一次函数与二次函数的综合
中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知函数y1=mx2+n,y2=mx+n(m>0),当p<x<q时,y1<y2,则()A.0<q−p<2B.0<q−p≤2C.0<q−p<1D.0<q−p≤12.一次函数y=bx+a(b≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.4.小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是()A.①B.②C.③D.④5.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣734或﹣12B.﹣734或2C.﹣12或2D.﹣694或﹣126.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>174或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).正确的有()A.1个B.2个C.3个D.4个7.直线y=ax﹣6与抛物线y=x2﹣4x+3只有一个交点,则a的值为()A.a=2B.a=10C.a=2或a=﹣10D.a=2或a=108.已知一次函数y1=2x−2,二次函数y2=x2,对于x的同一个值,这两个函数所对应的函数值分别为y1和y2,则下列表述正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小关系不确定9.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>410.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A.3B.4C.5D.611.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=-3(t-20)2+1200(5≤t≤20)12.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y= 12x2+bx+c的顶点,则抛物线y= 12x2+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个二、填空题13.抛物线y=2x2+x+a与直线y=−x+3没有交点,则a的取值范围是.14.如图,已知抛物线y1=−2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0,下列判断:①当x<0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是−12或√22.其中正确的是.15.如图,已知直线y=﹣34x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34x+3于点Q,则当PQ=BQ时,a的值是.16.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…21的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.18.直线y=x+2与抛物线y=x2的交点坐标是.三、综合题19.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?20.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.21.如图,已知抛物线 y =−12x 2+bx +c 经过A (2,0)、B (0,-6)两点,其对称轴与轴交于点C(1)求该抛物线和直线BC 的解析式;(2)设抛物线与直线BC 相交于点D ,连结AB 、AD ,求△ABD 的面积.22.某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量 y (万件)与售价 x (元/件)的函数关系式为 y ={−2x +140,(40≤x <60)−x +80.(60≤x ≤70)(1)当售价为60元/件时,年销售量为 万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少? (3)若销售该产品的年利润不少于750万元,直接写出 x 的取值范围.23.抛物线y =ax 2与直线y =2x -3交于点A(1,b).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.24.如图,平面直角坐标系中,抛物线 y =ax 2+bx +c 经过 A(−1,0) , B(3,0) 两点,与 y 轴交于点 C(0,−3) ,点 D 是抛物线的顶点.(1)求抛物线的解析式;(2)设P(m,n)为对称轴上一点,若∠PCD为钝角,求n的取值范围.参考答案1.【答案】D 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】B 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】D 13.【答案】a >3.5 14.【答案】③④15.【答案】﹣1,4,4+2 √5 ,4﹣2 √5 16.【答案】x <﹣1或x >4 17.【答案】y =83x 218.【答案】(-1,1)和(2,4)19.【答案】(1)解:根据题意:y =20000+ x 100 ×10000=100x+20000(2)解:设所获的利润w (元) 则W =(2200﹣1200﹣x )(100x+20000) =﹣100(x ﹣400)2+36000000;所以当降价400元,即定价为2200﹣400=1800元时,所获利润最大 (3)解:根据题意每天最多接受50000(1﹣0.05)=47500台 此时47500=100x+20000 解得:x =275.所以最大量接受预订时,每台定价2200﹣275=1925元.20.【答案】(1)解:由题意 {4a −2b +2=64b +2b +2=2 解得 {a =12b =−1∴抛物线解析式为y= 12x 2﹣x+2.(2)解:∵y= 12 x 2﹣x+2= 12 (x ﹣1)2+ 32.∴顶点坐标(1,3 2)∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3)∴S△BDC=S△BDH+S△DHC= 12×32•3+ 12×32•1=3.(3)解:由{y=−12x+by=12x2−x+2消去y得到x2﹣x+4﹣2b=0当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0∴b= 15 8当直线y=﹣12x+b经过点C时,b=3当直线y=﹣12x+b经过点B时,b=5∵直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点∴158<b≤3.21.【答案】(1)解:将A(2,0)、B(0,-6)代入y=−12x2+bx+c中可得{−12×22+2b+c=0c=−6解得:b=4;c=-6∴该抛物线的解析式为y=−12x2+4x−6∴抛物线对称轴为x=−42×(−12)=4∴C(4,0)设直线BC的解析式为y=kx+b(k≠0)将B(0,-6),C(4,0)代入得解得:k=32,b=−6∴直线BC 的解析式为 y =32x −6(2)解:连立方程组可得 {y =32x −6y =−12x 2+4x −6解得 {x =5y =32∴D(5, 32)∴△ABD 的面积为 12×2×(23+6)=15222.【答案】(1)20(2)解:设销售该产品的年利润为 W 万元当 40≤x <60 时, W =(x −30)(−2x +140)=−2(x −50)2+800 . ∵-2<0 ∴当 x =50 时 当 60≤x ≤70 时 ∵−1<0 ∴当 x =60 时 ∵800>600 ∴当 x =50 时∴当售价为50元/件时,年销售利润最大,最大为800万元. (3)解: 45≤x ≤55 理由如下:由题意得(x −30)(−2x +140)≥750解得 45≤x ≤5523.【答案】(1)解:∵点 A(1,b) 在直线 y =2x −3 上∴b =−1∴点 A 坐标 (1,−1)把点 A(1,−1) 代入 y =ax 2 得到 a =−1∴a =b =−1.(2)解:由 {y =−x 2y =−2 解得 {x =√2y =−2 或 {x =−√2y =−2 ∴点 C 坐标 (−√2,−2), 点 B 坐标 (√2,−2). (3)解: S △BOC =12×2√2×2=2√2.24.【答案】(1)解:由已知,设 y =a(x +1)(x −3)把C(0,−3)代入,得−3a=−3∴y=(x+1)(x−3)即y=x2−2x−3.(2)解:由y=x2−2x−3,得y=(x−1)2−4∴顶点D(1,−4).过点D作DH⊥y轴于点H,连结BC交对称轴于点E,连结DC.∵B(3,0),C(0,−3)∴OB=OC=3∴∠BCO=∠DCH=45°∴∠DCE=90°设BC函数表达式为y=kx+b把B(3,0),C(0,−3)两点代入y=kx+b得{k=1b=−3即BC函数表达式为y=x−3∵点E在对称轴上∴点E横坐标为1,代入y=x−3得E(1,−2)由∠PCD为钝角,则点P在点E上方即n>−2.第11页共11页。
二次函数与一次函数的综合题

二次函数与一次函数图像相交的点为方程组的解
相交点的个数取决于方程组的解的个数
垂直关系
二次函数与一次函数的图像垂直关系可以通过求导数的方法来判断。如果两个函数的导数相等,则它们的图像平行;如果一个函数的导数为0,另一个函数的导数不为0,则它们的图像垂直。
二次函数与一次函数的图像垂直关系可以通过代入法来判断。将一次函数的解析式代入二次函数的解析式中,得到一个关于x的二次方程,如果该二次方程的判别式Δ=0,则说明两个函数的图像垂直。
奇偶性的判断方法
代数法:通过代入特殊值或化简函数表达式来判断函数的奇偶性
性质法:利用奇偶函数的性质来判断函数的奇偶性
定义法:根据奇偶性的定义来判断函数的奇偶性
图像法:通过观察函数的图像来判断函数的奇偶性
奇偶性的应用
利用奇偶性判断函数图像的对称性
利用奇偶性简化函数表达式
利用奇偶性求解函数值域
利用奇偶性分析函数的单调性
定义法:利用函数单调性的定义,通过比较自变量取值范围内任意两点处的函数值大小来证明函数的单调性。
导数法:利用导数与函数单调性的关系,通过判断导数的正负来证明函数的单调性。
图像法:利用函数图像的走势来判断函数的单调性,通过观察图像在自变量取值范围内的变化趋势来证明函数的单调性。
05
二次函数与一次函数的奇偶性
相切关系
在切点处,二次函数的导数等于一次函数的斜率,即切线的斜率。
二次函数与一次函数相切时,它们的图像在切点处相切,切线的斜率等于一次函数的斜率。
二次函数与一次函数相切的条件是二次函数的导数等于一次函数的斜率。
当二次函数与一次函数相切时,它们的交点只有一个,即切点。
相交关系
一次函数与二次函数综合题

一次函数与二次函数综合题1. 一次函数与二次函数的定义和特点:一次函数是指形如y = ax + b的函数,其中a和b是常数,a不等于0。
一次函数的图像是一条直线,具有恒定的斜率。
二次函数是指形如y = ax^2 + bx + c的函数,其中a、b和c是常数,a不等于0。
二次函数的图像是一个抛物线,具有顶点和对称轴。
2. 一次函数与二次函数的图像和图像性质:一次函数的图像是一条直线,可以通过两个点确定。
一次函数的图像是线性的,斜率代表了直线的倾斜程度,截距代表了直线与y轴的交点。
二次函数的图像是一个抛物线,可以通过顶点和对称轴确定。
二次函数的图像的开口方向由二次项的系数a的正负决定,开口向上为正,开口向下为负。
3. 一次函数与二次函数的解和零点:一次函数的解是指使得函数等于零的x值,即解方程ax + b = 0。
一次函数的解只有一个,可以通过解方程求得。
二次函数的解是指使得函数等于零的x值,即解方程ax^2 + bx + c = 0。
二次函数的解可能有两个,可以通过求根公式或配方法求得。
4. 一次函数与二次函数的最值:一次函数没有最值,因为直线是无限延伸的。
二次函数的最值是指抛物线的最高点(最大值)或最低点(最小值),可以通过求顶点的坐标来确定。
5. 一次函数与二次函数的应用:一次函数的应用广泛,例如在物理学中描述匀速直线运动的位移与时间的关系,经济学中描述成本与产量的关系等。
二次函数的应用也很多,例如在物理学中描述抛体运动的轨迹,经济学中描述成本与产量的关系中存在固定成本和变动成本等。
综上所述,一次函数与二次函数在定义、图像、解、最值和应用等方面有着不同的特点和性质。
它们在数学和实际问题中都有重要的应用价值。
二次函数与一次函数的组合

图像法
画出二次函数和一次函数的图像 观察图像的交点,确定交点的坐标 根据交点的坐标,求解二次函数和一次函数的方程 验证求解结果是否满足题目要求
代数法
设二次函数y=ax^2+bx+c和一 次函数y=mx+n
求二次函数和一次函数的交点 坐标
利用韦达定理求解二次函数和 一次函数的交点坐标
利用交点坐标求解二次函数和 一次函数的组合方程
一次函数是直线 方程,其图像是 一条直线
一次函数的斜率 等于a,截距等于 b
一次函数的图像 经过原点(0,0) 时,b=0
二次函数与一次函数的组合形式
二次函数与一次函数的组合形式:y=ax^2+bx+c 二次函数与一次函数的组合形式:y=ax^2+bx^2+c 二次函数与一次函数的组合形式:y=ax^2+bx^2+cx+d 二次函数与一次函数的组合形式:y=ax^2+bx^2+cx^2+d
添加 标题
二次函数的单调性:当a>0时,抛物线开口向上,当x<-b/2a时,y随x的增大而增大;当x>-b/2a时,y随x 的增大而减小。当a<0时,抛物线开口向下,当x<-b/2a时,y随x的增大而减小;当x>-b/2a时,y随x的增 大而增大。
一次函数的定义
一次函数是形如 y=ax+b的函数, 其中a、b是常数, a≠0
• 应用:适用于求解二次函数与一次函数的组合方程式
• 注意事项: a. 分离参数时,注意方程式的形式和参数x的取值范围 b. 求解分离后的方程式时,注意方 程式的解是否满足原方程式的条件 c. 将参数x的值代入原方程式时,注意函数值y的取值范围和方程式 的解是否满足原方程式的条件
中考数学频考点突破--二次函数与一次函数综合

中考数学频考点突破--二次函数与一次函数综合1.如图,在直角坐标平面内,直线y=-x+5与轴和轴分别交于A、B两点,二次函数y= x2+bx+c的图象经过点A、B,且顶点为C.(1)求这个二次函数的解析式;(2)求sin∠OCA的值;(3)若P是这个二次函数图象上位于x轴下方的一点,且ABP的面积为10,求点P的坐标.2.如图,已知二次函数y=12x2-x-32的图象与x轴交于A、B两点,与y轴交于C 点.(1)求A、B、C三点的坐标;(2)求直线BC的函数表达式;(3)若D是线段OB上一个动点,过D作x轴的垂线交直线BC于E点,交抛物线于F点,求线段EF的最大值.3.如图二次函数的图象经过A(-1,0)和B(3,0)两点,且交y 轴于点C.(1)试确定、的值;(2)若点M为此抛物线的顶点,求∠MBC的面积.4.设a,b是任意两个实数,用min{a,b}表示a,b两数中较小者,例如:min{﹣1,﹣1}=﹣1,min{1,2}=1,min{4,﹣3}=﹣3,参照上面的材料,解答下列问题:(1)min{﹣3,2}=,min{﹣1,﹣2}=;(2)若min{3x+1,﹣x+2}=﹣x+2,求x的取值范围;(3)求函数y=﹣x2﹣2x+4与y=﹣x﹣2的图象的交点坐标,函数y=﹣x2﹣2x+4的图象如图所示,请你在图中作出直线y=﹣x﹣2,并根据图象直接写出min{﹣x2﹣2x+4,﹣x﹣2}的最大值.5.已知,二次三项式﹣x2+2x+3.(1)关于x的一元二次方程﹣x2+2x+3=﹣mx2+mx+2(m为整数)的根为有理数,求m的值;(2)在平面直角坐标系中,直线y=﹣2x+n分别交x,y轴于点A,B,若函数y=﹣x2+2|x|+3的图象与线段AB只有一个交点,求n的取值范围.6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C(0,3),且二次函数图象的顶点坐标为(−1,4),点C,D是抛物线上的一对对称点,一次函数的图象过点B,D.(1)求A,B两点的坐标.(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.7.小明根据华师版八年级下册教材P37学习内容,对函数y= 12x2的图象和性质进行了探究,试将如下尚不完整的过程补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:x…﹣4n﹣2﹣101234…y…8 4.520.500.52 4.58…;(2)如图,在平面直角三角形坐标系xOy中,已描出了以上表中的部分数值为坐标的点,根据描出的点,画出该函数的大致图象.(3)根据画出的函数图象,小明观察发现:该函数有最小值,没有最大值;当函数值取最小时,自变量x的值为.(4)进一步探究函数的图象发现:①若点A(x a,y a),点B(x b,y b)在函数y= 12x2的图象上;当x a<x b<0时,y a与y b的大小关系是;当0<x a<x b时,y a与y b的大小关系是;②直线y1恰好经过函数的图象上的点(﹣2,2)与(1,0.5);当y<y1时,x的取值范围是.8.如图所示,将抛物线y=12x2沿x轴向右平移2个单位长度,再向下平移1个单位长度,得到新的抛物线.(1)直接写出新抛物线的解析式为;(2)设新抛物线交x轴于A、B两点,交y轴于C,顶点为D,作CE∠CD交抛物线于E,如图所示,探究如下问题:①求点E的坐标;②若一次函数y=kx+1的图象与抛物线存在唯一交点且交对称轴交于点F,连接DE,猜测直线DE与对称轴的夹角和一次函数y=kx+1的图象与对称轴的夹角之间的大小关系,并证明.9.某超市准备销售一种儿童玩具,进货价格为每件40元,并且每件的售价不低于进货价.经过市场调查,每月的销售量y(件)与每件的售价x(元)之间满足如图所示的函数关系.(1)求每月的销售量y(件)与每件的售价x(元)之间的函数关系式;(不必写出自变量的取值范围)(2)物价部门规定,该儿童玩具每件的利润不允许高于进货价的60%.设销售这种儿童玩具每月的总利润为w(元),那么每件售价定为多少元可获得最大利润?最大利润是多少?10.已知二次函数y=x2-2x-3的图象为抛物线C.(1)写出抛物线C的开口方向、对称轴和顶点坐标;(2)当2≤x≤4时,求该二次函数的函数值y的取值范围;(3)将抛物线C先向右平移2个单位长度,得到抛物线C1;再将抛物线C1向下平移1个单位长度,得到抛物线C2,请直接写出抛物线C1,C2对应的函数解析式.11.如图,在平面直角坐标系xOy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG∠AB于点G.求出∠PFG的周长最大值;(3)在抛物线y=-x2+bx+c上是否存在除点D以外的点M,使得∠ABM与∠ABD 的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.12.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2.(1)求抛物线的函数关系式;(2)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.13.如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C (0,3),点A为x轴负半轴上一点,AM∠BC于点M交y轴于点N,满足4CN=5ON.已知抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的函数关系式;(2)连接AC,点D在线段BC上方的抛物线上,连接DC、DB,若∠BCD和∠ABC面积满足S∠BCD= 35S∠ABC,求点D的坐标;(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒1个单位的速度运动到F,再沿着线段FC以每秒5 3个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.14.如图,二次函数y=-x²-2x+3的图象交x轴于点A,B(点A在点B的左侧),交y 轴于点C。
一次函数与二次函数的综合应用题

一次函数与二次函数的综合应用题一、引言在数学中,一次函数和二次函数是我们经常遇到的两种函数类型。
一次函数以y = ax + b的形式呈现,其中a和b是常数,而x是自变量。
二次函数则以y = ax^2 + bx + c的形式表达,其中a、b和c都是常数,而x依然是自变量。
本文将基于一次函数和二次函数,介绍它们在实际问题中的综合应用。
二、一次函数的综合应用1. 直线的运动一次函数可以应用于描述直线的运动情况。
假设有一个小车匀速地沿直线前进,设x表示时间(单位:秒),y表示小车距离起点的距离(单位:米),小车的速度为v(单位:米/秒)。
则可以建立起以下一次函数表示小车的位置:y = vx通过该函数,我们可以轻松计算在不同时间点小车的位置,并预测未来的移动情况。
2. 商品价格和销量的关系一次函数还可以应用于描述商品价格和销量之间的关系。
假设某商品的售价为p(单位:元),销量为s(单位:件),根据市场调研,得到以下一次函数表达式:s = -ap + b通过该函数,我们可以研究价格对销量的影响,并进行销售策略的调整。
三、二次函数的综合应用1. 抛体运动二次函数常用于描述抛体在空中的轨迹。
假设有一个物体以初速度v0竖直向上抛出,设x表示时间(单位:秒),y表示物体的高度(单位:米),加速度为g(单位:米/秒^2)。
则可以建立起以下二次函数表示物体的高度:y = -0.5gt^2 + v0t通过该函数,可以计算物体在不同时间点的高度,并分析物体的抛体运动规律。
2. 二次方程的解析二次函数也可以用于解决实际问题中的二次方程。
一个经典的例子是求解一个矩形地块的最大面积。
假设矩形地块的长度为x米,宽度为y米,已知周长为p米。
可以建立以下方程:2x + 2y = p根据周长的限制条件,我们可以得出以下表达式:x = (p-2y)/2,进而得到矩形地块的面积表达式:A = xy = (p-2y)y通过求解该二次函数的极值,即可得到矩形地块的最大面积。
中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案

中考数学总复习《二次函数与一次函数的综合应用》练习题附有答案一、单选题(共12题;共24分)1.已知直线y=kx+2过一、二、三象限,则直线y=kx+2与抛物线y=x2−2x+3的交点个数为()A.0个B.1个C.2个D.1个或2个2.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>43.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+n与C1、C2共有3个不同的交点,则n的取值范围是()A.−2<n<18B.−3<n<−74C.−3<n<−2D.−3<n<−1584.已知直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,且抛物线与x轴交于点(-1,0)、(2,0),抛物线与直线交点的横坐标为1和,那么不等式mx+n <ax2+bx+c <0的解集是()A.1<x<2B.x<或x>1C.<x<2D.-1<x<25.若min{a,b,c}表示a,b,c三个数中的最小值,当y=min{x2,x+2,8−x}时(x≥0),则y的最大值是()A.4B.5C.6D.7 6.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y= x2−x+c(c为常数)在−2<x<4的图象上存在两个二倍点,则c的取值范围是()A.−2<c<14B.−4<c<94C.−4<c<14D.−10<c<947.二次函数y1=x2+bx+c与一次函数y2=kx−9的图象交于点A(2,5)和点B(3,m),要使y1<y2,则x的取值范围是()A.2<x<3B.x>2C.x<3D.x<2或x>38.将二次函数y=−x2+2x+3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线y=x+b与新函数的图象恰有3个公共点时b的值为()A.−214或−3B.−134或−3C.214或−3D.134或−39.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=12x2+bx+c的顶点,则方程12x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或210.如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动,同时点Q沿边AB,BC从点A开始向点C以2cm/s的速度移动,当点P移动到点A时P、Q同时停止移动。
一次函数与二次函数的综合练习题

一次函数与二次函数的综合练习题在数学学科中,一次函数和二次函数是我们经常接触到的两种函数类型。
它们在图像特点、方程性质以及实际问题应用等方面具有一定的差异。
为了加深对这两类函数的理解和掌握,下面将提供一些综合练习题来进行实践。
练习题1:已知函数y = 3x - 2和y = x^2 + 1,求二者的交点坐标。
解析:设两个函数相交时的x值为a,则有:3a - 2 = a^2 + 1将方程化为一般形式:a^2 - 3a + 3 = 0根据一元二次方程的求根公式,得到:a = (3 ± √5) / 2因此,交点的坐标为((3 + √5) / 2,(3(3 + √5) / 2) - 2)和((3 - √5) / 2,(3(3 - √5) / 2) - 2)。
练习题2:对于函数y = -2x + 3和y = 2x^2 - 1,求二者的交点坐标。
解析:设两个函数相交时的x值为b,则有:-2b + 3 = 2b^2 - 1将方程化为一般形式:2b^2 + 2b - 4 = 0将方程化简得:b^2 + b - 2 = 0根据一元二次方程的求根公式,得到:b = -2 或 b = 1因此,交点的坐标为(-2,-2)和(1,1)。
练习题3:已知函数y = 4x + 7和y = -x^2 + 3x,求二者的交点坐标。
解析:设两个函数相交时的x值为c,则有:4c + 7 = -c^2 + 3c将方程化为一般形式:c^2 - c + 7 = 0但这个方程没有实数解,说明两个函数在平面上没有交点。
练习题4:已知函数y = 5x和y = x^2 - 4,求二者的交点坐标。
解析:设两个函数相交时的x值为d,则有:5d = d^2 - 4将方程化为一般形式:d^2 - 5d - 4 = 0根据一元二次方程的求根公式,得到:d = 5 或 d = -1因此,交点的坐标为(5,25)和(-1,-5)。
练习题5:已知函数y = -3x和y = 2x^2 + 2,求二者的交点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与二次函数的综合复习
1.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <; ②0a >;③当3x <时,12y y <;④方程kx+b=x+a 的解是x=3中, 正确的个数是( )
A .0
B .1
C .2
D .3
(2题)
2.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①a 、b 异号;②当x =1和x =3时,函数值相等;③4a +b =0;④当y =4时,x 的取值只能为0.其中正确的结论有( )
A .1个
B .2个
C .3 个
D .4个
3.抛物线21y x =+的最小值是 .
4.把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为 .
5.若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax 2+bx 的对称轴为( )
(A )直线x =1 (B )直线x =-2 (C )直线x =-1 (D )直线x =-4
6.已知二次函数2
2y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .
7. 若二次函数24y ax bx =+-的图像开口向上,与x 轴的
交点为(4,0),(-2,0)当121,2x x =-=时,
对应的y 1 与y 2的大小关系是( )
A .y 1 <y 2 B. y 1 =y 2 C. y 1 >y 2 D.不确定 a
b + 第1题
8.如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,
与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得PA+PC的值最小,请在图中画出点P的位置,并求点P的坐标;
(3)在该抛物线上求一点M,使得S△MAB=S△ABC, 写出点M的坐标。
(4) 如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.。