2018年考研管理类联考之数学基础知识点汇总

合集下载

(时光朋解析)2018年管理类专业学位联考数学真题解析

(时光朋解析)2018年管理类专业学位联考数学真题解析

6
4
3
截掉部分(较小部分)的体积
V体积
Sh (2 3
3) 3 2 3
3.
15.函数 f x max x2, x2 8 的最小值为( ).
(A)8 (C)6 (E)4
(B)7 (D)5
解:选 E. 画出图形, x2 x2 8 x 2 ,
16. 设 x , y 为实数,则 x y 2 .
(1) x2 y2 2 .
(2) xy 1.
解:选 A. (1) x2 y2 2 充分, 画图易知;
或者 x2 y2 2xy 2(x2 y2 ) x2 2xy y2 (x y)2 x2 y2 2 ,即 4 2(x2 y2 ) (x y)2 ,即 x y 2 . (2) xy 1,取 x 2 , y 1 ,不充分。
男员工年龄(岁) 23 26 28 30 32 34 36 38 41
女员工年龄(岁) 23 25 27 27 29 31
根据表中数据估计,该公司男员工的平均年龄与全体员工的平均年龄分别是(单位:岁)

).
(A) 32, 30
(B) 32, 29.5
(C) 32, 27
(D) 30, 27
(E) 29.5, 27
b,
12 12
b 2 ,即 ab 2 .
11.羽毛球队有 4 名男运动员和 3名女运动员,从中选出两对参加混双比赛,则不同的选派
方式有( ).
(A) 9种
(B)18 种
(C) 24 种
(D) 36 种
(E) 72 种
解:选 D. 从 4 名男运动员和 3名女运动员各选 1 名,然后从余下的 3 名男运动员和 2 名女

(1)2018管理类联考数学部分基础运算及技巧

(1)2018管理类联考数学部分基础运算及技巧

绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互
9
为倒数。 除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

A.2
B. 1
C. 1
2
2
D.-2
4、若 a 2 ,则 a-2 的值是(
)A. 2 或-2 B. -2 或 4 C. 2 或 0 D. - 4 或 0
5、若 ab≠0,则 a b 的取值不可能是 ab
()
A.0
B.1
C.2
6、下列说法正确的是( )
A. 符号不同的两个数互为相反数
D.-2 B. 互为相反数的两个数必然一个是正数,一个是负数
A. 13
B. 14
C. 15
D. 16
E. 17
5、公约数、公倍数、互质★
约数:设 a 为一个正整数, m 为 a 的一个约数是指:a 能被正整数 m 除尽, 如a=15,则a=3×5,所以 a 有约
数 1,3,5,15 共4 个。 公约数 若正整数 m 同时是几个正整数 a1 , a2 , a3 的约数,就称 m 是 a1 , a2 , a3 的公约数,并把a1 , a2 , a3 的公
随堂演练
1、.在数轴上,原点和原点左边所表示的数是(

A 正数
B.负数
C.非负数
D.非正数
2、下列说法正确的是
()
①0 是绝对值最小的有理数; ②相反数大于本身的数是负数;

管综数学笔记

管综数学笔记

管综数学笔记数学是一门精密、严谨的学科,广泛应用于各个领域。

作为管综考试的必考科目之一,数学的重要性不言而喻。

本文将从基础概念、常见题型以及解题技巧等方面,为大家提供一份全面而简洁的《管综数学笔记》。

一、基础概念首先,我们来回顾一些管综数学中的基础概念。

在数学中,我们要了解和掌握各种数学符号的含义,例如加减乘除、等于号、大于小于号等。

此外,我们还需熟悉数学中的常见术语,如整数、分数、百分数、正负数等。

掌握这些基础概念是解题的基础,也是提高数学能力的关键。

二、常见题型管综数学考试中常见的题型包括代数、几何、函数、概率、统计等。

下面我们来简要介绍一下这些题型。

1. 代数题型:代数题型是数学考试中常见且重要的题型之一。

其中包括等式与方程、函数与方程组、不等式、比例与相似等内容。

掌握代数的基本运算法则和常用的解题方法可以帮助我们迅速解答代数题。

2. 几何题型:几何题型主要涉及图形的性质、图形的计算以及平面与空间的几何关系等。

在解几何题时,我们需熟悉各种图形的特征和性质,并善于应用几何定理和公式进行推导和计算。

3. 函数题型:函数题型是管综数学考试中的重点和难点。

其中包括函数的性质、函数的图像与性态、函数的运算与复合以及函数方程等。

理解函数的概念和性质,并掌握函数的运算法则和解题技巧是解答函数题的关键。

4. 概率与统计题型:概率与统计题型主要涉及到概率与统计的基本概念、常用方法和推断分析等内容。

我们需要掌握统计图表的分析和读取技巧,熟悉概率计算的方法和应用,才能在概率与统计题中得心应手。

三、解题技巧在做管综数学题时,掌握一些解题技巧可以帮助我们提高解题效率和准确性。

下面列举一些常用的解题技巧:1. 分类讨论法:对于一些复杂的问题,我们可以将其情况进行分类讨论,然后针对每种情况分别解答,最后得出综合答案。

2. 倒推法:对于一些问题,我们可以从结果出发,逆向思维,倒推出解题过程,从而得到正确的答案。

3. 反证法:对于一些命题,我们可以通过反设假设,然后推导出矛盾结论,从而证明原命题的正确性或错误性。

管理类联考综合—数学知识点汇总完整版3篇

管理类联考综合—数学知识点汇总完整版3篇

管理类联考综合—数学知识点汇总完整版第一篇:概率论与数理统计概率论与数理统计是管理类联考中数学部分的重要内容,覆盖面广、难度大,考生需要认真掌握其中的知识点。

本篇将对概率论和数理统计的基础知识、常见分布、假设检验、方差分析等内容进行汇总整理。

一、基础知识1. 随机事件:指在一定条件下,可能产生多种不同结果的现象。

2. 随机变量:随机事件的结果可以用数值来表示,称为随机变量。

3. 概率:随机事件发生的可能性大小,用概率表示。

4. 条件概率:在已知某一事件发生的前提下,另一事件发生的概率称为条件概率。

5. 独立事件:相互之间不会影响发生概率的两个或两个以上事件称为独立事件。

二、常见概率分布1. 正态分布:以均值为中心,标准差为分散程度的分布,常用于描述和推测大量数据的分布情况。

2. 二项分布:描述在n次试验中,成功的次数符合的概率分布。

3. 泊松分布:描述单位时间或单位面积内随机事件发生次数的分布。

4. 均匀分布:每一个数据出现的概率是等概率的。

5. 指数分布:记录一些事件发生所需要的时间的分布。

三、假设检验假设检验是用来判断统计样本是否符合总体总体假设的方法。

1. 假设:有一个总体在某些方面具有某种规律性,这种规律性称为原假设。

2. 零假设:原假设通常都是虚假的,它不成立的反假设称为空假设。

3. 显著性水平:指进行检验所容忍的犯错的概率,包括α错误和β错误两种类别。

4. P值:在假设检验过程中,p值越小说明样本越不符合原假设,若p值小于显著性水平,则拒绝原假设。

四、方差分析又称为ANOVA分析,是一种多个样本数据分析的方法。

1. 单因素方差分析:分析的是同一处理因素水平的多个样本间差异性的情况。

2. 二因素方差分析:分析的是两个处理因素及其交互作用对不同样本变量均值之差的影响。

3. 多因素方差分析:将数据按照多个不同的因素分组,比较不同因素的变化如何影响样本。

以上就是概率论与数理统计的基础知识、常见分布、假设检验、方差分析等内容的汇总整理,考生们在备考过程中应该加强对这些知识点的学习,扎实掌握这一部分的考试内容。

考研管理类联考数学基础课程第1-3章

考研管理类联考数学基础课程第1-3章

⎨ ⎩ ⎪⎪ ⎩第一章 实数1、实数的分类(1)按定义分类:⎧ ⎧ ⎧奇数 ⎪ ⎪整数⎨ ⎪⎪ ⎩偶数 ⎪有理数⎪ ⎧真分数(分子 < 分母) 实数⎪ ⎨ ⎪分数⎪> 分母) ⎪ ⎪⎪ ⎪⎪⎩ ⎪⎩无理数⎨假分数(分子 ⎪带分数 (2)按正负分类:⎧ ⎧ ⎧ ⎧1 ⎪ ⎪ ⎪ ⎪⎪ ⎪正有理数⎪正整数⎨质数 正实数⎪⎨ ⎪合数 ⎨ ⎪ ⎪ ⎪⎪ ⎪⎩正无理数⎪ ⎨零⎪ ⎧负有理数⎪⎩ ⎪⎩正分数⎪负实数⎨ ⎪ 负无理数 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩2、有理数、无理数2.1 :定义 1:有理数:整数和分数(有限小数、无限循环小数)无理数:无限不循环小数2.2 :定义 2:在于能否写成两个整数比的形式 2.3 :有理数的四则运算结果皆为有理数 无理数的四则运算结果皆为无理数或有理数 有理数与无理数的加减运算结果必为无理数有理数乘以无理数结果为有理数则有理数必为 0. 【例 1】、下列说法正确的是( ).(A )小数都是有理数 (B )无限小数都是无理数 (C )无理数是开方开不尽的数 (D )零的平方根和立方根都是零 (E )对数是无理数实数【例2】、已知x是无理数,且(x +1)(x +3)是有理数,则下列叙述有()个正确:(1)(x-1)(x-3)是无理数;(3)(x+2)2是有理数;(4)(x-1)2是无理数.x 2 是有理数;(2)(A)2 (B)3 (C)4 (D)1 (E)0【例3】、化简(3 + 2 )2019 (3 - 2 )2021 的结果为().(A) 5 - 2 3 (B)5 - 6 (C) 6 - 2 6(D)5 + 2 6 (E) 5 - 2 63、奇数、偶数3.1:奇数、偶数的概念:两两一组无剩余,偶数;两两一组有剩余,奇数3.2:奇数:末位为1、3、5、7、9偶数:末位为0、2、4、6、83.3:间隔式排布3.4:运算【例4】:在1、2、3⋯2020 数字前任意添加+、—,其结果为(奇数/偶数)4、质数、合数4.1:质数:一个数的约数只有1 和它本身合数:一个数的约数除了1 和它本身外,还有其他的约数4.2:1 既不是质数也不是合数【例5】、记不超过15的质数的算术平均数为M,则与M最接近的整数是().(A)5 (B)7 (C)8 (D)11 (E)6【例6】、20 以内的质数中,两个质数之和还是质数的共有()种.(A)2 (B)3 (C)4 (D)5 (E)6【例7】、某人左右两手分别握了若干颗石子,左手中石子数乘3 加上右手中石子数乘4 之和为29,则右手中石子数为().(A)奇数(B)偶数(C)质数(D)合数(E)以上结论均不正确5、约数、倍数【例8】、三个质数的积是其和的7 倍,求这三个质数6、互质数:如果两个数的公约数只有 1,则称这两个数为互质数。

2018-考研数学复习都有哪些知识点-范文模板 (4页)

2018-考研数学复习都有哪些知识点-范文模板 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==考研数学复习都有哪些知识点我们在进行考研数学的复习时,有很多的知识点需要我们去掌握。

小编为大家精心准备了考研数学复习要点,欢迎大家前来阅读。

考研数学复习重点高等数学:构建模型系统规划高等数学是一门很抽象的学科,理解的时候,不要纠结于表面的概念,要在思考的时候,在脑中构建一个模型,这个很像编程时,思考内存模型。

或者构建自己的复习思路,当复习到高数后面的知识点事,要结合前面的知识点,最后把学到的知识整体联系起来。

数学的复习是一项长期工程,关键在于恒心和坚持,只有如此,才能取得最后的成功,因此,希望你能严格要求自己,能够保证每天都完成相应的学习任务。

在寒假结束的时候,如果你都在稳扎稳打的看书了,高等数学的复习应该已经告一段落,考研数学复习的任务也就完成了三分之一。

线性代数:夯实知识点少量做题线性代数在考研数学中难度较高等数学来说要简单得多,但是考试题通常需要结合很多知识点才能解答出来。

所以考生要抓住寒假这段时间踏踏实实看一遍线性代数的参考书,然后自己做出总结,并将各知识点串联在一起,结合少量习题理解知识点考核重点即可。

概率论与数理统计:对照往年考纲少量题型概率论与数理统计在考研数学初试中题型比较固定,一般情况下难度中等,所以,虽然寒假难免有游玩的计划,同学们在复习这门课程时完全不必太过焦急。

花一周左右的时间对照往年考纲,安心看参考书,做少量题型就可以对后期的复习有很大帮助。

考研数学答题的技巧一、踩点得分对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。

为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。

也叫踩点给分,即踩上知识点就得分,踩得多就多得分。

因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。

管理类联考综合—数学知识点汇总(完整版)

管理类联考综合—数学知识点汇总(完整版)

管理类联考综合—数学知识点汇总(完整版)
管理类联考综合—数学知识点汇总(完整版)
管理类联考是国家教育部主管的研究生入学考试,涉及
到数学、英语、逻辑等多个科目。

其中,数学是考查学生数学能力和数学思维的重要科目,占据了考试总分的三分之一以上。

以下是管理类联考数学知识点汇总的完整版。

1. 数学符号:加减乘除符号、等于符号、大于、小于、
不等于符号、集合符号等。

2. 代数部分:基本代数运算、方程、函数、不等式、绝
对值、指数、对数、排列和组合、进制转换等。

3. 几何部分:基础几何概念、图形的性质、平行和垂直、圆的性质、三角形和四边形的性质、相似和全等、解析几何等。

4. 概率统计部分:概率基础、随机变量和分布、统计基础、假设检验、相关和回归分析等。

5. 线性代数:线性代数中向量、矩阵、行列式和线性方
程组的解法。

6. 微积分:求导和积分等,包括一元函数微积分和多元
函数微积分。

7. 数列与级数:数列的收敛、级数的求和等。

8. 计算机科学:计算机网络、数据结构和算法、计算机
体系结构等。

以上是数学知识点汇总的完整版,管理类联考数学考试
复杂多样,需要考生扎实的数学基础和良好的数学思维能力,希望考生能够认真学习和练习,顺利通过考试。

管理类联考综合—数学知识点汇总完整版

管理类联考综合—数学知识点汇总完整版

管理类联考综合—数学知识点汇总完整版一、微积分微积分是运用无限小量的方法研究函数和曲线变化的一门学科,主要包括导数、积分和微分方程三个部分。

许多问题可以通过微积分的方法求解,如求极值、最值、曲线的斜率、曲率等。

1. 导数导数是反映函数变化率和斜率的概念,用符号“f'(x)”表示。

导数的意义在于描述函数在某一点的变化情况,对于一条曲线而言,导数表示该点处的切线斜率。

(1) 导数的定义:$$f'(x)=\lim_{\Deltax\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$(2) 导数的性质:- 可导函数的导数连续。

- f'(x)存在的充分必要条件是函数f(x)在该点的左右导数相等。

左导数定义为$$ \lim_{\Delta x\to 0^-}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$右导数定义为$$ \lim_{\Delta x\to 0^+}\frac{f(x+\Delta x)-f(x)}{\Delta x} $$如果两者相等,则该函数在该点可导。

- 导函数的几何意义:导数表示曲线在某一点处的切线斜率,也表示函数的瞬时变化率。

2. 积分积分是导数的逆运算,求解函数与坐标轴之间的面积或者是求函数的定积分值。

积分有两种形式,一种是定积分,另一种是不定积分。

(1) 定积分:设函数f(x)在区间[a,b]上连续,将[a,b]划分为n个小区间,其长度分别为$\Delta x_1,\Delta x_2,...,\Deltax_n$,则小区间上的面积为$$ S=\sum_{i=1}^{n}f(x_i)\Delta x_i $$当n趋近于无穷大,区间[a,b]上的面积为$$ S=\lim_{\Delta x\to0}\sum_{i=1}^{n}f(x_i)\Delta x_i $$(2) 不定积分:设函数F(x)在区间I上有导数,则称F(x)为f(x)在区间I上的原函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年考研管理类联考之数学基础知识
点汇总
为帮助2018考研小伙伴们开展复习,凯程考研精心为大家整理了管理类联考数学基础知识点解析,供大家参考使用。

2018考研加油!
管理类联考综合能力考试中的数学基础部分的考查内容包括四个方面:算术、代数、几何、数据分析等;其中,算术部分包括整数、分数、比与比例、数轴与绝对值;代数部分包括整式、分式及其运算、函数、代数方程、不等式、数列等;几何部分包括平面图形、空间几何体、平面解析几何等;数据分析部分包括计数原理、数据描述、概率等。

(一)算术
1.整数:整数及其运算、整除、公倍数、公约数、奇数、偶数、质数、合数;
2.分数、小数、百分数;
3.比与比例;
4.数轴与绝对值。

这部分内容复习重点:以理解概念为主,重点要理清各概念之间的联系与区别。

看似简单,但每年都有不少考生在简单题目上失分,所以,简单内容也要认真复习。

(二)代数
1.整式:整式及其运算、整式的因式与因式分解;
2.分式及其运算;
3.函数:集合、一元二次函数及其图像、指数函数、对数函数;
4.代数方程:一元一次方程、一元二次方程、二元一次方程组;
5.不等式:不等式的性质、均值不等式、不等式求解;
6.数列、等差数列、等比数列。

这部分内容的考查重点:一元二次函数及其图像、一元二次方程、二元一次方程组、一元二次不等式、不等式求解、等差数列、等比数列等,一般会考查4-12道题目。

总体来说,这部分内容的复习,不能仅公停留在对概念、公式、性质的记忆上,更重要体现在对其综合应用的考查上。

这部分复习重点是:
(1)在整式和分式部分,主要考查数的概念、公式、原理、法则等基本知识,及进行正确运算和变形的能力;
(2)在函数部分,为每年必考查部分,主要考查一元二次函数及其图像,其次考查指数函数和对数函数的性质和综合应用;
(3)在方程和不等式部分,为每年必考查部分,考查的重点是一元二次方程和韦达定理;
(4)在数列部分,为每年必考查部分,考查重点为数列的性质和综合应用,数列部分既是重点,又是难点,一定要重视并加强对数列的复习。

(三)几何
1.平面图形:三角形、四边形、圆与扇形;
2.空间几何体:长方体、柱体、球体;
3.平面解析几何:平面直角坐标系、直线方程与圆的方程、两点间距离公式与点到直线的距离公式。

这部分内容的考查重点:三角形、圆与扇形、长方体、球体、直线方程与圆的方程等,一般会考查3-8道题目。

这部分内容复习重点:平面图形部分主要考查三角形、四边形、圆形等图形的相互组合后的计算应用;立体几何主要考查考生的空间想象能力,考查快速分解或快速组合图形的能力;在平面解析几何中,重点考查平面中点、直线、圆等相互的位置关系,要求考生理解并熟练掌握和应用图形的解析表达式。

(四)数据分析
1.计数原理:加法原理、乘法原理、排列与排列数、组合与组合数;
2.数据描述:平均值、方差与标准差、数据的图表表示;
3.概率:事件及其简单运算、加法公式、乘法公式、古典概型、伯努利概型。

这部分内容的考查重点:排列与组合、平均值、古典概型、伯努利概型,一般会考查3-10道题目
这部分内容复习重点:本部分复习重点,要理解排列、组合的意义,掌握排列数、组合数的公式和性质。

同时,排列、组合的考查有时是渗透在概率论中的,所以要对几种基本事件的概念、定义、关系等也要掌握得非常熟练。

相关文档
最新文档