全国高考数学直线与圆的方程试题汇编
历届高考直线与圆试题汇编

历届高考直线与圆试题汇编专题九:解析几何第二十五讲直线与圆一、选择题1.(2018全国卷Ⅲ) 直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆 (x-2)²+y²=2 上,则ΔABP 面积的取值范围是:A。
[2,6]B。
[4,8]C。
[2,32]D。
[22,32]2.(2018天津) 已知圆 x+y-2x=0 的圆心为 C,直线 y=3-x相交于 A,B 两点,则ΔABC 的面积为:3.(2018北京) 在平面直角坐标系中,记 d 为点P(cosθ,sinθ) 到直线 x-my-2=0 的距离,当θ,m 变化时,d 的最大值为:A。
1B。
2C。
3D。
44.(2017新课标Ⅲ)已知椭圆C:(x²/a²)+(y²/b²)=1 (a>b>0) 的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的圆与直线 bx-ay+2ab=0 相切,则 C 的离心率为:A。
√(3/32)B。
1/√(3/32)C。
√(3/8)D。
1/√(3/8)5.(2017新课标Ⅲ)在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上。
若AP=λAB+μAD,则λ+μ 的最大值为:A。
3B。
2√2C。
5D。
26.(2015山东)一条光线从点 (-2,-3) 射出,经 y 轴反射后与圆 (x+3)²+(y-2)²=1 相切,则反射光线所在直线的斜率为:A。
-2/5 或 5/2B。
-5/2 或 2/5C。
-2/3 或 3/2D。
-3/2 或 2/37.(2015新课标2)已知圆 C1:(x-1)²+y²=1,圆 C2:(x-2)²+y²=4,则圆 C1 与圆 C2 的公共弦所在直线的斜率为:A。
1/3B。
1/2C。
2/3D。
3/48.(2015新课标2)过三点 A(1,3),B(4,2),C(1,-7) 的圆交于 y 轴于 M、N 两点,则 MN 的长度为:A。
(完整版)全国高考数学直线与圆的方程试题汇编

全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
高考数学直线与圆的方程试题汇编

高考数学直线与圆的方程试题汇编重庆文(8)若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为(A )⎪⎭⎫ ⎝⎛-72,73 (B )⎪⎭⎫ ⎝⎛-214,72 (C )⎪⎭⎫ ⎝⎛-72,73 (D )⎪⎭⎫ ⎝⎛-214,72 天津文(3) “2a =”是“直线20ax y +=平行于直线1x y +=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于AB ,两点,则直线AB 的方程是 .30x y +=四川文15、已知O 的方程是2220x y +-=,'O 的方程是228100x y x +-+=,由动点P 向O 和'O 所引的切线长相等,则运点P 的轨迹方程是__________________ 解析:O :圆心(0,0)O ,半径r ='O :圆心'(4,0)O ,半径'r =设(,)P x y ,由切线长相等得 222x y +-=22810x y x +-+,32x =. 上海理11、已知圆的方程()2211x y +-=,P 为圆上任意一点(不包括原点)。
直线OP 的倾斜角为θ弧度,OP d =,则()d fθ=的图象大致为_____2sin θ 正弦函数 上海文11.如图,A B ,是直线l 上的两点,且2=AB A B ,点,C 是这两个圆的公共点,则圆弧AC ,CB 线段AB 围成图形面积S 的取值范围是 . π022⎛⎤- ⎥⎝⎦,13.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( ) A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x山东理 (15)与直线20x y +-=和曲线221212540x y x y +---=都相切的半径最小的圆的标准方程是 .江西理16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题: A.存在一条定直线与所有的圆均相切B.存在一条定直线与所有的圆均相交C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)B D ,湖南理 11.圆心为(11),且与直线4x y +=相切的圆的方程是 .22(1)(1)2x y -+-=湖北文8.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( )A .1B. CD .3 安徽文(5)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为 (A)-2或2 (B)2321或 (C)2或0 (D)-2或0(9)如果点P 在平面区域⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点O 在曲线的那么上||,1)2(22PQ y x =++最小值为(A)23 (B)154- (C)122- (D)12-。
高考直线与圆的方程综合题、典型题

直线与圆的方程综合题、典型题、高考题主讲:曹老师 2012年4月301、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立. 所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2rd >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA == 2)3(92222+--=-=a b CMCB MB,222b a OM += ∴2222)3(9b a a b +=+--②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =u u u r u u u rg,联立方程组,根与系数关系代入得到关于b 的方程比较简单 3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2 = m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m >>即13m 13m >-<或.∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2 = m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围.解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。
直线和圆的方程十年高考题(含答案)

直线和圆的方程●考点阐释解析几何是用代数方法来研究几何问题的一门数学学科.在建立坐标系后,平面上的点与有序实数对之间建立起对应关系,从而使平面上某些曲线与某些方程之间建立对应关系;使平面图形的某些性质(形状、位置、大小)可以用相应的数、式表示出来;使平面上某些几何问题可以转化为相应的代数问题来研究.学习解析几何,要特别重视以下几方面:(1)熟练掌握图形、图形性质与方程、数式的相互转化和利用; (2)与代数、三角、平面几何密切联系和灵活运用. ●试题类编 一、选择题1.(2003北京春文12,理10)已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为x =0,y =0,2x +3y =30,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是( )A.95B.91C.88D.753.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是( ) A.x -y =0 B.x +y =0 C.|x |-y =0D.|x |-|y |=04.(2002京皖春理,8)圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2+k π,k ∈Z )的位置关系是( )A.相交B.相切C.相离D.不确定的5.(2002全国文)若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为( ) A.1,-1B.2,-2C.1D.-16.(2002全国理)圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( ) A.21 B.23 C.1D.37.(2002北京,2)在平面直角坐标系中,已知两点A (co s 80°,sin80°),B (co s 20°,sin20°),则|AB |的值是( )A.21B.22 C.23 D.18.(2002北京文,6)若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.)3,6[ππB.)2,6(ππ C.)2,3(ππ D.]2,6[ππ 9.(2002北京理,6)给定四条曲线:①x 2+y 2=25,②4922y x +=1,③x 2+42y =1,④42x +y 2=1.其中与直线x +y -5=0仅有一个交点的曲线是( )A.①②③B.②③④C.①②④D.①③④10.(2001全国文,2)过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=411.(2001上海春,14)若直线x =1的倾斜角为α,则α( ) A.等于0B.等于4πC.等于2π D.不存在12.(2001天津理,6)设A 、B 是x 轴上的两点,点P 的横坐标为2且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是( )A.x +y -5=0B.2x -y -1=0C.2y -x -4=0D.2x +y -7=013.(2001京皖春,6)设动点P 在直线x =1上,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰Rt △OP Q ,则动点Q 的轨迹是( )A.圆B.两条平行直线C.抛物线D.双曲线14.(2000京皖春,4)下列方程的曲线关于x =y 对称的是( ) A.x 2-x +y 2=1B.x 2y +xy 2=1C.x -y =1D.x 2-y 2=115.(2000京皖春,6)直线(23-)x +y =3和直线x +(32-)y =2的位置关系是( )A.相交不垂直B.垂直C.平行D.重合16.(2000全国,10)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( )A.y =3xB.y =-3xC.y =33xD.y =-33x 17.(2000全国文,8)已知两条直线l 1:y =x ,l 2:ax -y =0,其中a 为实数,当这两条直线的夹角在(0,12π)内变动时,a 的取值范围是( )A.(0,1)B.(3,33)C.(33,1)∪(1,3)D.(1,3)18.(1999全国文,6)曲线x 2+y 2+22x -22y =0关于( )A.直线x =2轴对称B.直线y =-x 轴对称C.点(-2,2)中心对称D.点(-2,0)中心对称19.(1999上海,13)直线y =33x 绕原点按逆时针方向旋转30°后所得直线与圆 (x -2)2+y 2=3的位置关系是( )A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点20.(1999全国,9)直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角为( ) A.6π B.4π C .3π D.2π21.(1998全国,4)两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A.A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A AD.2121A A B B =1 22.(1998上海)设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin A ·x +ay +c =0与bx -sin B ·y +sin C =0的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直23.(1998全国文,3)已知直线x =a (a >0)和圆(x -1)2+y 2=4相切,那么a 的值是( ) A.5B.4C.3D.224.(1997全国,2)如果直线ax +2y +2=0与直线3x -y -2=0平行,那么系数a 等于( ) A.-3B.-6C.-23D.32 25.(1997全国文,9)如果直线l 将圆x 2+y 2-2x -4y =0平分,且不通过第四象限,那么直线l 的斜率的取值范围是( )A.[0,2]B.[0,1]C.[0,21]D.[0,21) 26.(1995上海,8)下列四个命题中的真命题是( ) A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示C.不经过原点的直线都可以用方程1=+bya x 表示D.经过定点A (0,b )的直线都可以用方程y =kx +b 表示27.(1995全国文,8)圆x 2+y 2-2x =0和x 2+y 2+4y =0的位置关系是( )A.相离B.外切C.相交D.内切28.(1995全国,5)图7—1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 229.(1994全国文,3)点(0,5)到直线y =2x 的距离是( ) A.25B.5 C.23D.25 二、填空题30.(2003上海春,2)直线y =1与直线y =3x +3的夹角为_____.31.(2003上海春,7)若经过两点A (-1,0)、B (0,2)的直线l 与圆(x -1)2+ (y -a )2=1相切,则a =_____.32.(2002北京文,16)圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 .33.(2002北京理,16)已知P 是直线3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,那么四边形PACB 面积的最小值为 .34.(2002上海文,6)已知圆x 2+(y -1)2=1的圆外一点P (-2,0),过点P 作圆的切线,则两条切线夹角的正切值是 .35.(2002上海理,6)已知圆(x +1)2+y 2=1和圆外一点P (0,2),过点P 作圆的切线,则两条切线夹角的正切值是 .36.(2002上海春,8)设曲线C 1和C 2的方程分别为F 1(x ,y )=0和F 2(x ,y )=0,图7—1则点P (a ,b ) C 1∩C 2的一个充分条件为 .37.(2001上海,11)已知两个圆:x 2+y 2=1①与x 2+(y -3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为:38.(2001上海春,6)圆心在直线y =x 上且与x 轴相切于点(1,0)的圆的方程为 . 39.(2000上海春,11)集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若A ∩B 中有且仅有一个元素,则r 的值是_____.40.(1997上海)设圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 .41.(1994上海)以点C (-2,3)为圆心且与y 轴相切的圆的方程是 . 三、解答题42.(2003京春文,20)设A (-c ,0),B (c ,0)(c >0)为两定点,动点P 到A 点的距离与到B 点的距离的比为定值a (a >0),求P 点的轨迹.43.(2003京春理,22)已知动圆过定点P (1,0),且与定直线l :x =-1相切,点C 在l 上.(Ⅰ)求动圆圆心的轨迹M 的方程; (Ⅱ)设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.44.(2002全国文,21)已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1.求直线PN 的方程.45.(1997全国文,25)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为55,求该圆的方程. 46.(1997全国理,25)设圆满足: (1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程. 47.(1997全国文,24)已知过原点O 的一条直线与函数y =lo g 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =lo g 2x 的图象交于C 、D 两点.(1)证明点C、D和原点O在同一条直线上.(2)当BC平行于x轴时,求点A的坐标.48.(1994上海,25)在直角坐标系中,设矩形OPQR的顶点按逆时针顺序依次为O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞).(1)求矩形OPQR在第一象限部分的面积S(t).(2)确定函数S(t)的单调区间,并加以证明.49.(1994全国文,24)已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0).求动点M的轨迹方程,说明它表示什么曲线.答案解析1.答案:B解析:圆心坐标为(0,0),半径为1.因为直线和圆相切.利用点到直线距离公式得:d =22||b a c +=1,即a 2+b 2=c 2.所以,以|a |,|b |,|c |为边的三角形是直角三角形.评述:要求利用直线与圆的基本知识,迅速找到a 、b 、c 之间的关系,以确定三角形形状.2.答案:B解析一:由y =10-32x (0≤x ≤15,x ∈N )转化为求满足不等式y ≤10-32x (0≤x ≤15,x ∈N )所有整数y 的值.然后再求其总数.令x =0,y 有11个整数,x =1,y 有10个,x =2或x =3时,y 分别有9个,x =4时,y 有8个,x =5或6时,y 分别有7个,类推:x =13时y 有2个,x =14或15时,y 分别有1个,共91个整点.故选B.解析二:将x =0,y =0和2x +3y =30所围成的三角形补成一个矩形.如图7—2所示.对角线上共有6个整点,矩形中(包括边界)共有16×11=176.因此所求△AOB 内部和边上的整点共有26176+=91(个)评述:本题较好地考查了考生的数学素质,尤其是考查了思维的敏捷性与清晰的头脑,通过不等式解等知识探索解题途径.3.答案:D解析:设到坐标轴距离相等的点为(x ,y ) ∴|x |=|y | ∴|x |-|y |=0 4.答案:C解析:圆2x 2+2y 2=1的圆心为原点(0,0)半径r 为22,圆心到直线x sin θ+y -1=0的距离为:1sin 11sin |1|22+=+=θθd∵θ∈R ,θ≠2π+k π,k ∈Z∴0≤sin 2θ<1 ∴d >22∴d >r 图7—2∴圆2x 2+2y 2=1与直线x sin θ+y -1=0(θ∈R ,θ≠2π+k π,k ∈Z )的位置关系是相离.5.答案: D解析:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1∴其圆心为(1,0),半径为1,若直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离d 等于圆的半径r∴11)1(|11|2=++++a a ∴a =-16.答案:A解析:先解得圆心的坐标(1,0),再依据点到直线距离的公式求得A 答案.7.答案:D解析:如图7—3所示,∠AOB =60°,又|OA |=|OB |=1 ∴|AB |=1 8.答案:B方法一:求出交点坐标,再由交点在第一象限求得倾斜角的范围⎪⎪⎩⎪⎪⎨⎧+-=++=⇒⎩⎨⎧=-+-=k k y kx y x kx y 3232632)32(306323 ∵交点在第一象限,∴⎩⎨⎧>>0y x∴⎪⎪⎩⎪⎪⎨⎧>+->++032326032)32(3kk k∴k ∈(33,+∞)∴倾斜角范围为(2,6ππ)方法二:如图7—4,直线2x +3y -6=0过点A (3,0),B (0,2),直线l 必过点(0,-3),当直线过A 点时,两直线的交点在x 轴,当直线l 绕C 点逆时针旋转时,交点进入第一象限,从而得出结果.图7—3图7—4评述:解法一利用曲线与方程的思想,利用点在象限的特征求得,而解法二利用数形结合的思想,结合平面几何中角的求法,可迅速、准确求得结果.9.答案:D解析:联立方程组,依次考查判别式,确定D. 10.答案:C解析一:由圆心在直线x +y -2=0上可以得到A 、C 满足条件,再把A 点坐标(1,-1)代入圆方程.A 不满足条件.∴选C.解析二:设圆心C 的坐标为(a ,b ),半径为r ,因为圆心C 在直线x +y -2=0上,∴b =2-a . 由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1因此所求圆的方程为(x -1)2+(y -1)2=4评述:本题考查圆的方程的概念,解法一在解选择题中有广泛的应用,应引起重视. 11.答案:C解析:直线x =1垂直于x 轴,其倾斜角为90°. 12.答案:A解析:由已知得点A (-1,0)、P (2,3)、B (5,0),可得直线PB 的方程是x +y -5=0. 评述:本题考查直线方程的概念及直线的几何特征. 13.答案:B解析一:设P =1+bi ,则Q =P (±i ), ∴Q =(1+bi )(±i )=±b i ,∴y =±1解析二:设P 、Q 点坐标分别为(1,t ),(x ,y ), ∵OP ⊥OQ ,∴1t·xy=-1,得x +ty =0 ①∵|OP |=|OQ |,∴2221y x t +=+,得x 2+y 2=t 2+1②由①得t =-yx ,将其代入②,得x 2+y 2=22y x +1,(x 2+y 2)(1-21y )=0.∵x 2+y 2≠0,∴1-21y=0,得y =±1. ∴动点Q 的轨迹为y =±1,为两条平行线.评述:本题考查动点轨迹的基本求法. 14.答案:B解析:∵点(x ,y )关于x =y 对称的点为(y ,x ),可知x 2y +xy 2=1的曲线关于x =y 对称.15.答案:B 解析:直线(23-)x +y =3的斜率k 1=32-,直线x +(32-)y =2的斜率k 2=23+,∴k 1·k 2=)23)(32(+-=-1.16.答案:C解析一:圆x 2+y 2+4x +3=0化为标准式(x +2)2+y 2=1,圆心C (-2,0).设过原点的直线方程为y =kx ,即kx -y =0.由1|2|2+-k k =1,解得k =±33,∵切点在第三象限, ∴k >0,所求直线方程为y =33x . 解析二:设T 为切点,因为圆心C (-2,0),因此CT =1,OC =2,△OCT 为Rt △.如图7—5,∴∠CO T=30°,∴直线OT 的方程为y =33x . 评述:本题考查直线与圆的位置关系,解法二利用数与形的完美结合,可迅速、准确得到结果.17.答案:C解析:直线l 1的倾斜角为4π,依题意l 2的倾斜角的取值范围为(4π-12π,4π)∪(4π,4π+12π)即:(6π,4π)∪(4π,3π),从而l 2的斜率k 2的取值范围为:(33,1)∪(1,3). 评述:本题考查直线的斜率和倾斜角,两直线的夹角的概念,以及分析问题、解决问题的能力.18.答案:B 解析:由方程(x +2)2+(y -2)2=4如图7—6所示,故圆关于y =-x 对称图7—5图7—6故选B.评述:本题考查了圆方程,以及数形结合思想.应注意任何一条直径都是圆的对称轴. 19.答案:C 解析:直线y =33x 绕原点逆时针旋转30°所得的直线方程为:y =3x .已知圆的圆心(2,0)到y =3x 的距离d =3,又因圆的半径r =3,故直线y =3x 与已知圆相切.评述:本题考查直线的斜率和倾斜角以及直线与圆的位置关系. 20.答案:C解析:如图7—7所示, 由⎪⎩⎪⎨⎧=+=-+432322y x y x消y 得:x 2-3x +2=0 ∴x 1=2,x 2=1 ∴A (2,0),B (1,3)∴|AB |=22)30()12(-+-=2又|OB |=|OA |=2∴△AOB 是等边三角形,∴∠AOB =3π,故选C.评述:本题考查直线与圆相交的基本知识,及正三角形的性质以及逻辑思维能力和数形结合思想,同时也体现了数形结合思想的简捷性.如果注意到直线AB 的倾斜角为120°.则等腰△OAB 的底角为60°.因此∠AOB =60°.更加体现出平面几何的意义.21.答案:A解法一:当两直线的斜率都存在时,-11B A ·(22B A-)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,⎩⎨⎧==⎩⎨⎧==00001221B A B A 或,同样适合A 1A 2+B 1B 2=0,故选A. 解法二:取特例验证排除.图7—7如直线x +y =0与x -y =0垂直,A 1A 2=1,B 1B 2=-1,可排除B 、D. 直线x =1与y =1垂直,A 1A 2=0,B 1B 2=0,可排除C ,故选A.评述:本题重点考查两直线垂直的判定、直线方程的一般式等基本知识点,重点考查分类讨论的思想及逻辑思维能力.22.答案:C解析:由题意知a ≠0,s i n B ≠0,两直线的斜率分别是k 1=-a A sin ,k 2=Bbsin .由正弦定理知k 1·k 2=-a A sin ·Bbsin =-1,故两直线垂直. 评述:本题考查两直线垂直的条件及正弦定理. 23.答案:C解析:方程(x -1)2+y 2=4表示以点(1,0)为圆心,2为半径的圆,x =a 表示与x 轴垂直且与圆相切的直线,而此时的切线方程分别为x =-1和x =3,由于a >0,取a =3.故选C.评述:本题考查圆的方程、圆的切线方程及图象.利用数形结合较快完成此题. 24.答案:B解析一:若两直线平行,则22123-≠-=a , 解得a =-6,故选B.解析二:利用代入法检验,也可判断B 正确.评述:本题重点考查两条直线平行的条件,考查计算能力. 25.答案:A解析:圆的标准方程为:(x -1)2+(y -2)2=5.圆过坐标原点.直线l 将圆平分,也就是直线l 过圆心C (1,2),从图7—8看到:当直线过圆心与x 轴平行时,或者直线同时过圆心与坐标原点时都不通过第四象限,并且当直线l 在这两条直线之间变化时都不通过第四象限.当直线l 过圆心与x 轴平行时,k =0, 当直线l 过圆心与原点时,k =2. ∴当k ∈[0,2]时,满足题意.图7—8评述:本题考查圆的方程,直线的斜率以及逻辑推理能力,数形结合的思想方法. 26.答案:B解析:A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程bya x +=1表示;D 中过A (0,b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 27.答案:C解析:将两圆方程分别配方得(x -1)2+y 2=1和x 2+(y -2)2=4,两圆圆心分别为O 1(1,0),O 2(0,2),r 1=1,r 2=2,|O 1O 2|=52122=+,又1=r 2-r 1<5<r 1+r 2=3,故两圆相交,所以应选C.评述:本题考查了圆的一般方程、标准方程及圆的关系以及配方法. 28.答案:D解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3均为锐角,且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D.评述:本题重点考查直线的倾斜角、斜率的关系,考查数形结合的能力. 29.答案:B解析:直线方程可化为2x -y =0,d =55|5|=-. 评述:本题重点考查直线方程的一般式及点到直线的距离公式等基本知识点,考查运算能力.30.答案:60° 解析:因为直线y =3x +3的倾斜角为60°,而y =1与x 轴平行,所以y =1与y =3x +3的夹角为60°.评述:考查直线方程的基本知识及几何知识,考查数形结合的数学思想. 31.答案:a =4±5解析:因过A (-1,0)、B (0,2)的直线方程为:2x -y +2=0.圆的圆心坐标为C (1,a ),半径r =1.又圆和直线相切,因此,有:d =5|22|+-a =1,解得a =4±5.评述:本题考查直线方程、直线和圆的位置关系及点到直线的距离公式等知识. 32.答案:2解析:圆心到直线的距离d =5|843|++=3 ∴动点Q 到直线距离的最小值为d -r =3-1=2 33.答案:22解法一:∵点P 在直线3x +4y +8=0上.如图7—9. ∴设P (x ,432-- x ),C 点坐标为(1,1), S 四边形PACB =2S △PAC=2·21·|AP |·|AC |=|AP |·|AC |=|AP | ∵|AP |2=|PC |2-|AC |2=|PC |2-1∴当|PC |最小时,|AP |最小,四边形PACB 的面积最小. ∴|PC |2=(1-x )2+(1+2+43x )2=9)145(1025162522++=++x x x ∴|PC |min =3 ∴四边形PACB 面积的最小值为22.解法二:由法一知需求|PC |最小值,即求C 到直线3x +4y +8=0的距离,∵C (1,1),∴|PC |=5|843|++=3,S PACD =22. 34.答案:34 解法一:圆的圆心为(0,1)设切线的方程为y =k (x +2).如图7—10. ∴kx +2k -y =0 ∴圆心到直线的距离为1|12|2+-k k =1∴解得k =34或k =0, 图7—9图7—10∴两切线交角的正切值为34. 解法二:设两切线的交角为α∵tan212=α,∴tan α=3441112tan 12tan22=-=-αα. 35.答案:34 解析:圆的圆心为(-1,0),如图7—11. 当斜率存在时,设切线方程为y =kx +2 ∴kx -y +2=0∴圆心到切线的距离为1|2|2++-k k =1 ∴k =43,即tan α=43当斜率不存在时,直线x =0是圆的切线 又∵两切线的夹角为∠α的余角 ∴两切线夹角的正切值为34 36.答案:F 1(a ,b )≠0,或F 2(a ,b )≠0,或F 1(a ,b )≠0且F 2(a ,b )≠0或C 1∩C 2=∅或P ∉C 1等解析:点P (a ,b )∉C 1∩C 2,则 可能点P 不在曲线C 1上; 可能点P 不在曲线C 2上;可能点P 既不在曲线C 1上也不在曲线C 2上; 可能曲线C 1与曲线C 2不存在交点.37.答案:可得两圆对称轴的方程2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0解析:设圆方程(x -a )2+(y -b )2=r 2①(x -c )2+(y -d )2=r 2②图7—11(a ≠c 或b ≠d ),则由①-②,得两圆的对称轴方程为: (x -a )2-(x -c )2+(y -b )2-(y -d )2=0,即2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.评述:本题考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和推广数学命题的能力.38.答案:(x -1)2+(y -1)2=1解析一:设所求圆心为(a ,b ),半径为r . 由已知,得a =b ,r =|b |=|a |.∴所求方程为(x -a )2+(y -a )2=a 2又知点(1,0)在所求圆上,∴有(1-a )2+a 2=a 2,∴a =b =r =1.故所求圆的方程为:(x -1)2+(y -1)2=1.解析二:因为直线y =x 与x 轴夹角为45°.又圆与x 轴切于(1,0),因此圆心横坐标为1,纵坐标为1,r =1.评述:本题考查圆的方程等基础知识,要注意利用几何图形的性质,迅速得到结果. 39.答案:3或7解析:当两圆外切时,r =3,两圆内切时r =7,所以r 的值是3或7.评述:本题考查集合的知识和两圆的位置关系,要特别注意集合代表元素的意义. 40.答案:x +y -4=0解析一:已知圆的方程为(x -2)2+y 2=9,可知圆心C 的坐标是(2,0),又知AB 弦的中点是P (3,1),所以k CP =2301--=1,而AB 垂直CP ,所以k AB =-1.故直线AB 的方程是x +y -4=0.解析二:设所求直线方程为y -1=k (x -3).代入圆的方程,得关于x 的二次方程:(1+k 2)x 2-(6k 2-2k +4)x +9k 2-6k -4=0,由韦达定理:x 1+x 2=221426kk k ++-=6,解得k =1.A 、B 两点,其坐标分别为A (x 1,y 1)、B (x 2,y 2),则有⎪⎩⎪⎨⎧=+-=+-9)2(9)2(22222121y x y x②-①得(x 2+x 1-4)(x 2-x 1)+(y 2-y 1)(y 2+y 1)=0 又AB 的中点坐标为(3,1),∴x 1+x 2=6,y 1+y 2=2. ∴1212x x y y --=-1,即AB 的斜率为-1,故所求方程为x +y -4=0.评述:本题考查直线的方程与圆的有关知识.要特别注意圆所特有的几何性质. 41.答案:(x +2)2+(y -3)2=4解析:因为圆心为(-2,3),且圆与y 轴相切,所以圆的半径为2.故所求圆的方程为(x +2)2+(y -3)2=4.42.解:设动点P 的坐标为P (x ,y )由||||PB PA =a (a >0),得2222)()(yc x y c x +-++=a ,化简,得:(1-a 2)x 2+2c (1+a 2)x +c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x +c 2+y 2=0.整理, 得:(x -1122-+a a c )2+y 2=(122-a ac )2当a =1时,化简得x =0.所以当a ≠1时,P 点的轨迹是以(1122-+a a c ,0)为圆心,|122-a ac |为半径的圆;当a =1时,P 点的轨迹为y 轴.评述:本题考查直线、圆、曲线和方程等基本知识,考查运用解析几何的方法解决问题的能力.43.(Ⅰ)解法一,依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x .解法二:设M (x ,y ),依题意有|MP |=|MN |, 所以|x +1|=22)1(y x +-.化简得:y 2=4x .(Ⅱ)(i )由题意得,直线AB 的方程为y =-3(x -1).由⎪⎩⎪⎨⎧=--=.4),1(32x y x y 消y 得3x 2-10x +3=0,图7—12解得x 1=31,x 2=3. 所以A 点坐标为(332,31),B 点坐标为(3,-23), |AB |=x 1+x 2+2=316. 假设存在点C (-1,y ),使△ABC 为正三角形,则|BC |=|AB |且|AC |=|AB |,即⎪⎪⎩⎪⎪⎨⎧=-++=+++.)316()32()131()316()32()13(222222y y 由①-②得42+(y +23)2=(34)2+(y -332)2, 解得y =-9314. 但y =-9314不符合①, 所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由⎩⎨⎧-=--=.1),1(3x x y 得y =23,即当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,故y ≠23.又|AC |2=(-1-31)2+(y -332)2=334928y -+y 2, |BC |2=(3+1)2+(y +23)2=28+43y +y 2,|AB |2=(316)2=9256.当∠CAB 为钝角时,co sA =||||2||||||222AC AB BC AC AB ⋅-+<0.即|BC |2>|AC |2+|AB |2,即9256334928342822++->++y y y y ,即 y >392时,∠CAB 为钝角. 当|AC |2>|BC |2+|AB |2,即9256342833492822+++>+-y y y y ,即y <-3310时,∠CBA 为钝角. 又|AB |2>|AC |2+|BC |2,即2234283349289256y y y y++++->, 即0)32(,03433422<+<++y y y. 该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为(x -35)2+(y +332)2=(38)2. 圆心(332,35-)到直线l :x =-1的距离为38,所以,以AB 为直径的圆与直线l 相切于点G (-1,-332). 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A 、B 、C 三点不共线时,∠ACB 为锐角,即△ABC 中,∠ACB 不可能是钝角.因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为)31(33332-=-x y . 令x =-1得y =932.过点B 且与AB 垂直的直线方程为y +2333=(x -3). 令x =-1得y =-3310. 又由⎩⎨⎧-=--=.1),1(3x x y 解得y =23,所以,当点C 的坐标为(-1,23)时,A 、B 、C 三点共线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是y <-3310或y >932(y ≠23).评述:该题全面综合了解析几何、平面几何、代数的相关知识,充分体现了“注重学科知识的内在联系”.题目的设计新颖脱俗,能较好地考查考生综合运用数学知识解决问题的能力.比较深刻地考查了解析法的原理和应用,以及分类讨论的思想、方程的思想.该题对思维的目的性、逻辑性、周密性、灵活性都进行了不同程度的考查.对运算、化简能力要求也较高,有较好的区分度.44.解:设点P 的坐标为(x ,y ),由题设有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++.整理得 x 2+y 2-6x +1=0. ①因为点N 到PM 的距离为1,|M N|=2, 所以∠PMN =30°,直线PM 的斜率为±33, 直线PM 的方程为y =±33(x +1).② 将②式代入①式整理得x 2-4x +1=0. 解得x =2+3,x =2-3.代入②式得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1. 45.解:设圆的方程为(x -a )2+(y -b )2=r 2.令x =0,得y 2-2by +b 2+a 2-r 2=0.|y 1-y 2|=222122124)(a r y y y y -=-+=2,得r 2=a 2+1 ①令y =0,得x 2-2ax +a 2+b 2-r 2=0, |x 1-x 2|=r b r x x x x 224)(2221221=-=-+,得r 2=2b 2②由①、②,得2b 2-a 2=1又因为P (a ,b )到直线x -2y =0的距离为55, 得d =555|2|=-b a ,即a -2b =±1. 综上可得⎩⎨⎧=-=-;12,1222b a a b 或⎩⎨⎧-=-=-121222b a a b 解得⎩⎨⎧-=-=11b a 或⎩⎨⎧==11b a于是r 2=2b 2=2.所求圆的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.46.解:设所求圆的圆心为P (a ,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b |、|a |. 由题设圆P 截x 轴所得劣弧所对圆心角为90°,圆P 截x 轴所得弦长为2r ,故r 2=2b 2,又圆P 截y 轴所得弦长为2,所以有r 2=a 2+1,从而有2b 2-a 2=1又点P (a ,b )到直线x -2y =0距离为d =5|2|b a -, 所以5d 2=|a -2b |2=a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 当且仅当a =b 时上式等号成立,此时5d 2=1,从而d 取得最小值,由此有⎩⎨⎧=-=1222a b b a 解方程得⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 由于r 2=2b 2,知r =2,于是所求圆的方程为(x -1)2+(y -1)2=2或(x +1)2+(y +1)2=2评述:本题考查了圆的方程,函数与方程,求最小值问题,进一步考查了待定系数法、函数与方程思想.题中求圆的方程给出的三个条件比较新颖脱俗,灵活运用几何知识和代数知识将条件恰当转化,推演,即合乎逻辑、说理充分、陈述严谨.47.(1)证明:设A 、B 的横坐标分别为x 1,x 2,由题设知x 1>1,x 2>1,点A (x 1,lo g 8x 1),B (x 2,lo g 8x 2).因为A 、B 在过点O 的直线上,所以228118log log x x x x =, 又点C 、D 的坐标分别为(x 1,lo g 2x 1),(x 2,lo g 2x 2) 由于lo g 2x 1=2log log 818x =3lo g 8x 1,lo g 2x 2=2log log 828x =3lo g 8x 2,所以OC 的斜率和OD 的斜率分别为228222118112log 3log ,log 3log x x x x k x x x x k OD OC ====. 由此得k OC =k OD ,即O 、C 、D 在同一条直线上.(2)解:由BC 平行于x 轴,有lo g 2x 1=lo g 8x 2,解得 x 2=x 13将其代入228118log log x x x x =,得x 13lo g 8x 1=3x 1lo g 8x 1. 由于x 1>1,知lo g 8x 1≠0,故x 13=3x 1,x 1=3,于是点A 的坐标为(3,lo g 83).评述:本小题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查运算能力和分析问题的能力.48.解:(1)当1-2t >0即0<t <21时,如图7—13,点Q 在第一象限时,此时S (t )为四边形OPQK 的面积,直线QR 的方程为y -2=t (x +2t ).令x =0,得y =2t 2+2,点K 的坐标为(P ,2t 2+2).t t t S S S OKR OPQR OPQK 2)22(21)1(2222⋅+-+=-=)1(232t t t -+-=当-2t +1≤0,即t ≥21时,如图7—14,点Q 在y 轴上或第二象图7—13限,S (t )为△OP L的面积,直线PQ 的方程为y -t =-t 1(x -1),令x =0得y =t +t1,点L的坐标为(0,t +t 1),S △OPL =1)1(21⋅+tt )1(21tt +=所以S (t )=⎪⎪⎩⎪⎪⎨⎧≥+<<-+-21 )1(21210 )1(232t t t t t t t(2)当0<t <21时,对于任何0<t 1<t 2<21,有S (t 1)-S (t 2)=2(t 2-t 1)[1-(t 1+t 2)+(t 12+t 1t 2+t 22)]>0,即S (t 1)>S (t 2),所以S (t )在区间(0,21)内是减函数. 当t ≥21时,对于任何21≤t 1≤t 2,有S (t 1)-S (t 2)=21(t 1-t 2)(1-211t t ), 所以若21≤t 1≤t 2≤1时,S (t 1)>S (t 2);若1≤t 1≤t 2时,S (t 1)<S (t 2),所以S (t )在区间[21,1]上是减函数,在区间[1,+∞)内是增函数,由2[121+(21)2-(21)3]=45=S (21)以及上面的证明过程可得,对于任何0<t 1<21≤t 2<1,S (t 2)<45≤S (t 1),于是S (t )的单调区间分别为(0,1]及[1,+∞),且S (t )在(0,1]内是减函数,在[1,+∞)内是增函数.49.解:如图7—15,设直线MN 切圆于N ,则动点M 组成的集合是:P ={M ||MN |=λ|MQ |},(λ>0为常数)因为圆的半径|ON |=1,所以|MN |2=|MO |2-|ON |2=|MO |2-1.设点M 的坐标为(x ,y ),则2222)2(1y x y x +-=-+λ图7—15整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0当λ=1时,方程化为x =45,它表示一条直线,该直线与x 轴垂直,交x 轴于点(45,0);当λ≠1时,方程化为(x -1222-λλ)2+y 2=)1(3122-+λλ它表示圆心在(1222-λλ,0),半径为|1|3122-+λλ的圆.评述:本题考查曲线与方程的关系、轨迹的概念等解析几何的基本思想以及综合运用知识的能力. 制作:SD。
2023年高考文科数学真题汇编直线和圆学生版

[1,)
+∞
截得旳弦长为()旳倾斜角旳取值范围是()
y b
旳上顶点为
2
1(a b0)
32.(江苏)如图, 在平面直角坐标系xOy中, 已知以M为圆心旳圆M: 及其上一点A(2, 4)
(1)设圆N与x轴相切, 与圆M外切, 且圆心N在直线x=6上, 求圆N旳原则方程;
(2)设平行于OA旳直线l与圆M相交于B、C两点, 且BC=OA,求直线l旳方程;
33. (江苏)在平面直角坐标系中, 点, 直线,设圆旳半径为, 圆心在上。
(1)若圆心也在直线上, 过点作圆旳切线, 求切线旳方程;
(2)若圆上存在点, 使, 求圆心旳横坐标旳取值范围
34. (·全国Ⅰ理, 15)已知双曲线C: -=1(a>0, b>0)旳右顶点为A, 以A为圆心, b为半径作圆A, 圆A 与双曲线C旳一条渐近线交于M, N两点. 若∠MAN=60°, 则C旳离心率为________.。
专题6 直线和圆2023年高考真题和模拟题数学分项汇编(原卷版)

学科 网(北 京)股 份有限 公司 学科 网(北 京)股 份有限 公司
_____________.
16.(2023·广东东莞·校考三模)若圆 C 与 y 轴相切,与直线 l : y 3 x 也相切,且圆 C 经过点 P 2, 3 ,则 3 圆 C 的半径为______.
17.(2023·广东·校联考模拟预测)已知圆 O : x2 y2 4 ,过点 M 3, 3 的直线 l 交圆 O 于 A, B 两点,且
积为 8 ”的 m 的一个值______. 5
(全国乙卷数学(文))3.已知实数 x, y 满足 x2 y2 4x 2 y 4 0 ,则 x y 的最大值是( )
A.1 3 2 2
B.4
C.1 3 2
D.7
4.(2023·广东佛山·统考模拟预测)已知圆 C: x 12 y2 4 ,过点 A0,1 的两条直线 l1 ,l2 互相垂直,圆
10.(2024·四川成都·成都七中校考一模)直线 l1 : x 2 y 1 0 与直线 l2 :ax y 2 0平行,则 a ( )
A.
1 2
B. 1 2
C.2
D. 2
11.(2023·安徽黄山·屯溪一中校考模拟预测)若直线 2x y 3 0 与 4x 2 y a 0 之间的距离为 5 ,则 a
专题 6 直线和圆
(新课标全国Ⅰ卷)1.过点 0, 2 与圆 x2 y2 4x 1 0 相切的两条直线的夹角为 ,则 sin ( )
A.1
B. 15 4
C. 10 4
D. 6 4
(新课标全国Ⅱ卷)2.已知直线 l : x my 1 0 与 C : x 12 y2 4 交于 A,B 两点,写出满足“ ABC 面
mx ny 2 0 上,其中 m, n 均为正数,则 mn 的最大值为( )
2023-2024学年高考数学直线和圆的方程专项练习题(附答案)

2023-2024学年高考数学直线和圆的方程小专题一、单选题1.直线的倾斜角是( )330x y +-=A .B .C .D .30︒60︒150︒120︒2.直线与圆交于A ,两点,则当弦最短时直线:210l mx y m +--=22:(2)4C x y +-=B AB 的方程为( )l A .B .430x y -+=2430x y --=C .D .2410x y ++=2430x y -+=3.实数x ,y 满足,则的最大值为( )226440x y x y +--+=12y x ++A .B .C .D .0158322+163237+4.若两平行直线与之间的距离是,则( )()200x y m m ++=>30x ny --=5m n +=A .B .0C .1D .1-105.设直线l 的方程为,则直线l 的倾斜角的取值范围是( )()cos 30R x y θθ++=∈αA .B .C . D .[)0,πππ,42⎡⎫⎪⎢⎣⎭π3π,44⎡⎤⎢⎥⎣⎦πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦6.已知点,,直线l 过点且与线段AB 相交,则直线l 与圆()1,1A -()3,1B ()1,3C 的位置关系是( )()2262x y -+=A .相交B .相离C .相切或相离D .相交或相切7.两圆与外切,则r 的值为( )2221:C x y r +=()()()2222:620C x y r r -++=>A .B .101-102C .D .或10101-101+8.直线和将单位圆分成长度相等的四段弧,则1:l y x a =+2:l y x b =+22:2C x y +=( )22a b +=A .B .2C .3D .42二、多选题9.已知直线,其中,则( )2:(1)10l a a x y ++-+=R a ∈A .当时,直线与直线垂直1a =-l 0x y +=B .若直线与直线平行,则l 0x y -=0a =C .直线过定点l (0,1)D .当时,直线在两坐标轴上的截距相等0a =l 10.已知直线,,则( )():120m a x ay +++=():110n ax a y +--=A .直线m 恒过点B .若,则()2,2-//m n 212a =C .若m ⊥n ,则D .当时,直线n 不经过第三象限21a =01a ≤≤11.圆( )22410x y x +--=A .关于点对称()2,0B .关于直线对称0y =C .关于直线对称320x y +-=D .关于直线对称20x y -+=12.已知直线与圆:,则下述正确的是(21)(1)20m x m y m ++---=(R)m ∈2240x y x +-=( )A .对,直线恒过一定点R m ∀∈B .,使得直线与圆相切R m ∃∈C .对,直线与圆一定相交R m ∀∈D .直线与圆相交且直线被圆所截得的最短弦长为22三、填空题13.若直线与直线平行,则 .()50mx y m --+=()2130x m y -++=m =14.已知圆的圆心在直线上,且过点,,则圆的一般方程为.230x y --=()2,3A -()2,5B --15.在平面直角坐标系中,矩形,,,,将矩形折叠,使点OABC ()0,0O ()2,0A ()0,1C O 落在线段上,设折痕所在直线的斜率为,则的取值范围为.BC k k 16.在平面直角坐标系中,圆关于直线对称的圆为xOy 221:2C x y +=l ,则的方程为.222:2430C x y x y ++-+=l3.A【分析】22644x y x y +--+=的圆,表示圆上的点312y x ++(,x y 线为,利用点到直线的距离等于半径,结合图形即可求解()12y k x +=+4.B【分析】根据平行直线的性质,结合平行线间的距离公式进行求解即可【详解】因为直线与直线()200x y m m ++=>所以有,所以有1312n m --=≠2,3n m =-≠-又因为这两条平行线间距离为,53m +7.C【分析】根据两圆相外切列方程,化简求得正确答案【详解】圆的圆心为,半径为1C ()10,0C 因为圆与圆外切,所以1C 2C 12C C =8.D【分析】每段弧所对的圆心角都为,a9.AC【分析】计算直线斜率判断A直线的截距判断D.【详解】对于A ,当时,直线的方程为,其斜率为1,而直线的1a =-l 10x y -+=0x y +=斜率为,1-因此当时,直线与直线垂直,A 正确;1a =-l 0x y +=对于B ,若直线与直线平行,则,解得或,B 错误;l 0x y -=211a a ++=0a =1a =-对于C ,当时,,与无关,则直线过定点,C 正确;0x =1y =a l (0,1)对于D ,当时,直线的方程为,在两坐标轴上的截距分别是,1,不相0a =l 10x y -+=1-等,D 错误.故选:AC 10.BD【分析】变形后得到,得到直线m 恒过点;B 选项,根据平行得到()20a x y x +++=()2,2-方程,求出答案;C 选项,根据垂直关系得到方程,求出;D 选项,分,和0a =0a =1a =三种情况,得到答案.01a <<【详解】A 选项,变形为,():120m a x ay +++=()20a x y x +++=令,解得,故直线m 恒过点,A 错误;200x x y +=⎧⎨+=⎩22x y =-⎧⎨=⎩()2,2-B 选项,,故且,解得,B 正确;//m n ()()2110a a a+--=()120a a -+-≠212a =C 选项,m ⊥n ,故,解得,C 错误;()()110a a a a ++-=0a =D 选项,当时,,不经过第三象限,0a =1y =当时,,不经过第三象限,1a =1x =若时,变形为,01a <<():110n ax a y +--=111a y x a a =+--其中,,01aa <-101a >-故经过第一,二,四象限,不经过第三象限,():110n ax a y +--=综上,当时,直线n 不经过第三象限,D 正确.01a ≤≤故选:BD 11.ABC【分析】将圆的方程转化为标准方程,可得圆心,进而判断各选项.【详解】由圆的方程为,即,22410x y x +--=()2225x y -+=即圆心的坐标为,()2,0A 选项,圆是关于圆心对称的中心对称图形,而点是圆心,A 选项正确;()2,0B 选项,圆是关于直径所在直线对称的轴对称图形,直线过圆心,B 选项正确;0y =C 项,圆是关于直径所在直线对称的轴对称图形,直线过圆心,C 选项正确;320x y +-=D 项,圆是关于直径所在直线对称的轴对称图形,直线不过圆心,D 选项不正确;20x y -+=故选:ABC.12.ACD【分析】由直线方程确定其所过的定点坐标,判断该定点与圆的位置关系即可判断A 、B 、C ;根据直线与圆相交弦长最短,只需定点与圆心的连线与已知直线垂直,(1,1)(2,0)几何法求最短弦长判断D.【详解】由题设,令,(21)20m x y x y --++-=2101201x y x x y y --==⎧⎧⇒⎨⎨+-==⎩⎩所以直线恒过定点,A 对;(21)(1)20m x m y m ++---=(R)m ∈(1,1)又的标准式为,显然,2240x y x +-=22(2)4x y -+=22(12)124-+=<所以点在圆内,故直线与圆必相交,B 错,C 对;(1,1)2240x y x +-=要使直线与圆相交弦长最短,只需定点与圆心的连线与已知直线垂直,(1,1)(2,0)此时定点与直线距离为,又圆的半径为2,则最短相交弦长为22(12)(10)2-+-=,D 对.2222(2)22⨯-=故选:ACD 13.1【分析】根据两直线平行可得,求出再验证即可.()()112m m ⎡⎤-+=-⨯⎣⎦m 【详解】因为直线与直线平行,()50mx y m --+=()2130x m y -++=所以,即,解得或.()()112m m ⎡⎤-+=-⨯⎣⎦220m m +-=1m =2m =-当时,直线即为,1m =()50mx y m --+=60x y --=直线即为,两直线平行.()2130x m y -++=2230x y -+=当时,直线即为,即,2m =-()50mx y m --+=230x y ---=230x y ++=直线即为,两直线重合,不符合题意.()2130x m y -++=230x y ++=故.1m =故1.14.222450x y x y +++-=【分析】方法一:设出圆的标准方程,代入点的坐标,建立方程组,求出答案;方法二:求出线段AB 的垂直平分线方程,联立求出圆心坐标,进而计算出半径,230x y --=写出圆的标准方程,化为一般方程.【详解】方法一:设所求圆的标准方程为,()()222x a y b r -+-=由题意得:,()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩解得:21,2,10,a b r =-⎧⎪=-⎨⎪=⎩故所求圆的方程为,()()221210x y +++=即.222450x y x y +++-=方法二:线段的中点坐标为,即,AB 2235,22---⎛⎫⎪⎝⎭()0,4-直线的斜率为,AB 531222-+=--所以线段的垂直平分线的斜率为,AB 2-所以线段的垂直平分线方程为,即,AB 42y x +=-240x y ++=由几何性质可知:线段的垂直平分线与的交点为圆心,AB 230x y --=【详解】圆,即,其圆心,222:2430C x y x y ++-+=()()222:122C x y ++-=()21,2C -又的圆心,221:2C x y +=()10,0C 根据题意可得直线为线段的垂直平分线,l 12C C 又,线段的中点,12221C C k ==--12C C 1,12⎛⎫- ⎪⎝⎭则直线的方程为,即.l 11122y x ⎛⎫-=+ ⎪⎝⎭2450x y -+=故答案为.2450x y -+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线 为( A )A .1133y x =-+ B .113y x =-+ C .33y x =-D .113y x =+ 解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥ C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP u u u u r所成的比λ的值为( A )A .-13B .-15 C .15 D .13 (重庆文科4)若点P 分有向线段AB u u u r 所成的比为-13,则点B 分有向线段PA u u u r 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(2,2)k ∈-B .(,2)(2,)k ∈-∞-⋃+∞ C .(3,3)k ∈-D .(,3)(3,)k ∈-∞-⋃+∞8.(陕西文、理科5)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( C ) A .3或3-B .3-或33C .33-或3D .33-或339.(安徽文科11)若A 为不等式组 0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤ 表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( C )A .34B .1C .74D .210.(湖北文科5)在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧⎪⎨<⎪⎩≤的点(,)x y 的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x 、y 满足约束条件10,310,10,y x y x y x +-⎧⎪--⎨⎪-+⎩≤≤≥则z =2x+y 的最大值为( B )A .4B .2C .1D .-412.(北京理科5)若实数x ,y 满足1000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,则z =3x +y 的最小值是 ( B )A .0B .1C .3D .9(北京文科6)若实数x ,y 满足1000x y x y x -+⎧⎪+⎨⎪⎩≥≥≤,则z =x +2y 的最小值是( A )A .0B .21 C .1 D .2 13.(福建理科8)若实数x 、y 满足⎩⎨⎧x -y+1≤0x >0,则yx 的取值范围是( C ) A .(0,1) B .(0,1] C .(1,+∞)D .[1,+∞)(福建文科10)若实数x 、y 满足20,0,2,x y x x -+⎧⎪>⎨⎪⎩≤≤则y x 的取值范围是( D )A .(0,2)B .(0,2)C .(2,+∞)D .[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8 (湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B .-4C . -6D .-818.(陕西理科10)已知实数x y ,满足121y y x x y m ⎧⎪-⎨⎪+⎩≥≤≤,,.如果目标函数z x y =-的最小值为1-,则实数m 等于( B )A .7B .5C .4D .319.(浙江文科10)若0,0a b ≥≥,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有1ax by +≤,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于( C )A .12B .4π C .1 D .2π 山东理科12)设二元一次不等式组219080,2140x y x y x y +-⎧⎪-+⎨⎪+-⎩≥≥≤,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( C ) A .[1,3]B .[2,10]C .[2,9]D .[10,9]21.(山东文科11)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( B )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭22.(重庆文科3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为( C )A .(x -1)2+(y +1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y -1)2=1D .(x -1)2+(y -1)2=123.(北京理科7)过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( C )A .30°B .45°C .60°D .90°24.(广东文科6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=025.(湖北理科9)过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有A .16条B .17条C .32条D .34条( C )26.(山东理科11)已知圆的方程为x 2+y 2-6x -8y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( B )A .106B .C .306D .40627.(重庆理科3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是 ( B )A .相离B .相交C .外切D .内切28.(上海理科15)如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成区域(含边界),A 、B 、C 、D 是该圆的 四等分点,若点P (x ,y )、P ’(x ’,y ’)满足x ≤x ’ 且y ≥y ’, 则称P 优于P ’,如果Ω中的点Q 满足:不存在Ω中的其 它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( D ) A .AB ︵B .BC ︵C .CD ︵D .DA ︵二、填空题29.(广东文科12)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是 .答案:7030.(全国I 卷理科13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .答案:931.(山东文科16)设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 .答案:1132.(安徽理科15)若A 为不等式组002x y y x ⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 答案:7433.(浙江理科17)若a ≥0,b ≥0,且当0,0,1x y x y ⎧⎪⎨⎪+⎩≥≥≤时,恒有ax +by ≤1,则以a 、b 为坐标的点P (a ,b )所形成的平面区域的面积等于_________. 答案:134.(福建理科14)若直线3x +4y +m =0与圆⎩⎨⎧x =1+cos θy =-2+sin θ(θ为参数)没有公共点,则实数m的取值范围是 .答案:(,0)(10,)-∞⋃+∞(福建文科14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 .答案:(,0)(10,)-∞⋃+∞35.(山东文科13)已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .答案:221412x y -=36.(江苏9)如图,在平面直角坐标系xOy 中,设△ABC 的顶点分别为(0)(0)(0)A a B b C c ,,,,,,点(0)P p ,是线段OA 上一点(异于端点),a b c p ,,,均为非零实数.直线BP 、CP 分别交AC 、AB 于点E ,F .一同学已正确地求出直线OE 的方程为11110x y b c p a ⎛⎫⎛⎫-+-= ⎪⎪⎝⎭⎝⎭,请你 完成直线OF 的方程:( ▲ )110x y p a ⎛⎫+-= ⎪⎝⎭. 答案:11c b- 37.(广东理科11)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是________________.【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=.38.(重庆理科15)直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 . 答案:x -y +1=0(重庆文科15)已知圆C :22230xy x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a = . 答案:-239.(天津理科13)已知圆C 的圆心与抛物线x y 42=的焦点关于直线x y =对称.直线0234=--y x与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为 .. 答案:22(1)10x y +-=40.(天津文科15)已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 答案:22(1)18x y ++=41.(湖南文科14)将圆x 2+y 2=1沿x 轴正向平移1个单位后得到圆C ,则圆C 的方程是 ;若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率是 .答案:(x -1)2+y 2=13342.(四川文、理科14)已知直线:40l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 距离的最小值为 .解析:由数想形,所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d =三、解答题 43.(宁夏海南文科第已知,m ∈R 直线m y m mx l 4)1(:2=+-和圆01648:22=++-+y x y x C . (Ⅰ)求直线l 斜率的取值范围;(Ⅱ)直线l 能否将圆C 分割成弧长的比值为21的两段圆弧?为什么? 解:(Ⅰ)22,0()1mk km m k m =∴-+=*+Q , ,m ∈R Q ∴当k ≠0时0∆≥,解得1122k -≤≤且k ≠0又当k =0时,m =0,方程()*有解,所以,综上所述1122k -≤≤(Ⅱ)假设直线l 能否将圆C 分割成弧长的比值为21的两段圆弧.设直线l 与圆C 交于A ,B 两点则∠ACB =1∵圆22:(4)(2)4C x y -++=,∴圆心C (4,-2)到l 的距离为1.1=,整理得423530m m ++=.∵254330∆=-⨯⨯<,∴423530m m ++=无实数解. 因此直线l 不可能将圆C 分割成弧长的比值为21的两段圆弧.44.(江苏18)在平面直角坐标系xOy 中,二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.记过三个交点的圆为圆C . (Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;(Ⅲ)圆C 是否经过定点(与b 的取值无关)?证明你的结论. 解:(Ⅰ)令x =0,得抛物线于y 轴的交点是(0,b )令f (x )=0,得x 2+2x +b =0,由题意b ≠0且△>0,解得b <1且b ≠0 (Ⅱ)设所求圆的一般方程为x 2+ y 2+D x +E y +F=0令y =0,得x 2+D x +F=0,这与x 2+2x +b =0是同一个方程,故D=2,F=b 令x =0,得y 2+ E y +b =0,此方程有一个根为b ,代入得E=-b -1 所以圆C 的方程为x 2+ y 2+2x -(b +1)y +b =0 (Ⅲ)圆C 必过定点(0,1),(-2,1)证明如下:将(0,1)代入圆C 的方程,得左边= 02+ 12+2×0-(b +1)×1+b =0,右边=0 所以圆C 必过定点(0,1); 同理可证圆C 必过定点(-2,1).。