固体催化剂制备原理与技术

合集下载

固体催化剂制备原理

固体催化剂制备原理

固体催化剂制备原理1.固体催化剂的原理固体催化剂的作用原理主要涉及到催化剂表面上的活性中心和反应物之间的相互作用过程。

催化剂的活性中心通常是一些具有特定结构和化学性质的表面位点或团簇,它们能够吸附反应物分子,并且在表面上发生化学反应,从而加速反应物之间的相互转化。

在催化剂作用下,反应物分子在活性中心上发生吸附、解离、重组等过程,从而形成新的反应产物。

固体催化剂的活性中心通常具有特定的结构和化学性质,这些特性决定了催化剂对特定反应的催化活性和选择性。

催化剂的化学成分、晶体结构、表面性质等因素都会影响其活性中心的性质。

因此,固体催化剂的制备需要考虑到这些因素,通过选择合适的材料和合适的制备方法,来调控催化剂的表面性质和活性中心的性质,从而实现对特定反应的高效催化。

2.固体催化剂的制备方法固体催化剂的制备方法主要包括物理方法、化学方法和物理化学方法等几种。

物理方法主要是利用物理手段,通过物理过程来制备催化剂,如物理吸附、离子交换、溶胶-凝胶法、固体磺酸法等;化学方法主要是利用化学反应来制备催化剂,如沉淀法、共沉淀法、沉淀-还原法等;物理化学方法则是结合了物理和化学手段,比如物理化学合成法、模板法、微波辐照合成法等。

物理方法是通过物理作用,改变原料的物理性质而实现催化剂的制备。

此类方法适用于制备无机氧化物和复合催化剂。

化学方法是通过化学反应,改变反应物质的化学性质从而制备催化剂。

此类方法适用于制备金属催化剂和贵金属催化剂。

物理化学方法是结合了物理和化学手段,通过物理方法改变原料物理性质,再通过化学反应改变化学性质从而实现催化剂的制备。

此类方法适用于复杂结构的催化剂。

3.固体催化剂的制备原理固体催化剂的制备原理主要涉及到催化剂材料的选择、合成方法的选择和制备过程的条件控制。

首先是选择合适的催化剂材料,催化剂材料一般应具有高的比表面积、良好的热稳定性、合适的孔结构和丰富的活性中心。

其次是选择合适的合成方法,根据所需的催化剂性质和应用需求,选择合适的合成方法。

碳基固体酸催化剂制备及其催化性能分析研究

碳基固体酸催化剂制备及其催化性能分析研究

碳基固体酸催化剂制备及其催化性能分析研究碳基固体酸催化剂在催化领域具有广泛的应用潜力。

它们具有酸性强、稳定性高、孔隙结构合理等优势,可以用于多种催化反应,如酯化、醇醚化、环化反应等。

本文主要介绍了碳基固体酸催化剂的制备方法以及其催化性能的分析研究。

一、碳基固体酸催化剂的制备方法1.碳化物热解法:将含有碳源和酸源的混合物在高温下热解,生成碳基固体酸催化剂。

常用的碳源有蔗糖、蔬菜、木材等,酸源可以是硫酸、磷酸等。

2.碳化转化法:将预制的活性炭或其他含碳材料与酸性气体在高温下反应,生成碳基固体酸催化剂。

酸性气体可以是氢氟酸、硫酸蒸汽等。

3.化学气相沉积法:采用化学气相沉积技术,在高温下使含碳化合物和酸性气体反应,生成碳基固体酸催化剂。

以上制备方法可以根据需要进行改进和调整,以获得更好的催化性能。

1.酸性强度测试:采用一些表征酸性强度的方法,如NH3-TPD(氨气热脱附法)和FT-IR(红外光谱法),测定碳基固体酸催化剂的酸性强度。

这可以帮助了解催化剂中酸性位点的数量和强度。

2.酸性种类分析:利用FT-IR等技术,分析碳基固体酸催化剂的酸性种类。

例如,利用红外光谱来观察吸附在催化剂表面上的吸附物质的变化,可以进一步了解催化剂的酸性种类。

3.比表面积测试:使用比表面积测试仪来测定催化剂的比表面积。

较大的比表面积可以提供更多的活性位点,从而提高催化剂的催化性能。

4.催化性能测试:将碳基固体酸催化剂应用于具体的催化反应中,并通过反应转化率、选择性、稳定性等参数来评价催化性能。

可以进行批量或连续式反应器实验,并进行相应的产物分析,如GC、HPLC等。

通过以上的实验和分析,可以全面评估碳基固体酸催化剂的催化性能,为其在实际应用中的优化提供参考。

此外,还可以通过改变制备方法、调控催化剂结构、引入基团修饰等手段进一步提高碳基固体酸催化剂的性能。

固体超强酸催化剂的制备实验报告

固体超强酸催化剂的制备实验报告

固体超强酸催化剂的制备实验报告一、实验目的本实验旨在通过制备固体超强酸催化剂,掌握固体超强酸催化剂的制备方法和性质,为后续的催化反应研究提供基础。

二、实验原理固体超强酸催化剂是一种具有高催化活性和选择性的催化剂,其制备方法主要有两种:一种是通过将强酸负载在固体载体上制备,另一种是通过化学合成制备。

本实验采用的是化学合成法,即将氯化铟和氯化铵在水溶液中反应,生成氯化铵铟沉淀,再将其在高温下煅烧得到固体超强酸催化剂。

三、实验步骤1.将氯化铟和氯化铵按照1:1的比例加入到500ml三口烧瓶中,加入适量的去离子水,搅拌均匀。

2.将烧瓶放入水浴中,加热至80℃,继续搅拌2小时,使氯化铵铟充分沉淀。

3.将沉淀用去离子水洗涤3次,使其完全去除余氯离子和杂质。

4.将洗涤后的沉淀放入烘箱中干燥至恒重。

5.将干燥后的沉淀放入炉中,在氮气气氛下煅烧4小时,升温速率为5℃/min,煅烧温度为500℃。

6.取出煅烧后的样品,冷却至室温,称取适量样品,用乙醇溶解后进行催化活性测试。

四、实验结果经过催化活性测试,得到的固体超强酸催化剂表现出了较高的催化活性和选择性,对苯甲醇的酯化反应表现出了较好的催化效果。

五、实验结论本实验通过化学合成法制备了固体超强酸催化剂,并对其催化活性进行了测试,结果表明该催化剂具有较高的催化活性和选择性,可用于苯甲醇的酯化反应等催化反应中。

六、实验注意事项1.实验过程中应注意安全,避免接触氯化铟和氯化铵等有毒物质。

2.制备过程中应注意控制反应温度和时间,避免过度煅烧导致催化剂失活。

3.催化活性测试时应注意控制反应条件,避免影响测试结果。

4.实验结束后应及时清洗实验器材,保持实验室环境整洁。

催化剂常用制备方法

催化剂常用制备方法

催化剂常用制备方法固体催化剂的构成●载体(Al2O3 )●主催化剂(合成NH3中的Fe)●助催化剂(合成NH3中的K2O)●共催化剂(石油裂解SiO2-Al2O3催化剂制备的要点●多种化学组成的匹配–各组分一起协调作用的多功能催化剂●一定物理结构的控制–粒度、比表面、孔体积基本制备方法:⏹浸渍法(impregnating)⏹沉淀法(depositing)⏹沥滤法(leaching)⏹热熔融法(melting)⏹电解法(electrolyzing)⏹离子交换法(ion exchanging)⏹其它方法固体催化剂的孔结构(1)比表面积Sg比表面积:每克催化剂或吸附剂的总面积。

测定方法:根据多层吸附理论和BET方程进行测定和计算注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。

内表面积越大,活性位越多,反应面越大。

(2)催化剂的孔结构参数密度:堆密度、真密度、颗粒密度、视密度比孔容(Vg):1克催化剂中颗粒内部细孔的总体积.孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数.(一) 浸渍法⏹通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进行浸渍,然后干燥和焙烧。

⏹由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。

浸渍法的原理●活性组份在载体表面上的吸附●毛细管压力使液体渗透到载体空隙内部●提高浸渍量(可抽真空或提高浸渍液温度)●活性组份在载体上的不均匀分布浸渍法的优点⏹第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。

(如氧化铝,氧化硅,活性炭,浮石,活性白土等)⏹第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强度等。

⏹第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵稀材料尤为重要。

⏹第四,所负载的量可直接由制备条件计算而得。

浸渍的方法⏹过量浸渍法⏹等量浸渍法⏹喷涂浸渍法⏹流动浸渍法1.1、过量浸渍法⏹即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。

工业催化--第八章 工业催化剂制备原理

工业催化--第八章 工业催化剂制备原理
多数非晶形沉淀,在沉淀形成后不采取老化 操作。
– 待沉淀析出后,加入较大量热水稀释,以减少杂 质在溶液中的浓度,同时使一部分被吸附的杂质 转入溶液。
加入热水后,一般不宜放置,而应立即过滤,以防沉 淀进一 步凝聚,并避免表面吸附的杂质包裹在沉淀内 部不易洗净。
洗涤操作的主要目的是除去沉淀中的杂质。
均匀沉淀法常用的类似沉淀母体见下表:
4、浸渍沉淀法
浸渍沉淀法是在普通浸渍法的基础上辅以沉淀 法发展起来的一种新方法。
– 待盐溶液浸渍操作完成之后,再加沉淀剂,而使待 沉淀组分沉积在载体上。
5、导晶沉淀法
借助晶化导向剂(晶种)引导非晶型沉淀转化为 晶型沉淀的快速而有效的方法。
– 普遍用来制备以水玻璃为原料的高硅钠型分子筛, 包括丝光沸石,Y型与X型合成分子筛。
对沉淀剂选择有以下要求:
(1) 尽可能使用易分解并含易挥发成分的沉淀剂
– 常用的沉淀剂有:
碱类(NH4OH、NaOH、KOH); 碳酸盐[(NH4)2CO4、Na2CO4、CO2]; 有机酸(乙酸、草酸)等。 最处理常时用容的易是除NH去4O,H一和般(N不H会4)2遗CO留4,在因催为化铵剂盐中在,洗使涤催和化热剂
如此反复溶解、沉积的结果,消除了细晶体,获得了颗 粒大小均匀的粗晶体。
此时孔隙结构和表面积也发生了相应的变化。
–粗晶体表面积较小,吸附杂质少,吸留在细晶粒之 中的杂质也随溶解过程转入溶液。
– 老化的时间、温度及母液pH值等为老化应考虑的 几项影响因素。
在晶形催化剂制备过程中,老化对催化剂性 能的影响显著。
凝胶法特别适用于主要成分是氧化铝或二氧化 硅的催化剂或载体。
凝胶过程大致可分为缩合与凝结二个阶段。

第九章 催化剂制备基本原理资料

第九章 催化剂制备基本原理资料

第九章催化剂制备基本原理第一课时:固体催化剂一般制备方法及晶体沉淀过程教学目的:了解固体催化剂孔结构与反应的关系及晶体沉淀过程教学难点:晶体沉淀过程知识重点:孔结构与反应的关系及晶体沉淀过程优良的工业催化剂须具有活性、选择性好,寿命长,机械强度高,容易再生,成本价廉,原料自给等各方面的先进指标。

要达到这些指标,都要经历一个周密的筛选和反复试制的过程。

已经投产的催化剂,也有必要通过改造、革新,不断地提高上述某一方面或几方面的性能。

以前研制一种催化剂,要经过数以万计的配方试验,盲目性很大,然而,半个多世纪以来,人们从大量的实践经验逐渐总结出了催化剂的制备规律,并通过基础研究的配合,逐渐建立起有一定科学依据的催化反应与催化剂的分类;而且由于有了比较有效的现代物理、化学的检验和评价方法,现在催化剂制备中的盲目性大大地减少了。

目前工业上使用的催化剂,大多数是固体催化剂,本章介绍的催化剂制备,除特别指出者外,都限于此类型。

催化剂制备一般经过三个步骤:(1) 选择原料及原料溶液配制。

选择原料必须考虑原料纯度(尤其是毒物的最高限量)及催化剂制备过程中原料互相起化学作用后的副产物(正、负离子)的分离或蒸发去除的难易。

(2) 通过诸如沉淀、共沉淀、浸溃、离子交换、化学交联中的一种或几种方法,将原料转变为微粒大小、孔结构、相结构、化学组成合乎要求的基体材科。

(3) 通过物理方法(诸如洗涤、过滤、干燥、再结晶、研磨、成型)及化学方法(诸如分子间缩合、离子交换、加热分解、氧化还原)把基体材料中的杂质去除,并转变为宏观结构、微观结构以及表面化学状态都符合要求的成品。

在这些步骤中涉及化学过程(晶形沉淀或共沉淀,胶凝或共胶凝,复分解,氧化还原,表面官能团交联),流体动力学过程(液体混合,悬浮液分离、扩散、沉降),热过程(加热、冷却、蒸发、凝缩、结晶、吸附、干燥、灼烧),以及机械过程(固体物料的混合、研磨、选粒、成型)。

本章主要叙述制备中为达到一定的宏观与微观结构所要求的化学过程原理及其有关流体动力学过程、热过程、机械过程的某些必要知识。

固体超强酸系列催化剂制备

固体超强酸系列催化剂制备

1. 稀土固体超强酸S2O82- / Sb2O3 / La3+催化剂制备:将8g SbC13溶于40mL乙醇和20mL苯的混合液中,搅拌充分溶解后得透明锑醇液,再向溶液中加入10mL异丙醇,使醇化反应进行得更彻底,然后加入少量阴离子表面活性剂,并滴加氨水,使之发生水解反应,得到胶状沉淀,低温化12h左右,多次洗涤至无Cl-检出。

滤饼于110℃烘干后,研磨过100目筛。

搅拌下将Sb2O3浸渍在一定浓度的(NH4)2S2O8溶液中lh,用量为每克Sb2O3用15mL(NH4)2S2O8溶液,抽滤,烘干,置于马弗炉中焙烧,得S2O82-/ Sb203催化剂。

将Sb2O3浸渍在一定浓度的(NH4)2S2O8和一定浓度的La(NO3)3的混合液1h,抽滤、烘干置于马弗炉在不同的温度和时间下焙烧,得一系列S2O82-/ Sb2O3 / La3+固体超强酸催化剂,置于干燥器中备用。

以代号表示不同制备条件下所得催化剂。

参考文献:稀土固体超强酸S2O82- / Sb2O3 / La3+的制备及催化性能研究舒华1,连亨池2,闫鹏2,文胜2,郭海福2(1.学院生化系,554300;2.学院化学化工学院,526061)稀土,2008.12(29卷第6期)2. 稀土固体超强酸SO42-/TiO2-La2O3制备:将一定量La203溶于浓度为3.0 mol·L-1的稀盐酸中,配成La3+溶液,再按一定量比量取TiC14与La3+溶液混合,用NH4·H 0[ w(NH3)=12%]水解至溶液呈碱性,控制pH值在8~9,沉淀完全,静置24 h后进行抽滤,并用蒸馏水不断洗涤至沉淀无Cl-存在(用0.1 mol·L-1的AgNO3检验),于105℃烘干后研细.再将该粉末浸泡于浓度为0.8 mol·L-1的稀H2SO4中24 h,然后抽滤,放入干燥箱中在110℃烘干,于一定的温度下焙烧活化3 h,冷却后置于干燥器中备用。

固体催化剂的制备方法

固体催化剂的制备方法

固体催化剂的制备方法
固体催化剂的制备方法很多,通常可以分为物理法、化学法和生物法三种类型。

1. 机械混合法
机械混合法是通过粉末磨机、球磨机和高速剪切混合机等机械设备进行材料混合的方法,它可以快速、简便地制备固体催化剂。

机械混合法可以大大降低催化剂的制备成本,但其合成的催化剂粒度分布较广,需要进一步进行热处理。

2. 物理吸附法
物理吸附法是将活性组分直接吸附在载体表面,通常使用颗粒化的活性组分覆盖在载体上形成载体/活性组分组合物。

这种方法可以制备出粒径小而表面积大的催化剂,但由于活性组分粒径不均,其催化效果与均质混合法差异较大。

1. 沉淀法
沉淀法是将活性组分和载体分别分散在溶液中,然后通过将两者混合,加热、搅拌等方法使其沉淀在一起形成固体催化剂。

该方法具有制备工艺简单、操作方便、成本低等优点,可以制备出具有高度纯度和均匀分布的催化剂。

2. 溶胶-凝胶法
溶胶-凝胶法是将活性组分和载体分别分散在溶液中,形成胶体,通过淋洗、离心、干燥等方法,从而形成具有肖楞结构的带有孔道的高表面积催化剂。

该方法具有制备工艺精细、催化剂性能优良等优点,但对于某些组分需要煅烧或二次合成。

生物法制备固体催化剂采用生物技术将活性组分整合到载体中。

生物制备可以快速、可控地制备出催化剂,其制备过程中不需要高温、高压等条件,不会产生废水和废气,符合绿色环保要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.催化剂的发展离不开催化新材料的开发,例如非晶态材料、纳米材料和介孔分子筛的合成和大量的应用实践。

同时,催化科学还有催化剂表征技术的发展。

2.非晶态材料:非晶态材料也叫无定形或玻璃态材料, 这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数。

普通玻璃是固体吗?你一定会说,当然是固体。

其实,它不是处于固态(结晶态)。

对这一点,你一定会奇怪。

这是因为玻璃与晶体有不同的性质和内部结构。

你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。

也就是说玻璃没有一个固定的熔点。

此外,它的物理性质也“各向同性”。

这些都与晶体不同。

经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。

只不过“类晶区”彼此不能移动,造成玻璃没有流动性。

我们将这种状态称为“非晶态”。

严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。

因此,“非晶态”可以作为另一种物态提出来。

除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。

纳米材料:纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

介孔分子筛:介孔材料是一种孔径介于微孔与大孔之间的具有巨大表面积和三维孔道结构的新型材料。

介孔材料的研究和开发对于理论研究和实际生产都具有重要意义。

它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。

它的诱人之处还在于其在催化,吸附,分离及光,电,磁等许多领域的潜在应用价值。

3.催化剂颗粒三重结构:crystal(晶体,可以使无孔或有规则孔道的)→grain(晶粒,若干晶体组成)→particle(颗粒)
4.固体催化剂的分类:所催化的反应物质一般是流体(液体或气体),与反应物不处于同一相中,因此为非均相催化剂。

区别于均相催化剂(催化剂与反应物处于同一相)
第二章金属氧化物类
绝大多数固体催化剂都是通过溶液制备的。

对溶液来说,溶质的结晶与温度和溶质的浓度有关。

结晶→过饱和。

过饱和区中,沉淀成粒子分两步:成核、晶粒生长。

沉淀法,氢氧化物和碳酸盐是比较理想的沉淀物。

因为1.过渡金属的这些盐类的溶解度很低,能达到很高的过饱和度,是沉淀获得的粒子比较细2.用加热的方法可以使之很容易分解得到对应高表面积氧化物而没有留下毒物(硫酸盐分解
的硫就是催化剂的毒物)3.氢氧化物和碳酸盐分解产生的安全和环境问题是最小的。

沸石(zeolite)是一种矿石,最早发现于1756年。

瑞典的矿物学家克朗斯提(Cronstedt)发现有一类天然硅铝酸盐矿石在灼烧时会产生沸腾现象,因此命名为“沸石”(瑞典文zeolit)。

在希腊文中意为“沸腾”(zeo)的“石头”(lithos)。

沸石分子筛是结晶铝硅酸金属盐的水合物,其化学通式为:Mx/m[(AlO2)x·(SiO2)y]·zH2O。

M代表阳离子,m表示其价态数,z表示水合数,x和y是整数。

沸石分子筛活化后,水分子被除去,余下的原子形成笼形结构,孔径为3~10Å。

分子筛晶体中有许多一定大小的空穴,空穴之间有许多同直径的孔(也称“窗口”)相连。

由于分子筛能将比其孔径小的分子吸附到空穴内部,而把比孔径大的分子排斥在其空穴外,起到筛分分子的作用,故得名分子筛。

水热法是19 世纪中叶地质学家模拟自然界成矿作用而开始研究的。

1900 年后科学家们建立了水热合成理论,以后又开始转向功能材料的研究。

目前用水热法已制备出百余种晶体。

水热法又称热液法,属液相化学法的范畴。

是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的化学反应。

水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。

其中水热结晶用得最多。

水热结晶主要是溶解———再结晶机理。

首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。

利用强烈对流(釜内上下部分的温度差而在釜内溶液产生) 将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区) 形成过饱和溶液,继而结晶。

相关文档
最新文档