ν-乳球蛋白(Mr:35000) D、马肝过氧化氢酶(Mr:247500) E、牛胰岛素(Mr:5700) 正确答案:D 答案解析:凝胶过滤层析,分子量越大,最先被洗脱。 3蛋白质紫外吸收的最大波长是 A、250nm B、260nm C、270nm D、280nm E、290nm 正确答案:D 答案解析:蛋白质紫外吸收最大波长280nm。 DNA的最大吸收峰在260nm(显色效应)。 4临床常用醋酸纤维素薄膜将血浆蛋白进行分类研究,按照血浆蛋白泳动速度的快慢,可分为 A、α1、α2、β、γ白蛋白 B、白蛋白、γ、β、α1、α2 C、γ、β、α1、α2、白蛋白 D、白蛋白、α1、α2、β、γ E、α1、α2、γ、β白蛋白 正确答案:D 答案解析:醋酸纤维素薄膜电泳血浆蛋白泳动速度的快慢, 白蛋白、α1-球蛋白、α2-球蛋白、β-球蛋白、γ-球蛋白背吧 5血浆白蛋白的主要生理功用是 A、具有很强结合补体和抗细菌功能

B、维持血浆胶体渗透压 C、白蛋白分子中有识别和结合抗原的主要部位 D、血浆蛋白电泳时,白蛋白泳动速度最慢 E、白蛋白可运输铁、铜等金属离子 正确答案:B 答案解析:血浆白蛋白的生理功用 1、在血浆胶体渗透压中起主要作用,提供75-80%的血浆总胶体渗透压。 2、与各种配体结合,起运输功能。许多物质如游离脂肪酸、胆红素、性激素、甲状腺素、肾上腺素、金属离子、磺胺药、青霉素G、双香豆素、阿斯匹林等药物都能与白蛋白结合,增加亲水性而便于运输。 6下列有关MB(肌红蛋白)的叙述哪一项是不正确的: A、MB由一条多肽链和一个血红素结合而成 B、MB具有8段α-螺旋结构 C、大部分疏水基团位于MB球状结构的外部 D、血红素靠近F8组氨基酸残基附近 E、O2是结合在血红素的Fe2+上 正确答案:C 答案解析:肌红蛋白是由一条多肽链+一个辅基多肽链(亚铁血红素辅基)组成;多肽链中氨基酸残基上的疏水侧链大都在分子内部,亲水侧链多位于分子表面,因此其水溶性较好。 7下列有关Hb的叙述哪一项是不正确的: A、Hb是一条多肽链和一个血红素结合而成,其氧解离曲线是直角曲线 B、Hb是α2β2四聚体,所以一分子Hb可结合四分子氧 C、Hb各亚基携带O2时,具有正协同效应 D、O2是结合在血红素的Fe2+上 E、大部分亲水基团位于Hb分子的表面 正确答案:A 答案解析:1个血红蛋白分子由1个珠蛋白+4个血红素(又称亚铁原 卟啉)组成;其氧解离曲线是“S”形曲线 8下列有关蛋白质的叙述哪一项是不正确的: A、蛋白质分子都具有一级结构 B、蛋白质的二级结构是指多肽链的局部构象 C、蛋白质的三级结构是整条肽链的空间结构 D、并不是所有蛋白质分子都具有四级结构 E、蛋白质四级结构中亚基的种类和数量均不固定 正确答案:B 答案解析:蛋白质的二级结构为肽链主链或一段肽链主链骨架原子的局部空间构象,它并不涉及氨基酸残基侧链的构象。 9具有蛋白质四级结构的蛋白质分子,在一级结构分析时发现 A、具有一个以上N端和C端 B、只有一个N端和C端

2020年(生物科技行业)生物工程设备各章节要点及三套题

生物科技行业)生物工程 设备各章节要点及三套题

生物工程设备各章节要点第壹章绪论题库 1、生物工程的定义生物工程是指利用生物体系,应用先进的生物学和工程学原理,通过加工(或不加工)底物原料为人类提供所需产品(或社会服务)的壹种新型跨学科技术。 2、1857 年微生物学的鼻祖、以“发酵学之父”美誉著称的法国人巴斯德首次证明了酒精发酵是由酵母菌引起的,发酵现象是由微生物所进行的化学反应,而且不同的发酵和不同微生物有关。(列文虎克、弗洛里、钱恩) 3、生物工程设备主要包括生物反应器和生物反应物料处理及产物分离纯化设备。第二章原料处理及灭菌设备题库 1、发酵工厂中的原料都含有很多种杂质,为了清楚各种杂质,利用物料和杂质在物理特性上的差异,能够采用壹些机械方法和措施将杂质除去,目前常用方法有:筛选法、比重法、浮选法、磁选法。 2、振动筛的筛体包括筛框、筛面、吊杆、筛面清理装置、限振装置(不包括自衡振动器、) 3、振动筛筛体内有有三个筛面,第壹层是接料筛面,第二层是大杂筛面,第三层是小杂筛 面。(判断,填空) 4、提高粉碎机效率的方法有:①采用密闭循环法②增加吸风装置,能够加速粉料离开筛孔③采用鳞状筛代替平筛 5、生物产品发酵工厂中用到的输送设备按所输送的物料可分为固体物料的输送和液体物料的输送,输送固体物料可采用各种类型的输送机和气体输送装置,输送液体物料则采用各种类型的泵和空气压缩机。 6、根据卸料动力的不同,斗式提升机的卸料方法分为离心式、混合式和重力式 7、培养基灭菌方式有俩种:分批灭菌法和连续灭菌法(实消法和连消法) 分批灭菌方法的优点是不需其他设备,操作简单,适于规模小的发酵罐使用或极易发泡或粘度很大的培养基的灭菌;缺点是加热和冷却所需时间较长,发酵罐利用率不高,培养基中营养成分会遭到壹定程度的破坏。

生化反应工程试题

(1)微生物的热阻:微生物对热的抵抗力称为热阻。是指微生物在某一特 定条件(主要是温度和加热方式)下的致死时间。表征不同微生物对热抵抗能力强弱的指标。 (2)有效电子数:1摩尔碳源完全氧化时,所需的氧的摩尔数的4倍,称 为该基质的有效电子数。 (3)k L a :以(C *-C)为推动力的体积溶氧系数(h -1) (4)混合:指的是相同停留时间、不同空间位置的物料之间的一种以达到 均匀状态为目的过程。 (5)停留时间:指反应物料从进入反应器时算起,至离开反应器时为止所 经历的时间。) (6)写出定义式: 细胞生长得率Yx/s=生成细胞的质量(干重)/消耗底物的质量 选择性 1.何为生化工程,生化工程的研究内容有哪些? 生化工程全称是生物化学工程(Biochemical Engineering),是为生物技术服务的化学工程。它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使之成为生物反应过程的一门学科,是生物化学与工程学相互渗透所形成的一门新学科。它应用工程学这一实践技术,以生物体细胞(包括微生物细胞、动物细胞、植物细胞)作为研究的主角、生物化学作为理论基础,从动态、定量、微观的角度,广泛而深刻地揭示了生物工业的过程。所以生化工程是化学工程的一个分支,也是生物工程的一个重要组成部分。 具体的研究内容: ① 原料预处理:即底物(酶催化反应中的作用物)或培养基(发酵过程中的底物及营养物,也称营养基质)的制备过程,包括原料的物理、化学加工和灭菌过程。 ②生物催化剂的制备:生物催化剂是指游离或固定化的活细胞或酶,微生物是最常用的活细胞催化剂,酶催化剂则从细胞中提取出来。 ③生物反应的主体设备:即生物反应器,凡反应中采用整体微生物细胞时,反应器则称发酵罐;凡采用酶催化剂时,则称为酶反应器。另还有适用于动植物细胞大量培养的装置。 ④生物化工产品的分离和精制:这一部分常称下游加工,是生化分离工程 ()S S a P S sp p -=

高中生物计算题解法

一、蛋白质方面的计算题: ①求蛋白质分子中的氨基酸个数、所含的碱基数或失去的水分子数时,依据公式:氨基酸 数=肽链数+肽键数(=失去的水分子数) ②求蛋白质分子中含有游离的氨基或羧基数时,一方面依据是一条多肽链中至少含有游离 的氨基、羧基各1个(即,至少含有的氨基数或羧基数=肽链数。注,环链为0);另一方面是依据公式:一条多肽链中的氨基(羧基)数=R基中的氨基(羧基)数+1。 ③求蛋白质分子的相对分子量时,依据公式:蛋白质的相对分子量=所含氨基酸的总分子 量-失去水的分子量 ④求多肽中某种氨基酸的个数时,首先观察各种氨基酸的分子式,一般情况下,所求氨基 酸与其它氨基酸不同,通常表现为氧元素或氮元素等比其它的多;然后设所求氨基酸的个数为X,其余氨基酸总数为Y,用所求氨基酸的特殊元素的数量列式计算。 二、物质跨膜数量的计算: ①判断该生理过程是否跨膜,如内吞、外排、从核孔出入等过程都不跨膜。 ②明确由膜围成的细胞结构的膜层数:单层膜的结构(细胞膜、内质网、高尔基体、液泡、 小泡和溶酶体)、双层膜的结构(细胞核、线粒体和叶绿体);原核细胞只考虑细胞膜。需注意的问题: ①膜层数=磷脂双分子层数=2×磷脂分子 ②线粒体、叶绿体双层膜(2层磷脂双分子层、4层膜) ③一层管壁是一层细胞是两层膜(2层磷脂双分子层、4层膜) ④在血浆中O2通过红细胞运输,其他物质不通过。 ⑤RNA穿过核孔进入细胞质与核糖体结合共穿过0层膜。 ⑥分泌蛋白及神经递质的合成和分泌过程共穿过0层生物膜,因为是通过膜泡运输的,并 没有穿膜。 ⑦a、吸入的O2进入组织细胞及被利用时的穿膜层数:1层肺泡壁+2层毛细血管壁+红细 胞2层膜+组织细胞的细胞膜=2+2×2+2+1=9层膜=9层磷脂双分子层=18层磷脂分子。 注:若是“被利用”需加线粒体两层膜。 b、CO2从组织细胞至排出体外时的穿膜层数:1层组织细胞膜+2层毛细血管壁+1层肺泡 壁=1+2×2+2=7层膜=7层磷脂双分子层=14层磷脂分子。 注:若是“从产生场所”需加线粒体两层膜。 C、葡萄糖从小肠吸收至组织细胞需穿膜的层数:1层小肠上皮细胞+2层毛细血管壁+ 组织细胞膜=2+2×2+1=7层膜=7层磷脂双分子层=14层磷脂分子。 三、呼吸作用与光合作用的计算题: ⑴光合作用的实际速率=净光合作用速率+呼吸作用速率 光合作用速率以单位时间内CO2的吸收量或O2的释放量或葡萄糖的生成量来表示,呼吸作用速率恰好相反。 CO2+H2O→(CHO2)+ 6O2 易错点: ①净光合作用速率与光合作用的实际速率区分不清

生物化学 问答题和计算题

蛋白质化学 1、试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。 蛋白质的结构决定功能。一级结构决定高级结构的形成,高级结构则与蛋白质的功能直接对应。 1.一级结构与高级结构及功能的关系:氨基酸在多肽链上的排列顺序及种类构成蛋白质的一级结构,决定着高级结构的形成。很多蛋白质在合成后经过复杂加工而形成天然高级结构和构象,就其本质来讲,高级结构的加工形成是以一级结构为依据和基础的。 有些蛋白质可以自发形成天然构象,如牛胰RNA酶,尿素变性后,空间构象发生变化,活性丧失,逐渐透析掉尿素后可自发形成天然三级结构,恢复95%生物活性。这个例子说明了两点:一级结构决定特定的高级结构;特定的空间构象产生特定的生物功能。 一级结构中,特定种类和位置的氨基酸出现,决定着蛋白质的特有功能。例如同源蛋白中所含的不变氨基酸残基,一但变化后会导致功能的丧失;而可变氨基酸残基在不同物种的变化则不影响蛋白质功能的实现。又如人类的镰刀型贫血,就是因为一个关键的氨基酸置换突变后引发的。 某些一级结构的变化会导致功能的明显变化,如酶原激活过程,通过对酶原多肽链局部切除而实现酶的天然催化功能。 2.高级结构与功能的关系:任何空间结构的变化都会直接影响蛋白质的生物功能。一个蛋白质的各种生物功能都可以在其分子表面或内部找到相对应的空间位点。环境因素导致的蛋白质变性,因天然构象的解体而活性丧失;结合变构剂导致的蛋白质变构效应,则是因空间构象变化而改变其活性 2、参与维持蛋白质空间结构的力有哪些? 蛋白质的空间结构主要是靠氨基酸侧链之间的疏水键,氢键,范德华力和盐键维持的(盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的)4、试述蛋白质多肽链的氨基酸排列顺序测定的一般步骤。 1.测定蛋白质分子中多肽链的数目。 通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。 2.多肽链的拆分 几条多肽链借助非共价键连接在一起,称为寡聚蛋白质,如,血红蛋白为四聚体,烯醇化酶为二聚体;可用8mol/L尿素或6mol/L盐酸胍处理,即可分开多肽链(亚基). 3.二硫键的断裂 几条多肽链通过二硫键交联在一起。可在用8mol/L尿素或6mol/L盐酸胍存在下,用过量的β-巯基乙醇处理,使二硫键还原为巯基,然后用烷基化试剂保护生成的巯基,以防止它重新被氧化。 4.测定每条多肽链的氨基酸组成 水解,氨基酸分析仪 5.分析多肽链的N-末端和C-末端 多肽链端基氨基酸分为两类:N-端氨基酸和C-端氨基酸。 在肽链氨基酸顺序分析中,最重要的是N-端氨基酸分析法。 6.多肽链断裂成多个肽段,可采用两种或多种不同的断裂方法将多肽样品断裂成两套或多套肽段或肽碎片,并将其分离开来。 7.分离肽段测定每个肽段的氨基酸顺序。 8.确定肽段在多肽链中的次序。 9.确定原多肽链中二硫键的位置。 酶 1、用图示说明米氏酶促反应速度与底物浓度的关系曲线,并扼要说明其含义。

生物工程设备计算题

发酵罐数的确定 某氨基酸发酵产酸率12%,发酵时间为36h 。辅助时间为24h ,每个发酵罐有效容积为100m 3.。试设计年产率5000t 该氨基酸所需发酵罐个数。 解:由362460p b t t t h =+=+= /t p V t P C =? 所以:10012%/0.2/60 t p P V C t t h ?=?== 5000 2.853365240.2 N ==≈??个 轴功率的计算: (w=r/s) 发酵罐体积:23 0.154V D H D π=+ 2Re i L D ωρμ??=、 24s Q D v π= 0.560.70.79(2.36 3.30)()10g L s L P K a n V V ω-=+? n :搅拌叶轮组数 Vs:cm/min 不通气搅拌下的轴功率: 通气搅拌下的轴功率: 350p i L P N D ωρ= (w=r/s) 233 0.3900.082.2510()i g P D P Q ω-=? (w=r/min) Di (m ) Di -涡轮直径(cm ) Q -通气量(mL/min ) 例题:某酶制剂厂 10m 3机械搅拌发酵罐,发酵罐直径D=1.8m ,一只圆盘六弯叶涡轮搅拌器直径D =0.6m ,罐内装有四块标准挡板,装液量VL 为6m3,搅拌转速 ω=168rpm ,通气量Q=1.42 m3 /min ,醪液粘度μ=1.96×10-3 N ·s/ m2,醪液密度 ρ=1020 kg/ m3 ,三角皮带的效率是 0.92,滚动轴承的效率是 0.99,滑动轴承的效率是0.98,端面轴封增加的功率为 1%,求轴功率Pg 和kL α,并选择合适的电机。(已知在充分湍流状态时,圆盘弯叶涡轮搅拌器的功率准数 NP = 4.7 ) 解:1.先求出Re :2243(168/60)0.61020Re 5.25101.9610 i L D ωρμ-??===?? 2.因Re ≥104,所以发酵系统在充分湍流状态,即有功率系数NP = 4.7 ,故叶轮的不通气时 搅拌功率P 0为:33550i 1684.710200.68.07kW 60P L P N D ωρ??=??? ??? ==() 3.求通气时搅拌功率Pg : 023 23i 30.393 0.39g 0.080.088.07168602.2510) 2.2510() 6.55(kW)1420000P D P Q ω--??=?=??=(

相关文档
最新文档