人教版八年级数学上册第10讲 轴对称 讲义

合集下载

八年级上册数学轴对称知识点梳理

八年级上册数学轴对称知识点梳理

八年级上册数学轴对称知识点梳理
人教版八年级上册数学轴对称知识点梳理
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的`步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。

13.直角三角形中,30角所对的直角边等于斜边的一半。

14.直角三角形斜边上的中线等于斜边的一半
【人教版八年级上册数学轴对称知识点梳理】。

初中数学人教版八年级上册第十三章 轴对称说课稿

初中数学人教版八年级上册第十三章 轴对称说课稿

《轴对称》说课稿尊敬的各位评委、各位老师,大家好!我今天说课的题目是《轴对称》。

下面我从教材分析、教法与学法分析、教学过程和教学设计说明等方面进行阐述。

一、教材分析(一)地位与作用《轴对称》是人教版八年级上第十三章第一节,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称、中心对称图形、等腰三角形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。

(二)教学目标分析知识与技能目标——理解轴对称图形,两个图形关于某直线对称的概念。

了解两种图案的对称轴、对应点,区别和联系.过程与方法目标——经历“观察--比较--操作--概括--检验--应用”的学习过程,培养学生的动手实践能力、抽象思维和空间想象能力.情感态度与价值观目标——通过欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它丰富的文化价值,提高学生的数学审美意识和创新精神.(三)教学重点、难点分析重点:轴对称图形和两个图形关于某直线对称的概念.难点:比较观察轴对称图形和两个图形关于某直线对称的区别和联系.二、教法与学法分析(1)教法分析新课程理念强调“经历过程与获得结论同样重要”,但我觉得有时过程比结论更有意义,教学时我采用了探究式教学方法,整个探究的过程充满了师生间的交流和互动,体现了教师是教学活动的组织者、引导着、合作者,学生才是学习的主体.(2) 学法分析本节课针对学生的认知规律,根据学生指导自主性和个体差异性原则,教学时指导他们动手操作、合作交流,体验发现问题、探索问题和解决问题的学习过程,参与知识的发生、发展、形成的过程,使学生掌握知识.三、教学过程分析探究活动(一):轴对称图形1、情景导入、感受生活(用多媒体演示生活中的有关画面)图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习

第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。

轴对称(全章知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册基础

轴对称(全章知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册基础

专题13.12轴对称(全章知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【知识点二】作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.【知识点三】等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.第二部分【题型展示与方法点拨】【题型1】利用轴对称的性质求值【例1】(2024八年级上·江苏·专题练习)如图,点P 在四边形ABCD 的内部,且点P 与点M 关于AD 对称,PM 交AD 于点G ,点P 与点N 关于BC 对称,PN 交BC 于点H ,MN 分别交AD BC ,于点E F ,.(1)连接PE PF ,,若12cm MN =,求PEF !的周长;(2)若134C D ∠+∠=︒,求HPG ∠的度数.【答案】(1)12cm (2)134°【分析】本题主经考查了轴对称与多边形综合.熟练掌握轴对称性质,多边形内角和公式,是解决问题的关键.n 边形内角和公式()2180n -⋅︒.(1)根据轴对称性质得到,PE ME =,PF NF =,得到PEF !的周长等于线段MN 的长度,为12cm .(2)根据轴对称性质得到,PM AD ⊥,90PGA ∠=︒,PN BC ⊥,90PHB ∠=︒,根据四边形ABCD 内角和为360︒与134C D ∠+∠=︒,得到226A B ∠+∠=︒,根据五边形ABFPE 内角和为540︒,得到134HPG ∠=︒.解:(1)如图,∵点P 与点M 关于AD 对称,∴PE ME =,∵点P 与点N 关于BC 对称,∴PF NF =,∵12ME EF FN MN ++==,∴PEF !的周长为12cm .(2)解:∵点P 与点M 关于AD 对称,∴PM AD ⊥,即90PGA ∠=︒,∵点P 与点N 关于BC 对称,∴PN BC ⊥,即90PHB ∠=︒,∵360A B C D ∠+∠+∠+∠=︒,134C D ∠+∠=︒,∴226A B ∠+∠=︒,∵540A B PHB HPG PGA ∠+∠+∠+∠+∠=︒,∴134HPG ∠=︒.【变式1】(23-24七年级下·广东深圳·期末)如图,四边形ABCD 中,AB AD =,将ABC V 沿着AC 折叠,使点B 恰好落在CD 上的点B '处,若110BAD ∠=︒,则ACB =∠()A .55︒B .45︒C .40︒D .35︒【答案】D 【分析】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB E ',解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.连接AB ',BB ',过A 作AE CD ⊥于E ,依据BAC B AC '∠=∠,DAE B AE '∠=∠,即可得出12CAE BAD ∠=∠,再根据四边形内角和以及三角形外角性质,即可得到1902ACB ACB BAD '∠=∠=︒-∠.解:如图,连接BB ',过A 作AE CD ⊥于E ,点B 关于AC 的对称点B '恰好落在CD 上,AC ∴垂直平分BB ',AB AB '∴=,BAC B AC '∴∠=∠,AB AD = ,AD AB '∴=,又AE CD ⊥Q ,DAE B AE '∴∠=∠,1552CAE BAD ∴∠=∠=︒,又90AEC =︒∠ ,35ACB ACB '∴∠=∠=︒,故选:D .【变式2】(22-23八年级上·江苏镇江·阶段练习)如图,APT △与CPT △关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F ,当A ∠=︒时,FTC C ∠=∠.【答案】36【分析】本题考查轴对称的性质,三角形内角和定理,三角形的外角的性质等知识,证明2APF AFP A ∠∠∠==,利用三角形内角和定理构建方程求解即可.解:APT 与CPT △关于直线PT 对称,A C TA TC APT CPT ∠∠∠∠∴===,,,A APT ∠∠= ,A C APT CPT ∠∠∠∠∴===,FTC C ∠∠= ,22AFP C FTC C A ∠∠∠∠∠∴=+==,180A APF AFP ∠∠∠++=︒ ,5180A ∴∠=︒,36A ∴∠=︒,故答案为:36.【题型2】利用折叠的特征求值【例2】(23-24七年级下·河南新乡·期末)如图,在长方形纸片ABCD 中,点E 在边AD 上,点F 在边BC 上,四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上;将AED '△沿ED '折叠得到A ED ''△且点A '恰好落在边BC 上.(1)若77BFE ∠=︒,则BFC '∠=.(2)若50A D B '∠='︒,求A EF '∠的度数.【答案】(1)26︒(2)52.5A EF '∠=︒【分析】本题考查了折叠的性质,熟练用折叠的性质进行角度的转换是解题的关键.(1)根据折叠的性质可得EFC EFC '∠=∠,设BFC x '∠=,则可得77EFC x '∠=+︒,根据180EFB EFC ∠+∠=︒列方程,即可解答;(2)根据50A D B '∠='︒可求得EA F '∠,再求出AED '∠和D EA ''∠,利用折叠的性质即可得到D EF '∠,即可解答.解:(1) 四边形CDEF 沿EF 翻折得到四边形C D EF ''且点D ¢恰好落在边AB 上,EFC EFC '∴∠=∠,设BFC x '∠=,则可得77EFC EFC x '∠=∠=+︒,根据180EFB EFC ∠+∠=︒可得7777180x ︒++︒=︒,解得26x =︒,故答案为:26︒;(2)解:在A D B '' 中,∵50A D B '∠='︒,90B Ð=°,40D A B ''∴∠=︒,∵点A '恰好落在边BC 上,90D A E A ''∴∠=∠=︒.180904050EA F ∴∠=︒-︒-︒='︒,AD BC ∥ ,50AEA EA F ''∴∠=∠=︒,1252AED A ED AEA ∴︒''''∠=∠=∠=由折叠的性质,知()1180257752D EF DEF ∠=∠=⨯︒-︒=︒'.52.5A EF D EF A ED ∴∠=∠-'='∠''︒.【变式1】(23-24九年级上·山东枣庄·开学考试)如图,四边形ABCD 为一矩形纸带,点E F 、分别在边AB CD 、上,将纸带沿EF 折叠,点A D 、的对应点分别为A ''、D ,若235∠=︒,则1∠的度数为()A .62.5︒B .72.5︒C .55︒D .45︒【答案】B 【分析】本题考查了邻补角的性质,折叠的性质及平行线的性质,由235∠=︒可得145AEA '∠=︒,再利用折叠的性质求得AEF ∠的度数,然后利用平行线性质即可求得答案,掌握折叠的性质是解题的关键.解:∵235∠=︒,∴18035145AEA ∠=︒-︒='︒,由折叠性质可得,172.52AEF A EF AEA ∠='∠='∠=︒,∵AB CD ∥,∴272.5AEF ∠=∠=︒,故选:B .【变式2】(2024八年级上·江苏·专题练习)如图,在ABC V 和DCB △中,90,,A D AC BD ∠=∠=︒相交于点E ,AE DE =.将CDE 沿CE 折叠,点D 落在点D ¢处,若30BED ∠='︒,则BCD '∠的大小为.【答案】22.5︒【分析】本题主要考查了翻折变换(折叠问题),全等三角形的判定与性质等知识点,解决本题的关键是掌握翻折的性质.证明()ASA ABE DCE ≌,得,ABE DCE BE CE ∠=∠=,然后由翻折的性质和三角形内角和定理即可解决问题.解:在ABE 和DCE △中,90A D AE DE AEB DEC ∠==︒⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE DCE ≌,∴,ABE DCE BE CE ∠=∠=,∴EBC ECB ∠=∠,由翻折可知:,D CE DCE D EC DEC ''∠=∠∠=∠,∵30BED ∠='︒,∴()118030752D EC DEC AEB ∠=∠=∠=︒-︒='︒,∴907515ABE ∠=︒-︒=︒,∴15ABE DCE D CE '∠=∠=∠=︒,∵,75BE CE AEB =∠=︒,∴37.5EBC ECB ∠=∠=︒,∴37.51522.5BCD EBC D CE ∠=∠-∠=︒-︒=''︒,故答案为:22.5︒.【题型3】线段垂直平分线的性质与判定求值【例3】(23-24八年级上·江苏宿迁·期中)如图,AD 是ABC 的角平分线,DE DF 、分别是ABD △和ACD 的高.(1)试说明AD 垂直平分EF ;(2)若8628ABC AB AC S === ,,,求DE的长.【答案】(1)详见解析(2)4【分析】此题考查了角平分线的性质、全等三角形的判定和性质、垂直平分线的判定等知识,证明()Rt Rt HL AED AFD ≌是解题的关键.(1)利用角平分线的性质证明DE DF =,证明()Rt Rt HL AED AFD ≌,则AE AF =,即可证明结论;(2)根据28ABC S =△列式计算即可.解:(1)证明:∵AD 是ABC ABC △△的角平分线,DE DF 、分别是ABD △和ACD 的高.∴DE DF =,在Rt AED △与Rt AFD △中,AD AD DE DF =⎧⎨=⎩,∴()Rt Rt HL AED AFD ≌,∴AE AF =,∵DE DF =,∴AD 垂直平分EF ;(2)解:∵DE DF =,∴()11128222ABD ACD S S AB ED AC DF DE AB AC +=⋅+⋅=+= ,∵14AB AC +=,∴4DE =.【变式1】(23-24八年级上·四川巴中·期末)如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,连接AD .若7AC =,12BC =,则ADC △的周长为()A .12B .14C .19D .26【答案】C【分析】由作图可知,MN 是线段AB 的垂直平分线,根据垂直平分线的性质,可得DA DB =,通过等量代换即可求解,本题考查了垂直平分线的判定和性质,解题的关键是:从作图方法中识别出垂直平分线的作法.解:由题意可得,MN 是线段AB 的垂直平分线,DA DB ∴=,71219ABC C AC AD CD AC CD BD AC BC =++=++=+=+= ,故选:C .【变式2】(23-24九年级上·重庆·期末)如图在ABC V 中,D 为AB 中点,DE AB ⊥,180ACE BCE ∠+∠=︒,EF BC ⊥交BC 于F ,8AC =,12BC =,则BF 的长为.【答案】10【分析】本题考查了线段垂直平分线的性质定理,全等三角形的判定及性质,角平分线的性质定理等;连接AE ,过点E 作EG AC ⊥交AC 的延长线于点G ,由线段垂直平分线的性质得EA EB =,由角平分线的性质得EG EF =,由HL 得Rt Rt EFC EGC ≌ 由全等三角形的性质得CF CG =,同理可得BF AG =,即可求解;掌握相关的判定方法及性质,能根据题意作出恰当的辅助线,构建全等三角形是解题的关键.解:如图,连接AE ,过点E 作EG AC ⊥交AC 的延长线于点G ,D 为AB 中点,DE AB ⊥,EA EB ∴=,180ACE BCE ∠+∠=︒ ,180ACE ECG ∠+∠=︒,ECG BCE ∴∠=∠,EF BC ⊥ ,EG AC ⊥,EG EF ∴=,在Rt EFC △和Rt EGC 中,CE CE EF EG=⎧⎨=⎩,Rt Rt EFC EGC ∴≌ (HL ),CF CG ∴=,同理可得:Rt Rt BFE AGE ≌ ,BF AG ∴=,BC CF AC CG ∴-=+,128CF CF ∴-=+,解得:2CF =,12210BF ∴=-=,故答案:10.【题型4】利用等腰三角形的性质与判定求值或证明【例4】(2024八年级上·江苏·专题练习)如图,在ABC V 中,AC BC =,120ACB ∠=°,CD 是AB 边上的中线,BD 的垂直平分线EF 交BC 于点E ,交AB 于点F ,15CDG ∠=︒.(1)求证:AD AG =;(2)试判断CDE 的形状,并说明理由.【答案】(1)见解析;(2)等边三角形,见解析【分析】本题考查了等腰三角形的性质与判定,线段垂直平分线的性质,等边三角形的判定,掌握等腰三角形的性质与判定是解题的关键.(1)根据等腰三角形的性质得出CD AB ⊥,30A B ==︒∠∠,AD DB =,进而根据15CDG ∠=︒,得出AGD ADG ∠=∠,根据等角对等边即可得证;(2)根据EF 是BD 的垂直平分线,得出DE EB =,根据等边对等角得出30EDB B ∠=∠=︒,进而得出60DCE CDE ∠=∠=︒,可得CDE 是等边三角形.(1)证明:∵AC BC =,120ACB ∠=°,CD 是BC 边上的中线,∴CD AB ⊥,()1180302A B ACB ∠=∠=︒-∠=︒,AD BD =,∴90ADC CDB ∠=∠=︒,∵15CDG ∠=︒,∴9075ADG CDG ∠=︒-∠=︒,∵18075AGD A ADG ∠=︒-∠-∠=︒,∴AGD ADG ∠=∠,∴AD AG =;(2)结论:CDE 是等边三角形.∵EF 垂直平分线段BD ,∴DE EB =,∵30B ∠=︒,∴30EDB B ∠=∠=︒,∴9060CDE EDB ∠=︒-∠=︒,又∵AC BC =,120ACB ∠=°,CD 是BC 边上的中线,∴1602DCB ACB ∠=∠=︒,∴60DCE CDE ∠=∠=︒,∴CDE 是等边三角形.【变式1】(23-24八年级上·湖南株洲·期末)在ABC V 中,36A ∠=︒,72B ∠=︒,则ABC V 是()A .钝角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【答案】B 【分析】本题考查三角形的内角和,等腰三角形的判定,根据三角形的内角和求出72C B ∠=∠=︒即可判断.解:在ABC V 中,36A ∠=︒,72B ∠=︒,∴18072C A B B ∠=︒-∠-∠=︒=∠,∴ABC V 是等腰三角形,故选:B .【变式2】(23-24八年级上·重庆沙坪坝·期末)如图,在ABC ∆中,AB AC =,AD BD =,DE AB ⊥于点E ,若4BC =,BDC 的周长为10,则AE 的长为.【答案】3【分析】本题考查等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.根据已知可得6BD CD +=,从而可得6AB AC ==,然后利用等腰三角形三线合一性质计算解答.解:4BC = ,且BDC 的周长为10,1046BD CD ∴+=-=,AD BD = ,6AD DC ∴+=,6AC ∴=,AB AC = ,6AB ∴=,AD DB = ,DE AB ⊥,132AE AB ∴==.故答案为:3.【题型5】利用等边三角形的性质与判定求值或证明【例5】(2024八年级上·江苏·专题练习)如图,已知Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,BAC ∠的平分线分别交BC ,CD 于E 、F .(1)试说明CEF △是等腰三角形.(2)若点E 恰好在线段AB 的垂直平分线上,试说明线段AC 与线段AB 之间的数量关系.【答案】(1)见解析(2)12AC AB =【分析】(1)首先根据条件90ACB ∠=︒,CD AB ⊥,可证出90B BAC ∠+∠=︒,90CAD ACD ∠+∠=︒,再根据同角的补角相等可得到ACD B ∠=∠,再利用三角形的外角性质可得到CFE CEF ∠=∠,最后利用等角对等边即可得出答案;(2)由线段垂直平分线的性质得到AE BE =,根据等腰三角形的性质得到EAB B ∠=∠,由AE 是BAC ∠的平分线,得到CAE EAB ∠=∠,根据直角三角形的性质即可得到结论.解:(1)∵90ACB ∠=︒,∴90B BAC ∠+∠=︒,∵CD AB ⊥,∴90CAD ACD ∠+∠=︒,∴ACD B ∠=∠,∵AE 是BAC ∠的平分线,∴CAE EAB ∠=∠,∵EAB B CEA CAE ACD CFE ∠+∠=∠∠+∠=∠,,∴CFE CEF ∠=∠,∴CF CE =,∴CEF △是等腰三角形;(2)∵点E 恰好在线段AB 的垂直平分线上,∴AE BE =,∴EAB B ∠=∠,∵AE 是BAC ∠的平分线,∴CAE EAB ∠=∠,∴2CAB B ∠=∠,∵90ACB ∠=︒,∴90CAB B ∠+∠=︒,∴30B ∠=︒,∴12AC AB =.【点拨】此题主要考查了直角三角形综合,熟练掌握直角三角形性质,角平分线性质,三角形外角性质,等腰三角形的判定和性质,线段垂直平分线的性质,是解题的关键.【变式1】(23-24八年级上·福建福州·期末)如果,,a b c 为三角形的三边长,且满足()()()0a b b c c a ---=,那么该三角形的形状为()A .等腰三角形B .等边三角形C .不等边三角形D .无法确定【答案】D【分析】本题考查了等腰三角形和等边三角形的判定,掌握等腰三角形和等边三角形的判定方法是解题关键.根据()()()0a b b c c a ---=得到a b =或a c =或b c =或a b c ==,从而可以判定该三角形的形状.解:∵()()()0a b b c c a ---=,∴0a b -=或0b c -=或0c a -=或0a b b c c a -=-=-=,解得a b =或a c =或b c =或a b c ==,∴该三角形的形状为等腰三角形或等边三角形,故选:D .【变式2】(23-24九年级上·河北邯郸·期末)如图1,ABC V 和ADE V 是等边三角形,连接BD ,CE 交于点F .(1)BD CE 的值为;(2)BFC ∠的度数为︒.【答案】160【分析】本题考查了全等三角形的判定及性质,等边三角形的性质.(1)根据等边三角形的性质得出AB AC =,AD AE =,BAC DAE ∠=∠,再由DAE BAE BAC BAE ∠+∠=∠+∠,得出CAE BAD ∠=∠,利用SAS 可证得CAE BAD ≌△△,从而可得出结论;(2)由()SAS CAE BAD △≌△,可得ABD ACE ∠=∠,再根据AOC BOF ∠=∠,结合三角形内角和即可求解.解:(1)∵ABC V 和ADE V 是等边三角形,∴AB AC =,AD AE =,BAC DAE ∠=∠,∵DAE BAE BAC BAE ∠+∠=∠+∠,∴CAE BAD ∠=∠,∴()SAS CAE BAD △≌△,∴BD CE =,则1BD CE=,故答案为:1;(2)由()SAS CAE BAD △≌△,可得ABD ACE ∠=∠,∵AOC BOF ∠=∠,AOC ACE BAC BOF ABD BFC ∠+∠+∠=∠+∠+∠,∴60CFB BAC ∠=∠=︒,∴60BFC ∠=︒,故答案为:60.【题型6】利用30度所对的直角边等于斜边一半求值或证明【例6】(2024八年级上·江苏·专题练习)在Rt ABC △中,90ACB ∠=︒,M 是边AB 的中点,CH AB ⊥于点H ,CD 平分ACB ∠.(1)求证:CD 平分MCH ∠;(2)过点M 作AB 的垂线交CD 的延长线于点E ,求证:CM EM =;(3)AEM △是什么三角形?证明你的猜想.【答案】(1)见解析(2)见解析(3)AEM △是等腰直角三角形,证明见解析【分析】(1)根据直角三角形斜边上的中线等于斜边的一半得到AM CM BM ==,由等腰三角形的性质得到CAB ACM ∠=∠,由余角的性质得到CAB BCH ∠=∠,等量代换得到BCH ACM ∠=∠,根据角平分线的性质得到ACD BCD ∠=∠,即可得到结论;(2)根据EM AB ⊥,CH AB ⊥,得到EM AB ∥,由平行线的性质得到HCD MED ∠=∠,由于HCD MCD ∠=∠,于是得到MCD MED ∠=∠,即可得到结论;(3)根据CM EM =,AM CM BM ==,于是得到EM AM BM ==,由EM AB ⊥,推出AEM △是等腰直角三角形.(1)证明:Rt ABC △中,90ACB ∠=︒,M 是AB 边的中点,AM CM BM ∴==,CAB ACM ∴∠=∠,90CAB ABC ∴∠=-∠,CH AB ⊥ ,90BCH ABC ∴∠=-∠,CAB BCH ∴∠=∠,BCH ACM ∴∠=∠,CD 平分ACB ∠,ACD BCD ∴∠=∠,ACD ACM BCD BCH ∴∠-∠=∠-∠,即MCD HCD ∠=∠,CD ∴平分MCH ∠;(2)证明:EM AB ⊥ ,CH AB ⊥,∴EM CH ∥,HCD MED ∴∠=∠,HCD MCD ∠=∠ ,MCD MED ∴∠=∠,CM EM ∴=;(3)解:AEM △是等腰直角三角形,CM EM = ,AM CM BM ==,EM AM BM ∴==,EM AB ⊥ ,AEM ∴△是等腰直角三角形.【点拨】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定和性质,角平分线的定义,等腰三角形的性质,熟练掌握各定理是解题的关键.【变式1】(23-24九年级上·安徽合肥·期末)如图,ABC V 中,9030ACB A ∠=︒∠=︒,,CD AB ⊥于点D ,若1BD =,则AD 的长度为()A .5B .4C .3D .2【答案】C 【分析】本题主要考查直角三角形的性质,熟练运用“在直角三角形中,30︒角所对的直角边等于斜边的一半”是解题的关键.由含30︒角的直角三角形的性质可分别求得BC 和AB 的长,进而求得AD 的长.解:∵在ABC V 中,9030ACB A ∠=︒∠=︒,,∴=60B ∠︒,∵CD AB ⊥,∴30BCD ∠=︒,∴在Rt BCD △中,22BC BD ==,∴在Rt ABC △中,24AB BC ==,∴413AD AB BD =-=-=.故选:C .【变式2】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90C ∠=︒,AD 是CAB △的平分线,DE 垂直平分AB ,若3CD =,则BD =.【答案】6【分析】本题主要考查线段垂直平分线的性质、30︒所对的直角边是斜边的一半,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.由角平分线和线段垂直平分线的性质可求得30B CAD DAB∠=∠=∠=︒,在Rt ACD△中,根据直角三角形的性质可求得AD,则可得出BD的长.解:DE垂直平分AB,DA DB∴=,B DAB∴∠=∠,AD平分CAB∠,CAD DAB∴∠=∠,90C∠=︒,390CAD∴∠=︒,30CAD∴∠=︒,26AD CD∴==,6BD AD∴==.故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2024·四川巴中·中考真题)如图,在ABCV中,D是AC的中点,CE AB⊥,BD与CE交于点O,且BE CD=.下列说法错误的是()A.BD的垂直平分线一定与AB相交于点EB.3BDC ABD∠=∠C.当E为AB中点时,ABCV是等边三角形D.当E为AB中点时,34BOCAECSS=△△【答案】D【分析】连接DE ,根据CE AB ⊥,点D 是AC 的中点得12DE AD CD AC ===,则BE DE =,进而得点D 在线段BD 的垂直平分线上,由此可对选项A进行判断;设ABD α∠=,根据BE DE =得EDB ABD α∠=∠=,的2AED EDB ABD α∠=∠+∠=,再根据DE AD =得2A AED α∠=∠=,则3BDC A ABD α∠=∠+∠=,由此可对选项B进行判断;当E 为AB 中点时,则12BE AB =,CE 是线段AB 的垂直平分线,由此得AC BC =,然后根据12BE AB =,12CD AC =,BE CD =得AB AC =,由此可对选项C进行判断;连接AO 并延长交BC 于F ,根据ABC V 是等边三角形得30OBC OAC ∠=∠=︒,则OA OB =,进而得2OB OF =,3AF OF =,由此得12OBC S BC OF ∆=⋅,1322ABC S BC AF BC OF ∆=⋅=⋅,由此可对选项D进行判断,综上所述即可得出答案.解:连接DE ,如图1所示:CE AB ⊥ ,点D 是AC 的中点,DE ∴为Rt AEC △斜边上的中线,12DE AD CD AC ∴===,BE CD = ,BE DE ∴=,∴点D 在线段BD 的垂直平分线上,即线段BD 的垂直平分线一定与AB 相交于点E ,故选项A 正确,不符合题意;设ABD α∠=,BE DE = ,EDB ABD α∴∠=∠=,2AED EDB ABD α∴∠=∠+∠=,DE AD = ,2A AED α∴∠=∠=,3BDC A ABD α∴∠=∠+∠=,即3BDC ABD ∠=∠,故选B 正确,不符合题意;当E 为AB 中点时,则12BE AB =,CE AB ⊥ ,CE ∴是线段AB 的垂直平分线,AC BC ∴=,12BE AB = ,12CD AC =,BE CD =,AB AC ∴=,AC BC AB ∴==,ABC ∴ 是等边三角形,故选C 正确,不符合题意;连接AO ,并延长交BC 于F ,如图2所示:当E 为AB 中点时,点D 为AC 的中点,∴根据三角形三条中线交于一点得:点F 为BC 的中点,当E 为AB 中点时,ABC V 是等边三角形,60ABC BAC ∴∠=∠=︒,AF BC ⊥,AF 平分OAC ∠,BD 平分ABC ∠,30OBC OAC ∴∠=∠=︒,OA OB ∴=,在Rt OBF △中,2OB OF =,2OA OB OF ∴==,3AF OA OF OF ∴=+=,12OBC S BC OF ∆∴=⋅,1322ABC S BC AF BC OF ∆=⋅=⋅,∴13OBC ABC S S ∆∆=,故选项D 不正确,符合题意.故选:D .【点拨】此题主要考查了直角三角形斜边上的中线,线段垂直平分线的性质,等腰三角形的判定与性质,等边三角形的判定和性质,理解直角三角形斜边上的中线,线段垂直平分线的性质,熟练掌握等腰三角形的判定与性质,等边三角形的判定和性质是解决问题的关键.【例2】(2024·江苏宿迁·中考真题)如图,在ABC V 中,5030B C ︒∠∠=︒=,,A 是高,以点A 为圆心,A 长为半径画弧,交AC 于点E ,再分别以B 、E 为圆心,大于12BE 的长为半径画弧,两弧在BAC ∠的内部交于点F ,作射线AF ,则DAF ∠=.【答案】10︒/10度【分析】本题主要考查角平分线的作法及三角形内角和定理,根据题意得出AF 平分BAC ∠,然后利用三角形内角和定理求解即可.解:因为5030B C ∠=︒∠=︒,,所以1805030100BAC ∠=︒-︒-︒=︒,根据题意得:AF 平分BAC ∠,所以1502BAF BAC ∠==︒,因为AD 为高,所以90BDA ∠=︒,所以180509040BAD ∠=︒-︒-︒=︒,所以504010DAF BAF BAD ∠=∠-∠=︒-︒=︒,故答案为:10︒.2、拓展延伸【例】(22-23八年级上·吉林长春·阶段练习)在等腰ABC V 中,CA CB =,30B ∠=︒,将一块足够大的直角三角尺PMN (90M ∠=︒、30MPN ∠=︒)按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当P 运动到AB 中点时,α=__________度;(2)当45α=︒时,请写出图中所有的等腰三角形(ABC V 除外)__________.(3)在点P 的滑动过程中,当PCD △的形状是以PC 为底的等腰三角形时,请在指定位置画出此时形成的图形,并指出此时图中的所有直角三角形(PMN 除外).不用说明理由.【答案】(1)60;(2)ACP △和PCD △;(3)此时图中的所有直角三角形是PBC △和APD △.【分析】本题属于三角形综合题,考查了全等三角形的判定与性质,等腰三角形的判定,外角性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.(1)根据等腰三角形的性质得到CP AB ⊥,求得90BPC ∠=︒,根据三角形的内角和定理即可得到结论;(2)根据三角形的内角和定理得到120BCA ∠=︒,求得1204575ACP ∠=︒-︒=︒,根据等腰三角形的判定定理得到ACP △是等腰三角形,求得PDC PCD ∠=∠,根据等腰三角形的判定定理得到PCD △是等腰三角形(3)当PD CD =时,PCD △以PC 为底的等腰三角形,根据等腰三角形的性质得到30PCD CPD ∠=∠=︒,即12030α-=°°,推出PBC △是直角三角形,根据三角形的内角和定理得到60CPB ∠=︒,求得603090BPD ∠=︒+︒=︒,于是得到APD △是直角三角形.解:(1)AC BC = ,点P 为AB 中点,CP AB ∴⊥,90BPC ∴∠=︒,30B ∠=︒ ,903060α∴=︒-︒=︒,故答案为:60;(2)CA CB = ,30B ∠=︒,30A B ∴∠=∠=︒,120BCA ∴∠=︒,45BCP α∠==︒ ,1204575ACP ∴∠=︒-︒=︒,75APC BCP B ∠=∠+∠=︒ ,ACP APC ∴∠=∠,ACP ∴△是等腰三角形,30CPD ∠=︒ ,45APD ∴∠=︒,75CDP A APD ∴∠=∠+∠=︒,PDC PCD ∴∠=∠,PCD ∴ 是等腰三角形,故答案为:ACP △和PCD △;(3)如图,120ACB ∠=︒ ,120PCD α∴∠=︒-,当PD CD =时,PCD △以PC 为底的等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;PBC ∴△是直角三角形,60CPB ∴∠=︒,6030BPD ∴∠=︒+︒,90APD ∴∠=︒,APD ∴ 是直角三角形,综上所述,此时图中的所有直角三角形是PBC △和APD △.。

轴对称(第一课时)(课件)人教版数学八年级上册

轴对称(第一课时)(课件)人教版数学八年级上册

课堂小结
定义
1、轴对称图形 2、两个图形成轴对称
轴对称图形
区别和联

轴对称图形和两个图形成轴对称
应用
利用轴对称图形和两个图形成轴 对称的定义进行判断
课后作业
1.把一圆形纸片两次对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分展开后 的平面图形是( B )
A
B
C
D
课后作业
2.如图,在3×3的正方形网格中,已有两个小正方形被 涂黑,再将图中其余小正方形任意涂黑一个,使整个图案 (包括网格)构成一个轴对称图形,则涂色的方法有( D )
追问: 你能再举出一些两个图形成轴对称的例子吗?
互动新授
A
B C
小试牛刀
1、分别观察以下每组图形,判断它们是否关于某条直线成轴对称?
E
E
E
EE
E
不是
不是

E
E
E E E
E

不是

互动新授 仔细观察,下列两个图形有什么区别?
它们之间有什么联 系和区别呢?
轴对称图形
两个图形成轴对称
总结归纳 轴对称图形和轴对称的区别与联系
A.2种 C.4种
B.3种 D.5种
1条
2条
4条
无数条
互动新授
观察下面每对图形(如图),你能类比前面的内容概括出 它们的共同特征吗?
互动新授 共同特征:每一对图形沿着虚线折叠,左边的图形都能与右
边的图形重合.
结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形 重合,那么就说这两个图形关于这条直线(成轴)对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?





方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!

新人教版八年级数学上册 第十三章 轴对称全章课件

新人教版八年级数学上册    第十三章 轴对称全章课件

(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
重合,那么就说这两个图形关于这条直线对称,这条直线就是它
的对称轴.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分
1.下列表情图中,属于轴对称图形的是( D )
2.下列图形,对称轴最多的是( D )
A.长方形
B.正方形
C.角
D.圆
3.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
4.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为__1_0_°___.
A
A′
B
N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.

人教版八年级上册数学-13《轴对称》知识点及典型例题

人教版八年级上册数学-13《轴对称》知识点及典型例题

⼈教版⼋年级上册数学-13《轴对称》知识点及典型例题第⼗三章《轴对称》⼀、知识点归纳(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。

连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。

5.画⼀图形关于某条直线的轴对称图形步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)所以线段的垂直平分线能够看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称2、点(x,y)关于y轴对称的点的坐标为(x,-y);(五)关于坐标轴夹⾓平分线对称点P(x,y)关于第⼀、三象限坐标轴夹⾓平分线y=x对称的点的坐标是(y,x)点P(x,y)关于第⼆、四象限坐标轴夹⾓平分线y=-x对称的点的坐标是(-y,-x)(六)关于平⾏于坐标轴的直线对称点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y);点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y);(七)等腰三⾓形1、等腰三⾓形性质:性质1:等腰三⾓形的两个底⾓相等(简写成“等边对等⾓”)性质2:等腰三⾓形的顶⾓平分线、底边上的中线、底边上的⾼相互重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲 轴对称
知识点梳理:
1、关于“轴对称图形”与“轴对称”的认识
⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。

⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。

两个图形中的对应点叫做__________
2、线段垂直平分线的性质
定义:过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又叫线段的中垂线 性质:线段垂直平分线上的点与这条线段两个端点的距离 .
判定:与一条线段两个端点距离相等的点,在这条线段的 上.
1、如图:直线CD ⊥AB ,垂足为E ,PA=PB
且AE=BE ,P 是CD 上一点,
3、
4、画线段AB 的垂直平分线的方法:
5、画一个图形的轴对称图形的方法:
6、点),(y x 关于x ),(b a 关于y 轴对称的点的坐标为
【经典例题】
例1、(牡丹江)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A .
B .
C .
D .
例2、观察下图中各组图形,其中成轴对称的为___________ (填序号).
例3、李芳同学球衣上的号码是253,当他把镜子放在号码的正前方时,镜子中的号码是( ) 例4、如图,△ABC 中边AB 的垂直平分线分别交BC ,AB 于点D ,E ,AE=3cm ,△ADC 的周长为9cm ,则△ABC 的周长是多少?
例5、如图,△ABC 的内部有一点P ,且D ,E ,F 是P 分别以AB ,BC ,AC 为对称轴的对称点.若△ABC 的内角∠A=70°,∠B=60°,∠C=50°,求∠ADB+∠BEC+∠CFA 的度数
例6、如图所示,∠ABC 内有一点P ,在BA 、BC 边上各取一点P 1、P 2,使△PP 1P 2的周长最小. 例7、例题: 已知△ABC ,过点A 作直线L .
求作:△A ′B ′C ′使它与△ABC 关于L 对称.
作法:(1)作点C 关于直线L 的对称点C ′; (2)作点B 关于直线L 的对称点B ′;
河岸A (3)点A 在L 上,故点A 的对称点A ′与A 重合; (4)连结A ′B ′、B ′C ′、C ′A ′.
则△A ′B ′C ′就是所求作的三角形.
例8.在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .
例9.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,5),B (-4,3),C (-1,1). 作出△ABC 关于y 轴对称的△A ′B ′C ′,请直接写出点B ′关于x 轴的对称点的坐标.
经典练习:
1.下列几何图形中,○
1线段 ○2角 ○3直角三角形 ○4半圆,其中一定是轴对称图形的有( )
A .1个
B .2个
C .3个
D .4

2.图9-19中,轴对称图形的个数是( )
A .4个
B .3个
C .2个
D .1

3.下列图形中不是轴对称图形的是( )
A .有两个角相等的三角形;
B .有一个角是45°的直角三角形.
C .有两个角分别是50°和80°的三角形
D .平行四边形.
4.如图9-13所示,△ABC 中,BC 边的垂直平分线DE 交BC 于D ,交AC 于E ,BE =5厘米,△BCE 的周长是18厘米,则BC = 厘米.
5.如图9-14,在△ABC 中,∠C =90°.BD 平分∠ABC 交AC 于D ,DE 垂直平分AB ,若DE =1厘米,BD=2厘米,则AC = 厘米.
6.如图,若P 为∠AOB 内一点,分别作出P 点关于
OA 、OB 的对称点P 1P 2,连接P 1P 2交OA 于M ,
交OB 于N ,P 1P 2=15,则△PMN 的周长是________.
7.在某一地区有居民区A 、B 、C ,如图9-15.现想
在此地区建造一牛奶站P ,使P 到A 、B 、C 三点的距离
相等.请你作出P 点.
8、如图,A 、B 两个村庄在河岸的同一侧,
现要在河岸上开设取水口,铺设灌溉管道。

为了使管道铺设距离最短,请在图中画出
取水口P 的位置。

9.已知∠AOB ,试在∠AOB 内确定一点P ,
如图9-16,使P 到OA 、OB 的距离相等,
并且到M 、N 两点的距离也相等.
10.如图,在△ABC 中,DM 、EN 分别垂直平分AC 和BC ,交BC 于M 、N , (1)若△CMN 的周长为18cm ,求AB 的长。

(2)若∠MCN=48°,求∠ACB 的度数。

11.点(1,3)P -关于x 轴的对称点的坐标为 .点)0,1(-关于y 轴的对称点为 。

12. (2019•眉山)如图,图中的小方格都是边长为1的正方形,△ABC 的顶点坐标为A (0,-2)、B (3,-1)、C (2,1).
(1)请在图中画出△ABC 关于y 轴对称的图形△AB ′C ′;
(2)写出点B ′和C ′的坐标.
课后巩固:
1、下列语句中正确的有( )句.
①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.
(A )1 (B )2 (C )3 (D )4
2.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )
A.5个
B.3个
C.4个
D.6个
3、小明从镜子里看到对面电子钟的像如图所示,那么实际时间是( )
A 、21:10
B 、10:21
C 、10:51
D 、12:01
4.如图所示,∠BAC =105°,若MP 和NQ 分别垂直平分AB 和AC .求∠PAQ
的度数.
5.如图,△ABC 中,AB=AC ,DE 是AB 的垂直平分线,
AB=8,BC=4,∠A=36°,则∠DBC= ,
△BDC 的周长C △BDC = . 6、如图,已知∠AOB=40°,CD 为OA 的垂直平分线,求∠ACB 的度数。

7.如图,△ABC 中,∠B =80°,AC 与AC 交于点E
,且∠ACD ∶∠BCD =2:1,则∠。

相关文档
最新文档