汽轮机阀门流量特性对电力系统的影响及其控制分析
汽轮机DEH系统调门控制故障及分析

汽轮机DEH系统调门控制故障及分析摘要:本文针对DEH纯电调控制系统中涉及的有关技术问题进行阐述。
从LVDT传感器、电缆及信号连接、DEH软硬件、电源、环境因素等引起的故障及处理方法,通过机务和热工两方面,重点分析了调门波动现象、产生原因,交流了处理经验,提出了DEH系统故障处理时应注意的安全技术措施。
关键词:DEH;故障分析处理;可靠性;安全技术措施引言汽轮机数字电液控制,由计算机控制部分和EH液压执行机构部分组成。
是汽轮机发电机的专用制系统,是控制汽轮机启动,停机及转速控制,功率控制的唯一手段,是电厂实现机组协调控制,远方自动调度等功能必不可少的控制设备。
DEH在电厂影响到整个电厂的可靠运行。
1.DEH系统控制原理DEH系统通过数据采集通道将反映机组状态的参数和被控量传入DEH主控器,在主控器内部,一方面对外部命令和机组状态量进行分析处理,另一方面将增、减转速(负荷)的命令变成机组所能接受的指令,经现时刻的被控量校正后,由数/模转换器转换成DEH要求的阀位指令,阀位指令与原来的LVDT阀位反馈信号综合后,得出一个位置误差信号,此误差信号经功率放大器送至电液转换器,电液转换器控制错油门改变油动机内的油量。
使蒸汽阀门动作,达到调速(调负荷)的目的。
随着LVDT反馈信号的变动,误差信号逐渐为零,电液转换器内错油门关闭,蒸汽阀门油缸既不进油也不排油,转速(负荷)也保持不变。
2.DEH系统常见故障及处理2.1电源系统故障DEH发生交流电源故障时,首先应立即判断是内部还是外部供电系统故障引起DEH失电。
如由于DEH内部引起交流电源故障或原因不明,必须切断电源,检查电源相、零线之间的负荷,与地之间的绝缘电阻,查明原因后才能上电。
如机组运行过程中DEH发生UPS交流电源供电系统失电,且失电原因不易查明,应由UPS备用电源供电继续运行,继续查找失电原因。
如不能及时处理,进行停机,待停机后进行检查处理。
2.2 伺服阀故障某个伺服阀故障后,轻则其对应的调门将不能正常响应DEH控制系统的输出指令,从而引起调速系统工作摆动,重则可能造成阀门全开或全关,导致机组停机或不能正常启动。
汽轮机阀门流量特性对电力系统的影响与控制

汽轮机阀门流量特性对电力系统的影响与控制摘要:随着科学技术的全面发展,汽轮机阀门流量体系也逐步得到健全。
在对电力系统进行初步维护的过程中,需要采用多种不同的方式让汽轮机的运转效率得到明显的提高。
本文主要针对汽轮机阀门流量特性对电力系统的影响及其控制策略进行分析,并提出了相应的优化措施。
关键词:汽轮机阀门;流量特性;电力系统;影响;控制一、汽轮机阀门流量特性的分析汽轮机的机组在处于顺阀的运行状态时,一般使用的都是喷嘴的配汽方式,通常来说,汽轮机设备的一级是调节级别,而调节级主要是由多个喷嘴组成的,当系统中的蒸汽经过了汽门装置之后,调节汽门装置会依次开启,蒸汽经过这些汽门之后最终到达调节级。
一般情况下,调节级汽门与喷嘴组是相互匹配的,一个汽门搭配一个喷嘴组合。
在一个汽轮机系统中,通常配备的喷嘴组数量为6组左右。
如果系统的负荷较小。
那么一般只会开启一个汽门,只有一个喷嘴组进行喷气,此时的喷汽量处于最小值。
当系统的负荷逐渐增大,汽门的开启角度接近全开的时候,系统会开启第二级别的汽门,然后蒸汽进入到与第二级别喷嘴相互匹配的喷嘴组中,之后的蒸汽运行轨迹则可以以此类推。
由此可见,当第一个汽门中的蒸汽流量达到最大的时候,其他汽门中的蒸汽流量就会趋于减少,这也是喷嘴配汽方式的主要特征。
汽轮机系统的喷嘴组装置之间隔有部分距离,在各个汽门组合全部开启的情况下,调节级的蒸汽流量仍然会受到部分阻碍,也就是说,即使汽轮机到达了最大的功率,蒸汽在流动化过程中还是会损失一部分,其他调节级的汽门直径通常会大于第一个汽门,因此蒸汽流动的余速不能被继续利用。
通常情况下,调节级汽门匹配四个喷嘴组,当第一第二调节级汽门处于全面开启状态的时候,第三调节级的汽门处于半开启的状态,此时第四级别的汽门处于完全关闭的状态。
一般情况下,调节级汽门后方的环形空间是连通结构,各调节级的压力值是相同的,当两股初级压力值不同的蒸汽进入到汽门中时,逐渐流进第一压力级别。
DEH阀门流量特性曲线对机组协调控制的影响

DEH阀门流量特性曲线对机组协调控制的影响[摘要]随着市场经济体制的推进,我国工业发展速度进一步提高,而汽轮机的应用越来越广泛。
对于汽轮机而言其控制装置十分重要,直接关系着机组的正常运行。
而目前汽轮机中所用DEH(数字电液调节系统)相对独立,对机组的影响较小,但是调试中发现系统在某种情况下依然会影响到机组正常工作。
本文对DEH阀门管理进行了一些探讨,在该基础上分析器流量曲线给机组协调控制造成的影响,为相关人士提供理论参考依据。
【关键词】机组协调;特性曲线;DEH阀门1、前言如今DEH系统在汽轮机中应用比较普遍,主要是用来启停机组、控制汽轮机的转速与功率等,通过该系统实现了机炉之间的协调控制,大力实现了自动化生产。
但是从实况来看,DEH阀门所产生出来的流量曲线依然会对机组工作造成一定影响,因此探析该影响具备实际意义。
2、DEH阀门概述所应用的汽轮机大都使用了4个高压调节汽门,而在每个汽门上都使用了单独伺服控制系统,调节阀门方式应用了单一的阀门调节方式与顺序阀门调节这两种。
3、流量曲线影响机组协调控制分析3.1实例分析某电厂在一期工程中应用了一次中间再热、超临界、三缸、单轴以及四排汽凝汽的汽轮机。
协调控制机炉应用了锅炉调节机的主蒸汽压力,通过汽机对发电功率进行调节。
当机组试运到了后期,开始进行协调控制。
当负荷低于550MW 之时机组没有出现不稳定现象,但是负荷快靠近到600MW之时,机前的压力以及发电功率等各个参数都发生大的波动,系统就不稳定了,检测所知主蒸汽的压力在24.2MPa附近波动,而波动幅度大约就在0.8MPa,此时机组的发电功率处于590—610MW上下波动,汽机的高调门开度处于36%~40%上下波动,但是中调门被全部打开,锅炉配风系统、燃烧系统、给水系统等都伴随着主蒸汽压力波动而跟着振荡。
3.2影响协调控制分析从实况进行分析出现波动的原因,机组的发电功率在20MW上下进行波动,同出现的情况分析可知,其影响协调控制可能不会是锅炉侧引所致。
汽轮机阀门流量特性对电力系统影响及其控制分析

汽轮机阀门流量特性对电力系统的影响及其控制分析摘要:对于整个电力系统产生稳定性因素的就是汽轮机阀门流量的特性,通过电网的建立以及相关的机械设备系统的模型,可以了解和研究关于汽轮机阀门流量特性对电力系统的影响。
通过详细的数学分析和研究发现,汽轮机阀门流量特性不稳定的时候,将会导致原动机周期的波动。
对于这种情况,要及时的调整并制定出新的汽轮机系统控制策略,新指定的策略必须要对于微分的控制器的进行合理的调节,这样对于系统的阻力有大幅度的增加。
关键词:汽轮机阀门流量特性?调速系统控制策略中图分类号:tk26 文献标识码:a 文章编号:1674-098x(2012)09(c)-0076-01在当今发电厂里大多采用deh系统对汽轮机进行控制,擅长管理和控制各种汽阀门是deh系统中最优质的用途,在deh系统中必须将指令由流量转化为阀门的开度,所以流量和阀门的开度有着相当密切的关系,也就是阀门流量的特性曲线。
若汽轮机阀门实际流量和原来流量特性曲线并没达到一致时,就会出现大的控制偏差。
将会对整个机组的安全及变负荷的能力产生一定的影响,最为严重的是使系统发生强烈的振荡,发生这样的现象对于正在高速运转的汽轮机来说是很不安全的。
而事实上,因为制作安装的工艺都不一致、阀门长期的磨损,甚至是阀门设计行程和实际行程不一样,这些原因都可以使阀门流量和原来流量的特性曲线不一样,这就要去对阀门流量的特性曲线进行调整,使得汽轮机运行自身的稳定性和经济性有一定的提高和发展。
1 汽轮机阀门流量特性的分析汽轮机流通部分根据经济功率而设计的,机组用喷嘴配汽的方式进行顺阀的运行,汽轮机第一级为调节级,调节级为喷嘴组,当蒸汽经过主汽门以后才可以开启汽门慢慢的通向调节级。
所以说,嘴配汽的特点就是部分负荷的时候自身的经济性能比较好较好。
因为各个喷嘴之间都会存在一定的间壁,各个调节的汽门已开还是会有一部分进汽,即使在最大的功率下进行调节级还是会损失。
DEH阀门流量特性曲线对机组协调控制的影响

(如今DEH系统在汽轮机中应用比较普遍,主要是用来启停机组、控制汽轮机的转速与功率等,通过该系统实现了机炉之间的协调控制,大力实现了自动化生产。
但是从实况来看,DEH阀门所产生出来的流量曲线依然会对机组工作造成一定影响。
阀门特性曲线是汽轮机DEH 中一个重要的函数。
如果曲线与阀门实际特性不相符, 将直接影响机组的调节控制。
在机组实际运行过程中, 如出现曲线偏离实际情况, 可以根据机组运行情况进行适当的修改, 从而改善汽轮机DEH 的调节品质, 实现机组的稳定、安全运行。
案例一:江苏某电厂一期工程2 ×600 MW 机组采用N600-24.2/566/566 型超临界、一次中间再热、单轴、三缸、四排汽凝汽式汽轮机。
机炉协调控制策略是锅炉调节机前主蒸汽压力, 汽机调节发电功率。
在机组调整试运后期, 机组投入协调。
在负荷小于550 MW下, 机组能够稳定运行; 当负荷将近600MW时, 机组发电功率、机前压力等参数出现较大波动, 系统处于不稳定状态, 此时机前主蒸汽压力在额定压力24.2 MPa 左右波动, 波动的幅度约为0.8 MPa, 机组发电功率在590~610 MW 波动, 汽机高调门开度在36% ~40%波动, 中调门全开, 锅炉的燃烧系统、配风系统、给水系统等随着机前主蒸汽压力的波动而振荡。
分析系统产生波动的原因, 发现机组发电功率波动幅度在20 MW 左右, 而且波动的速度很快。
初步分析, 问题应该不是由锅炉侧引起的。
为此, 在机组发电功率为600 MW 时, 解除机炉协调控制, 转成汽机跟随模式。
此时, 锅炉的给煤量不变, 如果煤质不发生变化, 则锅炉给水也不会发生变化, 这样可认为锅炉对整个系统的变化基本不会产生影响。
机组转为汽机跟随模式后, 机前主蒸汽压力仍然在24.2 MPa上下波动, 汽机高调门也在37%左右振荡。
由上面的现象可以推定, 机组的波动应该是由汽轮机DEH 引起的。
汽轮机阀门流量特性曲线分析及优化

r e s p o n s e o f t h e A u t o ma t i c G e n e r a t i o n C o tr n o l ( A G C ) a n d t h e p r i ma r y f r e q u e n c y , t h e n s e r i o u s l y a f e c t t h e s a f e t y a n d e c o n o my
( 1 . 华北 电力大学 自动化 系,河北 保定 0 7 1 0 0 3 ;2 . 国网宁夏 电力公司 电力科学研 究院,银川 7 5 0 0 1 1 ;3 . 内蒙古工业大 学 电力学 院,呼和浩特 0 1 0 0 0 0 )
摘 要 :汽轮机阀 门流量特性 与实际流量不符合 , 会 影响机组 自动发 电量控 制 ( 简称A G C)响应 能力与一次调频的 能 力 ,严重影响 电厂安全 、经济性 。本文针对 宁夏某火电机组进行 阀门特 f 生 实验 ,主要介绍 了实验过程 、阀门特 陛
dehdigitalelectrichydrauliccontrolsystem即汽轮机数字电液控制系统是目前大型电站汽轮机普遍采用的控宁夏该电厂采用超高压抽凝式汽轮发电机组电厂制装置它主要完成机组在启停及正常运行过程中对汽轮deh系统中的阀门特性函数是出厂时设置的经过在装配机的进汽和排汽参数缸温轴承温度及转速发电机功安装数年间运行的影响实际流量与设置曲线的流量已产生较大偏差已经影响了agc模式下负荷控制精度
Ke y w or d s : v lv a e l f o w c h ra a c t e r i s t i c ; DE H; AGC; c u r v e o p t i mi z a t i o n
汽轮机阀门流量特性优化对其安全性

汽轮机阀门流量特性优化对其安全性与经济性的影响李劲柏刘复平(湖南省电力公司试验研究院湖南长沙市410007 )摘要:针对某国产300MW亚临界机组存在的单阀方式下负荷自发扰动,顺序阀方式下负荷突变等问题进行了阀门流量特性曲线优化试验,提高了机组负荷控制的稳定性,同时也取得良好的节能效果,解决了机组原设计中阀门流量存在的问题,优化的结果在同类型机组中具有较高的推广应用价值。
关键词:阀门流量特性优化安全经济1 前言目前火力发电机组汽轮机大部分采用DEH 控制,DEH系统提供阀门管理与单阀/顺序阀切换功能。
在单阀方式下,高调门保持相同开度,汽轮机全周进汽,有利于汽轮机本体均匀受力受热,但低负荷时节流严重,经济性差。
在顺序阀的方式下,高调门按照一定的顺序开启,通过减少调门开度过低造成的节流损失,提高机组的经济效益。
阀门流量特性曲线就是阀门开度与通过阀门的蒸汽流量的对应关系,DEH系统阀门流量特性曲线是如果与实际阀门流量相差较大,在机组变负荷与一次调频时,可能出现负荷突变与调节缓慢的问题,造成机组控制困难,影响了机组的安全性与变负荷能力。
在顺序阀方式下,如果调节阀门重叠度设置不合理,也会影响机组投入顺序阀的经济性。
通过对DEH系统阀门流量特性进行优化,计算出切合机组实际情况的阀门流量特性曲线,使机组在单阀/顺序阀切换过程更平稳,负荷扰动更小,主汽温度、主汽压力等参数更为稳定,瓦温、振动能够得到一定的改善,增强机组变负荷与一次调频的能力,提高机组运行的经济性与控制的稳定性。
2 某300MW机组的阀门流量特性优化试验2007年10月,我们对某电厂300MW机组进行了DEH系统阀门流量特性优化试验。
该机组是东方电气集团公司提供的300MW亚临界机组,DEH采用ABB北京贝利公司与INFI-90分散控制系统软硬件一体化的ETSI。
该机组在投入运行后存在的主要问题是顺序阀方式下变负荷与一次调频时有比较大的负荷突变,突变值可达到30MW或更多,同时引起汽机轴系振动变化,负荷突变区在200MW左右,正是机组低负荷运行的主要工作区域,严重影响了机组的安全性与经济性。
汽轮机阀门流量特性优化分析

即优 化 后 的 单 、顺 阀管 理 曲线 为 : 单 阀 :Y= l( f ) () 7
J : { [ () } l 顷阀 y= X ]
() 1
() 2
() 8
式 中 : ( 为 原 设 计 的单 阀 管 理 曲线 ; ( ) ) 为
顺 阀管 理 曲线 ( 和 优 化 后 的 单 阀管 理 曲 线 )
( ) 计 算 而 得 到 。
测 流 量 ×修 正 系 数确 定 。
考 虑 到 调 门 流 量 测 试 的 特 点 ,可 以认 为 其 数
曲 线 ,得 到 阀 门 开 度 Y 。对 应 的 。 即 : , = f , -
当 阀 门设 计 流 量特 性 与实 际流 量 特 性 不 符 时 , 需 根 据 测 得 的各 阀 门实 际 流 量 特 性 ,重 新 设 计 阀
( ] ) ,相 当 于计 算 出模 式 1中 +b的值 。 ( ) 根 据 所 算 出 的 。 , 由优 化 后 的单 阀 管 2 值 理 曲线 计 算 对 应 的 阀 门 开 度 Y 即 :Y= ( ) , 。 ,
压力与温度 的修正 ,修正后 用 S vzyG l ai k— o y算法进行数据 处理 ,并利 用最小二乘 法优 化算 法进 行 曲线拟 t a 合 。以某电厂 30 0 MW 机 组为例 ,对其在顺序 阀方式下 出现 负荷 突变和调 节缓慢 的问题进行优化 分析 和仿
真 验 证 ,优 化 后 机 组 负荷 与 主 蒸 汽 流 量 曲 线 获 得 了 良好 的 连 续 性 和 线 性 度 ,提 高 了机 组 负荷 控 制 精 度 及
李前敏 ,柏毅辉
( 州 电 力 试 验 研 究 院 ,贵 州 贵 阳 50 0 ) 贵 5 0 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机阀门流量特性对电力系统的影响及其控制分析
作者:焦敬东
来源:《科技创新导报》2012年第27期
摘要:对于整个电力系统产生稳定性因素的就是汽轮机阀门流量的特性,通过电网的建立以及相关的机械设备系统的模型,可以了解和研究关于汽轮机阀门流量特性对电力系统的影响。
通过详细的数学分析和研究发现,汽轮机阀门流量特性不稳定的时候,将会导致原动机周期的波动。
对于这种情况,要及时的调整并制定出新的汽轮机系统控制策略,新指定的策略必须要对于微分的控制器的进行合理的调节,这样对于系统的阻力有大幅度的增加。
关键词:汽轮机阀门流量特性调速系统控制策略
中图分类号:TK26 文献标识码:A 文章编号:1674-098X(2012)09(c)-0076-01
在当今发电厂里大多采用DEH系统对汽轮机进行控制,擅长管理和控制各种汽阀门是DEH系统中最优质的用途,在DEH系统中必须将指令由流量转化为阀门的开度,所以流量和阀门的开度有着相当密切的关系,也就是阀门流量的特性曲线。
若汽轮机阀门实际流量和原来流量特性曲线并没达到一致时,就会出现大的控制偏差。
将会对整个机组的安全及变负荷的能力产生一定的影响,最为严重的是使系统发生强烈的振荡,发生这样的现象对于正在高速运转的汽轮机来说是很不安全的。
而事实上,因为制作安装的工艺都不一致、阀门长期的磨损,甚至是阀门设计行程和实际行程不一样,这些原因都可以使阀门流量和原来流量的特性曲线不一样,这就要去对阀门流量的特性曲线进行调整,使得汽轮机运行自身的稳定性和经济性有一定的提高和发展。
1汽轮机阀门流量特性的分析
汽轮机流通部分根据经济功率而设计的,机组用喷嘴配汽的方式进行顺阀的运行,汽轮机第一级为调节级,调节级为喷嘴组,当蒸汽经过主汽门以后才可以开启汽门慢慢的通向调节级。
所以说,嘴配汽的特点就是部分负荷的时候自身的经济性能比较好较好。
因为各个喷嘴之间都会存在一定的间壁,各个调节的汽门已开还是会有一部分进汽,即使在最大的功率下进行调节级还是会损失。
假设调节级为四个喷嘴组,将一、二调节汽门打开。
当P0新的蒸汽经过主汽门以及全开门以后,压力就会由降为P0压力变为P2。
当第Ⅰ、Ⅱ两组喷嘴与理比焓降相一致的时也就是ΔhtⅠ=ΔhtⅡ时,动叶比焓ht经过的部分是第Ⅲ调节的汽门它的蒸汽流相对比较大,当第Ⅲ喷嘴组的压力为P0时焓降变为ΔhtⅡ。
因为调节级后的空间为通的,级后的压力P2一致,所以两股不同的汽流同样膨胀为P2,经过调节级的汽室中经过混合进入第一压力级。
当两股气流混合后产生的比焓。
2阀门流量特性存在小偏差对电力的影响及计算
调频试验属于人为的模拟汽轮机转速的变化,可迅速使汽轮机出力发生改变,从而对机组频率特性进行考虑。
由此可看出转速阶跃有变化后,流量指令就会大幅度增大。
到40S机组变化开始进入稳定状态,和之前的转速阶跃的流量指令相比较,稳定状态的流量指令比较小。
而机组回馈增益的指数是1,也就是机组阀门的流量可以反映出实际的阀门流量特性时候,初始的流量指令便等于稳定状态的流量指令。
所以说,这个时候的阀门流量和阀门流量的特性之间有一定的偏差,若是对试验过程里的主蒸汽压力的下降进行考虑的话偏就会变得更大。
由于主蒸汽压力变化很小,属于可以完全不用去考虑的压力变化。
利用汽轮机模型对机组实际特性进行模拟,模型中可反映出汽轮机局部阀门流量的特性。
因为这个机组的负荷控制回馈增益指数为1,所以不可以因为开始的流量指令变成平稳状态的流量指令。
3汽轮机阀门流量特性对电力系统的应用研究
在一个300MW的机组里提出进行阀门的流量特性策略的实验研究,根据所收集到相关的具有阀门特性的数据,并制定出顺序阀的方式。
DEH流量需求的指令和实际的等效流量间,其中的横坐标是DEH的指令,纵坐标是DEH的阀门流量。
直线是负荷指令的理想阀门流量,曲线是实际DEH负荷指令的阀门流量。
DEH阀门的流量特性两段都有显著的偏离,在负荷指令74.89%~87.58%这一区间内段,实际的流量完全小于负荷的指令,最大的偏离是负荷指令83.11%实际流量76.17%时。
当实际的流量完全大于负荷指令时,最大的偏离则是负荷指令97.2%实际流量94.2%的时候。
阀门特性拐点存在主要原因是顺序阀中流量函数进行流量的分配,在阀门的预启段流量的计算和阀门的设置没有正确而导致的,所有对流量的曲线必须要进一步的进行调整以及优化。
有关原顺序阀的方式,及依据实际数据计算得出阀门特性曲线的对比。
从左往右的顺序,曲线则分三组,依次是CV1、CV2流量的特性曲线,CV4流量的特性曲线以及CV3流量的特性曲线经过计算得到的阀门流量特性结果。
从曲线上很明显的可以看出,修改前和修改后曲线差异很大。
当流量指令达到一致时,经过修改CV1、CV2自身的开度比以前扩大了0%~6%,而控制范围也有了一定的缩短,拐点前后的特性明显比原来光滑。
在修改之前CV4的预启阶段需流量的指令由原来的62.0%变为78.5%,导致指令调节的死区时间过长,修改之后流量的指令由原来的72.99%变为74.7%,就可以将预启段打开,对于阀门死区的调节很有效果。
修改之前CV4的预启段需流量指令由80%变为93.69%,指令调节的时间过长,修改以后流量指令由88.76%变为90.16%就可以将预启段打开,阀门的死区得到了有效的调节。
4结语
经过汽轮机阀门流量自身特性对电力系统仿真及机理的研究发现,汽轮机阀门流量特性发挥不理想时,使得机组在一定范围之内发生功率的波动。
当机组发生功率波动的时候,它们频率相当电力系统功率共振时的频率,因此有可能导致电网低频和振荡。
经过系统控制策略的改进,机组功率波动可以得到有效的抑制。
机组阀门流量特性对电网稳定运行有着重要影响。
参考文献
[1]盛锴,刘复平,刘武林,等.汽轮机阀门流量特性对电力系统的影响及其控制策略[J].电力系统自动化,2012,36(7):104-109.
[2]张曦,黄卫剑,朱亚清,等.汽轮机阀门流量特性分析与优化[J].南方电网技术,2010,4(z1):72-75.
[3]曾宪涛.汽轮机阀门流量特性优化[J].中国科技纵横,2012(2):60-61.
[4]李劲柏,刘复平.汽轮机阀门流量特性函数优化和对机组安全性经济性的影响[J].中国电力,2008,41(12):50-53.。