频率特性法
频率特性法

§5-2
一、幅相频率特性
1、代数形式
频率特性表达方法
即极坐标图,也称为 Nyquist 图
G( j) P() jQ()
2、指数形式
由G ( j ) A( )e j ( )
3、幅相特性表示法 极坐标图形式
二、对数频率特性 即 Bode 图
G ( j ) A( )e j ( ) A( ) P 2 ( ) Q 2 ( ) Q ( ) P ( )
对数幅频特性绘在以 10 为底的对数坐标中,幅值的对数值用分贝(dB)表示
L() 20lg A()
纵轴是 L(w),横轴实际上是 lgw,由于是用 w 标注,所以又转化成 w 的值,这使得每一单位 的 w 增加量为 10 倍,这 10 倍频记为 dec。横轴的起点不为 0。.
§5-3
一、比例环节
2 2
1 T
1
L( ) 20 lg A( ) 20 log 1 20 lg (1 2T 2 ) (2T ) 2
六、时滞环节或延迟环节
传递函数 : G ( s) e s j 频率特性 : G ( j )e 幅频特性 : A( ) 1 相频特性 : ( ) G ( j ) cos j sin e j cos j sin G ( j ) 1
积分环节的对数频率特性
四、微分环节
G (s) s G ( j ) j 代数式 G ( j ) j 0 j 指数式 G ( j ) j 90
L( w) 20 lg | G( jw) | 20 lg w G( jw) 90
理想微分环节的副相频率特性
五、振荡环节(0<§<1)
第五章 频率特性法 (2)

斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
频率特性法实验报告

一、实验目的1. 了解频率特性法的基本原理和测试方法。
2. 掌握用频率特性法分析系统性能的方法。
3. 熟悉实验仪器和实验步骤。
二、实验原理频率特性法是控制系统分析和设计的重要方法之一。
它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。
频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。
三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。
(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。
(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。
(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。
(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。
(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。
五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。
从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。
峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。
2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。
从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。
3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。
(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。
如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。
第五章频率特性法

教学内容
1、频率特性的概念 2、典型环节频率特性
3、开环幅相曲线绘制方法,重点:开环对数频率特性曲线
4、频域稳定判据,奈奎斯特判据,对数频率稳定判据 5、稳定裕度的概念 6、闭环系统的频域指标
5-1 频率特性
频率特性法:用频率特性作为数学模型来分析和设 计系统的方法。 优点:①具有明确的物理意义; ②计算量很小,采用近似作图法,简单、直 观,易于在工程技术中使用; ③可以采用实验的方法求出系统或元件的频 率特性。
1 1 (T1 )
2
1 1 (T2 )
2
k
相频特性: ( ) tan1 T1 tan1 T2
1.确定开环幅相曲线的起点和终点
0时, G ( j 0) k (0) 0 时, G ( j 0) 0 (0) -180
式中, φ=-arctgωτ。
式(5.3)的等号右边 , 第一项是输出的暂态分量 , 第
二项是输出的稳态分量。 当时间t→∞ 时, 暂态分量趋 于零, 所以上述电路的稳态响应可以表示为
1 1 limuo (t ) sin( t ) U sin t (5.4) 2 2 t 1 j 1 j 1 U
0
ω 0 1/T ∞
∠G(jω ) 0º -90º -180º
│G(jω │ 1 1/2ζ 0
U(ω ) 1 0 0
V(ω )
-0.5
ζ =0.2— 0.8
0 -1/2ζ 0
-1.5 -0.5 0 0.5 1 1.5 -1
振荡环节的幅相曲线
: 0 , G ( j )曲 线 有 单 调 衰 减 和 谐 两 振种形式。
第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
自动控制原理--第五章-频率特性法

3. 频率特性随输入频率变化的原因是系统往往含有电容、电感、 弹簧等储能元件,导致输出不能立即跟踪输入,而与输入信号 的频率有关。
4.频率特性表征系统对不同频率正弦信号的跟踪能力,一般有 “低通滤波”与“相位滞后”作用。
2024年5月3日
2024年5月3日
若用一个复数G(jω)来表示,则有 G(jω)=∣G(jω)∣·ej∠G(jω)=A(ω)·ej 指数表示法
G(jω)=A(ω)∠ (ω) 幅角表示法
G(jω)就是频率特性通用的表示形式,是ω的函数。
当ω是一个特定的值时,可以 在复平面上用一个向量去表示G (jω)。向量的长度为A(ω),向量
频率特性的数学意义
频率特性是描述系统固有特性的数学模型,与微分方程、 传递函数之间可以相互转换。
微分方程
(以t为变量)
d s
dt
传递函数
(以s为变量)
s j 频率特性
(以ω为变量)
控制系统数学模型之间的转换关系
以上三种数学模型以不同的数学形式表达系统的运 动本质,并从不同的角度揭示出系统的内在规律,是经 典控制理论中最常用的数学模型。
R() A()cos()
I () A()sin()
2024年5月3日
以上函数都是ω的函数,可以用曲线表示它 们随频率变化的规律,使用曲线表示系统的频率 特性,具有直观、简便的优点,应用广泛。
并且A(ω)与R(ω)为ω的偶函数, (ω)与I
(ω)是ω的奇函数。
2024年5月3日
三、频率特性的实验求取方法
css(t) =Kce-jωt+K-cejωt
系数Kc和K-c由留数定理确定,可以求出
第五章 频率特性法

度 -30 -60 -90
0.1
1
10
③特点: a.由于缩小了比例尺,能够在较宽的频率范围内研 究频率特性. b.可以简化绘制工作. G1(jw)=A1(w)ej() C.将实验获得的频率特性数据画成对数频率特性曲 线,可简便地确定频率特性表达式 3.对数幅相特性. 又称尼柯尔斯图. 以w为参变量表示对数幅频特性与对数相频特性的 关系. 横坐标表示相频特性的函数值,单位为度 纵坐标表示幅频特性的函数值,单位为分贝 优点:能比较方便地确定闭环系统的稳定性和频域 性能指标。
1
C
1
U0(t)
Ui Ui
1+T22
U0(s)=
Ts+1
Ui(s)=
Ts+1 s2+2
拉氏变换得:U0(t)=
sin(t-arctanT)
=U0sin(t+)
可见,1、输出电压仍是正弦电压 2、输出与输入的频率相同 3、输出幅值为原幅值的U0/Ui倍 4、输出相角超前 而且:A()= U0/Ui 为幅频特性 ()=-arctanT为相角特性 图形如下
在低频段,因w τ <<1,故 L(w)≈0(dB) 在高频段,因w τ>>1,故 L(w)≈20lg w τ 可见,高频段是一条斜线。斜率为 +20dB/dec,该斜率在w=1/ τ处正好与低频渐 近线相衔接。 惯性环节和一阶微分环节的对数幅频特性, 两式相比较,仅仅是一个符号之差,其结果 是两种环节的低频渐近线完全相同,高频渐 近线则一个向下倾斜,另一个向上倾斜,且 斜率大小相等,方向相反。两种环节的特性 对称于横坐标w,即以w轴为基准,互为镜像。
L (w)/dB w/(rad·-1) s
点且斜率为每十频程下降20dB的斜线,见 图。 对数相频曲线φ(w)恒为-90°,故是 一条纵坐标为- 90°的水平线。 4、微分环节的伯德图 (1)纯微分环节 L(w)=20lgA(w)=20lgw 纯微分环节的对数幅频特性亦是一条 斜线,它的斜率20dB/dec,并与零分贝线 交于w=1处。 对数相频特性的描述,由于相角
04 频率特性法——奈氏判据和伯德图判据

分析开环系统 G(s)H(s)的零点 都在S左半平面
一、开环频率特性与闭环频率 特性的关系
开环频率特性
G(s)H(s)
闭环频率特性
G( s ) ( s) 1 G( s ) H ( s )
F(s)=1+G(s)H(s)
二、奈斯判据
奈斯判据: s沿着奈氏路径绕一圈(当ω从 -∞→+∞变化时),G(jω)H(jω)曲线逆 时针包围(-1,j0)点R圈。 若 R=P (右半平面极点个数即正 实部极点分析系统稳定性。
Im
P0
0
Im
P 1
0
0
R
Re
R
K
0
Re
(a)
(b)
解: (a) N= N+ - N –=(0-1)= -1,P =0,故
Z=P-2N=2,闭环系统不稳定。 (b) K>1时,N= N+ - N - =1-1/2= 1/2,P=1,故 Z= P-2N=0,闭环系统稳定; K<1时, N = N+ - N - =0-1/2= -1/2,且已知P =1,故 Z= P-2N=2,闭环系统不稳定; K=1时,奈氏曲线穿过 (-1,j0) 点两次,说明有两个 根在虚轴上,闭环系统不稳定。
R=2N=2(N+-N-)=P
注意:
正穿越对应于Bode图φ(ω)曲线当ω增大 时从下向上穿越-180°线; 负穿越对应于Bode图φ(ω)曲线当ω增大 时,从上向下穿越-180°线。
例:开环特征方程有两个右根,P=2,试判定闭环系统的稳定性。 解:
P=2
正负穿越数之差(N+-N-)为1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20lgK=29.5db,存在积分环节,故在w=1处 做29.5db点,过该点做-20dB/dec斜率直线L1
10
2
Frequency (rad/sec)
5.2.3积分环节
1 积分环节增益为 G(s) s
频率特性函数为
1 1 G( j ) e j
j
2
积分环节伯德图
5.2.4二阶振荡环节
二阶振荡环节增益为
1 G( s) 2 2 T s 2Ts 1 频率特性函数为 1 G ( j ) 1 (T ) 2 j 2T
伯德图研究系统频率响应的优点
• 动态补偿器的设计可以完全以伯德图为 依据。 • 伯德图可以由实验的方法获得。 • 串联系统的伯德图可简单相加而得,这 非常方便。 • 对数尺度允许伯德图表示相当广的频率 范围,而线性尺度很难做到。
5.2基本环节的频率特性分析
5.2.1比例环节 比例环节的增益为G(s)=K 频率特性函数为G(j)=K
A( ) 1
j
( )
时滞环节伯德图
5.2.7开环传递函数伯德图的绘制
• 绘制幅值曲线图步骤:
1. 将所有转折频率点求出,并按从小到大排 序(即将G(s)写成典型环节乘积形式)。 2. 确定20lgK及首段斜率:看sn项,斜率为 n×20db/dec。
3. 依据转折频率位置及环节斜率依次画出幅 频特性图。 注意:典型形式要写成时间常数形式。
伯德图的绘制(续)
• 绘制相位曲线图步骤:
–
–
画相位曲线在低频段的渐近线,为n×90°。
画近似相位曲线,在每个转折频率处改变 ±90°(一阶)或±180°(二阶)。 确定各单个相位曲线的渐进线,使得相位的 改变与上步骤一致,画每个相位曲线草图。 在图上把每个相位曲线相加。
–
–
伯德图的绘制举例
• 例5.1已知系统开环传递函数,绘制伯德图。
A( ) 1 [1 (T ) 2 ]2 (2T ) 2
2T ( ) arctan 1 (T ) 2
二阶振荡环节伯德图
1 当 (T ) 1 时,即 T 1 L( ) 20 lg1 0 T 1 2 当 (T ) 1 时,即 T 1 2 L( ) 20 lg(T ) T 1 40 lg 40 lg T
主要内容
• • • • • • 频率特性及频率特性法的基本概念 基本环节的频率特性分析 频率特性指标 开环频率特性的系统分析 控制系统的频率法校正 系列设计举例
5.1频率特性及频率特性法
对线性系统输入正弦信号,其输出的稳态响应 称为系统的频率响应。 设施加的正弦输入信号为 r (t ) Am sint Am 则频率响应为 Css (s) H (s) R(s) H (s) 2 s 2
2
5.2.5由对称性获得特性曲线
• 基本环节中的微分环节、一阶微分环节、 二阶微分环节分别与积分环节、惯性环节、 二阶振荡环节具有关于横轴对称的特性 。
微分环节伯德图 一阶微分环节伯德图 二阶微分环节伯德图
5.2.6时滞环节
时滞环节增益为 G( s) e 频率特性函数为
s
G( j) e
5.1.2基本概念
频率特性法是通过系统开环的频率特性图像 来对系统性能指标进行分析以及对系统加以 综合、校正的方法。它避免求解闭环极点, 其图形化方式具有极强的直观性。 频率特性法使得可以通过实验所确定的系统 频率响应来推断未知系统的传递函数。而且 设计者可以控制系统的带宽,以及控制系统 对不期望噪声和扰动响应的某些指标。 频率特性法的不足在于频域和时域之间缺乏 直接联系,需要靠各种设计准则来调整频率 响应特性以达到满意的暂态响应。
伯德图
• 伯德图(又称为频率特性的对数坐标图) :伯 德图将幅频特性和相频特性分别绘制。 • 幅频特性坐标横轴取信号角频率的对数 lg标定,但标写的数值为值。纵轴以分 贝为单位等分标定,其值为20lgA()dB 。 • 相频特性横轴和幅频特性相对应,纵轴为 φ()的度数。 • 常采用折线方式来近似绘制 。
1 1 L( ) 20 lgT 20 lg 20 lg T T
惯性环节的伯德图(续1)
Bode Diagram
L(ω)
Magnitude (dB)
0
1/10T
1/T
10/T
-10
-20
-30
Φ(ω)
Phase (deg)
-40 0
-45
-90 10
-2
10
-1
10
0
10
1
பைடு நூலகம்
比例环节伯德图
5.2.2惯性环节
1 惯性环节增益为 G(s) Ts 1 1 对数幅频 L( ) 20 lg 20 lg 1 (T ) 2 1 (T ) 2 特性:
1 当 (T )2 1 时,即 T 1 L( ) 20 lg1 0 T 1 2 当 (T ) 1 时,即 T
5.1.1频率响应
H ( j) A()e j ()
拉氏反变换后为 1 j ( ) 1 1 j ( ) Am A( ) e e j2 s j s j 1 j[t ( )] j[t ( )] Am A( ) e e j2 Am A() sin[t ()]
1 1 Am H (s) Am H (s) s j s j s j s j s j s j
1 H ( j ) H ( j ) Am j 2 s j s j
10(s 3) G(s) 1 1 2 1 s s 1 s s 1 2 2 2
解:将G(s)变换成典型环节之积形式有
1 1 1 1 G( s) 10 3 s 1 1 1 2 1 3 s 比例 s 1 s s 1 一阶微分积 2 2 2