第二章《轴对称图形》典型题分类解析
八年级数学(上册)《轴对称图形》经典例题含解析

《第2章轴对称图形》一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或174.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.46.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P910.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2二、填空题11.下面有五个图形,与其它图形众不同的是第______个.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=______°.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是______.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=______°.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有______种.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为______.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.《第2章轴对称图形》参考答案与试题解析一、选择题1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.3.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.4.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30° B.36° C.40°D.45°【考点】等腰三角形的性质.【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.5.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.6.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是()A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的三线合一得到BF=FC,根据直角三角形的性质判断A;根据直角三角形的性质判断B;根据三角形内角和定理和等腰三角形的性质判断C,根据直角三角形的性质判断D.【解答】解:∵AB=AC,AF⊥BC,∴BF=FC,∵BE⊥AC,∴EF=BC=BF,A不合题意;∵DE=AB,EF=BC,不能证明DE=EF,B符合题意;∵DE垂直平分AB,∴EA=EB,又BE⊥AC,∴∠BAC=45°,∴∠C=67.5°,又FE=FC,∴∠EFC=45°,C不合题意;∵FE=FB,∴∠BEF=∠CBE;故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75°D.()n•85°【考点】等腰三角形的性质.【专题】规律型.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.8.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.9.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()A.P2P3 B.P4P5C.P7P8 D.P8P9【考点】利用轴对称设计图案.【分析】利用轴对称图形的性质分别分析得出即可.【解答】解:由题意可得:当连接P2P3,P4P5,P7P8时,所形成的图形是轴对称图形,当连接P8P9时,所形成的图形不是轴对称图形.故选:D.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B.C.3 D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题.二、填空题11.下面有五个图形,与其它图形众不同的是第③个.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第①②④⑤个图形是轴对称图形,第③个不是.故答案为:③.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.12.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.13.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 4 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,然后根据角平分线上的点到角的两边距离相等可得DE=CD,即可得解.【解答】解:如图,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∴DE=CD,∵CD=4,∴DE=4.故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,作出图形并熟记性质是解题的关键.14.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= 15 °.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.15.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是9 .【考点】等腰三角形的判定与性质;平行线的性质.【专题】压轴题.【分析】由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.【解答】解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.【点评】此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD= 70 °.【考点】轴对称的性质;平行线的判定与性质.【专题】常规题型.【分析】先证明四边形BDEC是菱形,然后求出∠ABD的度数,再利用三角形内角和等于180°求出∠BAD的度数,然后根据轴对称性可得∠BAC=∠BAD,然后求解即可.【解答】解:∵CD与BE互相垂直平分,∴四边形BDEC是菱形,∴DB=DE,∵∠BDE=70°,∴∠ABD==55°,∵AD⊥DB,∴∠BAD=90°﹣55°=35°,根据轴对称性,四边形ACBD关于直线AB成轴对称,∴∠BAC=∠BAD=35°,∴∠CAD=∠BAC+∠BAD=35°+35°=70°.故答案为:70.【点评】本题考查了轴对称的性质,三角形的内角和定理,判断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键.17.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是40°.【考点】线段垂直平分线的性质.【分析】根据三角形内角和定理求出∠B+∠C的度数,根据线段的垂直平分线的性质得到PA=PB,QA=QC,得到∠PAB=∠B,∠QAC=∠C,结合图形计算即可.【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=40°,故答案为:40°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有13 种.【考点】利用轴对称设计图案.【专题】压轴题.【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【解答】解:如图所示:故一共有13做法,故答案为:13.【点评】此题主要考查了利用轴对称设计图案,熟练利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.20.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8 .【考点】等腰三角形的性质.【专题】应用题.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.三、解答题21.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l 对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.(2)S四边形A1B1C1D1=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2=12﹣1﹣1﹣﹣2=.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.如图,在△ABC中,∠C=90度.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.【考点】线段垂直平分线的性质.【专题】作图题.【分析】(1)作线段AB的垂直平分线即可;(2)到一个角的两边距离相等的点在这个角的平分线上.那么点P是∠B的平分线和线段AB的垂直平分线的交点.【解答】解:(1)(2)连接BP.∵点P到AB、BC的距离相等,∴BP是∠ABC的平分线,∴∠ABP=∠PBC.又∵点P在线段AB的垂直平分线上,∴PA=PB,∴∠A=∠ABP.∴.【点评】用到的知识点为:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.到一个角的两边距离相等的点在这个角的平分线上.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【考点】全等三角形的判定与性质;等腰三角形的判定.【专题】开放型.【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【解答】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【点评】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.25.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BD=CE,BE=CF,如果点G为DF的中点,那么EG与DF垂直吗?【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】连接DE,EF,易证△BDE≌△CFE,可得DE=EF,可证△DGE≌△FGE,可求得∠DGE=∠FGE=90°.【解答】解:连接DE,EF,∵AB=AC,∴∠B=∠C,在△BDE和△CFE中,,∴△BDE≌△CFE(SAS),∴DE=EF,在在△DGE和△FGE中,,∴△DGE≌△FGE(SSS),∴∠DGE=∠FGE,∵∠DGE+∠FGE=180°,∴∠DGE=∠FGE=90°,∴EG⊥DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证DE=EF是解题的关键.26.如图,在△ABC中,AB=AC,D、E是BC边上的点,连接AD、AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,连接D′C,若BD=CD′﹒(1)求证:△ABD≌△ACD′;(2)若∠BAC﹦120°,求∠DAE的度数.【考点】全等三角形的判定与性质;等腰三角形的性质;轴对称的性质.【分析】(1)根据对称得出AD=AD′,根据SSS证△ABD≌△ACD′即可;(2)根据全等得出∠BAD=∠CAD′,求出∠BAC=∠DAD′,根据对称得出∠DAE=∠DAD′,代入求出即可.【解答】(1)证明:∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴AD=AD′,∵在△ABD和△ACD′中,∴△ABD≌△ACD′;(2)解:∵△ABD≌△ACD′,∴∠BAD=∠CAD′,∴∠BAC=∠DAD′=120°,∵以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD′E,∴∠DAE=∠D′AE=∠DAD′=60°,即∠DAE=60°.【点评】本题考查了全等三角形的性质和判定、对称的性质的应用,主要考查学生的推理能力,题型较好,难度适中.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN 为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【考点】几何变换综合题;平行线的性质;全等三角形的判定与性质;等腰直角三角形;多边形内角与外角.【专题】几何综合题;压轴题.【分析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【点评】本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.。
苏科版八年级上册数学第二章 轴对称图形 含答案

苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、有下列四种说法:①两个三角形全等,则它们成轴对称;②等腰三角形的对称轴是底边上的中线;③若点A、B关于直线MN对称,则AB垂直平分MN;④到角两边距离相等的点在这个角的平分线上.其中正确的说法有()A.0个B.1个C.2个D.3个2、如图,将矩形ABCD沿DE折叠,使A点落在BC边上F处,若∠EFB=70°,则∠AED=()A.80°B.75°C.70°D.65°3、小明同学测量了等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出正确的那组是( )A.13,12,8B.4,8,5C.13,5,12D.12,8,104、如图,在中,的平分线与的外角平分线交于点,连接,则的值是()A.1B.C.D.5、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.3∠A=2∠1﹣∠2B.2∠A=2(∠1﹣∠2)C.2∠A=∠1﹣∠2 D.∠A=∠1﹣∠26、2022年冬奥会将在北京举行,以下历届冬奥会会徽是轴对称图形的是( )A. B. C. D.7、下列图案中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.8、下列图形中,有无数条对称轴的是()A.长方形B.正方形C.圆D.等腰三角形9、下列图形中既是中心对称图形,又是轴对称图形的是()A.等边三角形B.等腰三角形C.平行四边形D.线段10、小敏尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B 点落在AD边上的点F处,折痕为AE(如图②); 再沿过D点的直线折叠, 使得 C 点落在DA边上的点N处, E点落在AE边上的点M处,折痕为 DG(如图).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD的长与宽的比值为( )A.2B.3C.D.11、如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠B=80°,则∠DAC的度数为()A.55°B.65°C.75°D.85°12、如图,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=4cm,△ADC的周长为15cm,则BC的长为()A.8cmB.11cmC.13cmD.19cm13、等腰三角形腰上的高与底边的夹角等于()A.底角B.底角的一半C.顶角D.顶角的一半14、下列说法:①等腰三角形的两底角相等;②角的对称轴是它的角平分线;③成轴对称的两个图形中,对应点的连线被对称轴垂直平分;④全等三角形的对应边上的高相等;⑤在直角三角形中,如果有一条直角边长等于斜边长的一半.那么这条直角边所对的角等于30°.以上结论正确的个数()A.1个B.2个C.3个D.4个15、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(共10题,共计30分)16、如图,在菱形ABCD中,tan∠A=,M,N分别在AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为________.17、如图,在△ABC中,∠A=35°,∠B=90°,线段AC的垂直平分线MN与AB 交于点D,与AC交于点E,则∠BCD=________度.18、在△ABC中,AB=AC,点D在BC边上,连接AD,若AD=BD,且△ADC为等腰三角形,则∠BAC的度数为________.19、如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.20、如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为________.21、如图所示,等边△ABC的边长为2,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于M,交AC于N,连接MN,形成一个△AMN,则△AMN的周长为________.22、如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为________.23、等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为________.24、如图,已知直线y=﹣x+1分别交x轴、y轴于点A、B,M是x轴正半轴上一动点,并以每秒1个单位的速度从O点向x轴正方向运动,过点M作x轴的垂线l,与抛物线y=x2﹣x﹣2交于点P,与直线AB交于点Q,连结BP,经过t秒时,△PBQ是以BQ为腰的等腰三角形,则t的值是________.25、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题(共5题,共计25分)26、如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.27、证明“三个角都相等的三角形是等边三角形”28、如图,△ABC中,AB=AC,∠A=50°,DE是腰的垂直平分线.求∠DBC的度数.29、如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.30、如图,点B、C、D在同一直线上,AB=AD=CD,∠C=36°.求∠BAD的度数.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、C5、C6、C7、C8、C9、D10、C11、B12、B13、D14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
苏科版八年级上册数学第二章 轴对称图形 含答案(黄金题型)

苏科版八年级上册数学第二章轴对称图形含答案一、单选题(共15题,共计45分)1、如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE ∥BC,则结论:①△BDF是等腰三角形;②DE= BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A。
其中正确结论的序号是( )A.①②③B.①②④C.①③④D.②③④2、如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD 的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )A.2B.2C.D.43、彩陶、玉器、青铜器等器物以及壁画、织锦上美轮美奂的纹样,穿越时空,向人们呈现出古代中国丰富多彩的物质与精神世界,各种纹样经常通过平移、旋转、轴对称以及其它几何构架连接在一起,形成复杂而精美的图案.以下图案纹样中,从整体观察(个别细微之处的细节忽略不计),大致运用了旋转进行构图的是()A. B. C.D.4、下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.5、如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50°B.60°C.70°D.80°6、如图,在△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC,且AB=3,BC=4,则AD的长为()A. B. C. D.7、如图,在四边形中,点是对角线的中点,点、分别是、的中点,,,则的度数是()A. B. C. D.8、如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE。
若AC=7,BC=4,则BD的长为()A.2.5B.1.5C.2D.19、如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后顶点D恰好落在边OC上的点F处,若点D的坐标为(−10,8),则△AEF的面积为()A.15B.20C.25D.3010、设等腰三角形的顶角度数为y,底角度数为x,则( )A.y=180°-2x(x可为全体实数)B.y=180°-2x(0°≤x≤90°) C.y=180°-2x(0°<x<90°) D.y=180°-x(0°<x<90°)11、如图:将一个矩形纸片ABCD,沿着BE折叠,使C、D点分别落在点C1,D 1处.若∠C1BA=50°,则∠ABE的度数为()A.15°B.20°C.25°D.30°12、长城是我国古代劳动人民创造的伟大奇迹,是中国悠久历史的见证,是中华民族的象征,被列为世界文化遗产.下列以长城为背景的标志设计中,不是轴对称图形的是()A. B. C. D.13、正方形ABCD中,点P是对角线AC上的任意一点(不包括端点),以P为圆心的圆与AB相切,则AD与⊙P的位置关系是()A.相离B.相切C.相交D.不确定14、如图,是一张直角三角形的纸片,两直角边,现将折叠,使点B点A重合,折痕为DE,则BD的长为()A.7B.C.6D.15、已知AB=8cm,小红在作线段AB的垂直平分线时操作如下:分别以A和B 为圆心,5cm的长为半径画弧,两弧相交于C、D,则直线CD即为所求,根据此种作图方法所得到的四边形ADBC的面积是()A.12cm 2B.24cm 2C.36cm 2D.48cm 2二、填空题(共10题,共计30分)16、在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有________(只填序号).17、如图,一个宽度相等的纸条按如图所示方法折叠压平,则∠1的度数等于________°.18、将一张长方形纸片按如图方式折叠,使A点落在BI上,与BI上的E点重合,BC、BD为折痕,则∠CBD=________.19、某公路急转弯处设立了一面圆型大镜子,从镜子中看到汽车车的部分号码如图所示,则该车牌照的部分号码为________.20、如图,矩形中,,,点E在边上,,点是边上的动点,将矩形沿直线折叠,点,的对应点分别为,,当,,三点恰好在同一直线上时,的长为________.21、如图,在正方形中,,E为的中点,将沿折叠,使点B落在正方形内点F处,连接,则的长为________.22、阅读后填空:已知:如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OA=OD.分析:要证OA=OD,可证ABO≌DCO;要证ABO≌DCO,可先证ABC≌DCB得出AB=DC这个结论;而用________可证ABC≌DCB(填SAS或AAS或HL).23、如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.24、如图,已知,平分,,若,,则=________.25、如图,B,C,D在同一直线上,∠B=∠D=90°,AB=CD,BC=DE,则△ACE的形状为________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图所示,已知△ABC的角平分线BM,CN相交于点P,求证点P到AB,BC,CA的距离相等.28、如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.若AB=3cm,BC=5cm,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△ABP为等腰三角形?29、如图①,将△ABC纸片沿DE折叠,使点A落F的位置,DF与BC交于点G,EF与BC交于点M,∠A=80°,求∠1+∠2的度数;30、阅读材料:已知△ABC中,AD平分∠BAC,AD是△ABC的中线,求证:AB=AC.小明根据已知条件发现若AD平分∠BAC可得∠BAD=∠CAD,又AD是△ABC的中线,可得BD=CD,加上公共边的条件AD=AD,有两条边和一个角对应相等,就下结论得到△ABD和△ACD是全等的,从而得到结论∠B=∠C,可证出AB=AC成立;小芳的方法是用角平分线的性质得到DE=DF,再用中线分三角形的面积为相等两部分,再用等面积的方法可以得到结论.请你回答小明和小芳的证明思路谁正确的?请任选择一个方法进行完整的证明(可以与小明和小芳的方法不同)参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、B5、C6、B7、C8、B9、C10、C11、B12、A13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、30、。
专题02 探索轴对称图形(解析版)

专题02 探索轴对称图形知识点框架知识点讲解知识点1 图形的轴对称轴对称的概念:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
两个图形关于直线对称也叫做轴对称。
折叠后重合的点是对应点,叫做对称点。
轴对称图形概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
(注意:对称轴必须是直线)常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。
平面直角坐标系的轴对称:1)点(x,y)关于x轴对称的点的坐标为(x,-y);2)点(x,y)关于y轴对称的点的坐标为(-x,y);3)点(x,y)关于原点(0, 0)的对称点为(-x,-y);4)点(x,y)关于(a,b)的对称点为(2a-x,2b-y)。
知识点2垂直平分线垂直平分线的概念:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。
性质:线段的垂直平分线上的点到这条线段两个端点的距离相等;反过来,到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
知识点3 线段、角的轴对称性1)线段的轴对称性:①线段是轴对称图形,对称轴有两条;一条是线段所在的直线,另一条是这条线段的垂直平分线。
②线段的垂直平分线上的点到线段两端的距离相等。
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合2)角的轴对称性:Array①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
结论:角的平分线是到角的两边距离相等的点的集合知识点4 等腰三角形等腰三角形概念:有两边相等的三角形角等腰三角形。
等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
苏科版八年级数学上《第2章轴对称图形》单元测试卷含答案解析初二数学试题试卷

《第2章轴对称图形》一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= °;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= ,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.《第2章轴对称图形》参考答案与试题解析一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定与性质;线段垂直平分线的性质.【专题】几何图形问题;综合题.【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.5【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】根据等腰三角形的性质,可分2种情况对本题讨论解答:①当腰长为3时,②当底为3时;结合题意,把不符合题意的去掉即可.【解答】解:设等腰三角形的腰长为l,底长为a,根据等腰三角形的性质得,S=2l+a;①、当l=3时,可得,a=7;则3+3<7,即2l<a,不符合题意,舍去;②、当a=3时,可得,l=5;则3+3>5,符合题意;所以这个等腰三角形的底边长为3.故选B.【点评】本题主要考查了等腰三角形的性质和三角形三边性质定理,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个B.3个C.4个D.6个【考点】等腰三角形的判定.【分析】由已知条件,根据三角形内角和等于180°、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.【解答】解:AB=AC,∠ABC=36°,∴∠BAC=108,∴∠BAD=∠DAE=∠EAC=36°.∴等腰三角形△ABC,△ABD,△ADE,△ACE,△ACD,△ABE,共有6个.故选D.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°【考点】角平分线的性质;三角形内角和定理.【分析】由角平分线的性质可得MA=MB,再求解出∠MAB的大小,在△ABM中,则可求解∠MAB 的值.【解答】解:∵∠AOB=40°,且OM为其平分线,∴∠AOM=∠BOM=20°,又MA⊥OA,MB⊥OB,∴MA=MB,∠AMO=∠BMO=70°,∴∠AMB=140°,∴∠MAB=(180°﹣∠AMB)=×(180°﹣140°)=20°,故选D.【点评】本题考查了角平分线的性质;熟练掌握角平分线的性质,能够求解一些简单的计算问题.6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.4【考点】轴对称的性质.【分析】认真阅读4个小问题提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【解答】解:①关于一条直线对称的两个图形一定能重合,正确;②两个能重合的图形全等,但不一定关于某条直线对称,错误;③一个轴对称图形不一定只有一条对称轴,正确;④两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误.故选B.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.7.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点【考点】三角形的内切圆与内心.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选C.【点评】此题主要考查了线段的垂直平分线的性质在实际生活中的应用.主要利用了到线段的两个端点的距离相等的点在这条线段的垂直平分线上.8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC上,则线段AP的长是()A.4 B.5 C.6 D.8【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【专题】压轴题.【分析】根据∠COP=∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.【解答】解:∵∠COP=∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD.在△APO和△COD中,,∴△APO≌△COD(AAS),∴AP=CO,∵CO=AC﹣AO=6,∴AP=6.故选C.【点评】本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.二、耐心填一填9.请写出4个是轴对称图形的汉字:如中、日、土、甲等.【考点】轴对称图形.【分析】根据轴对称图形的概念,以及汉字的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:答案不唯一,如中、日、土、甲等.【点评】解答此题的关键是掌握轴对称图形的概念,以及汉字的特征.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.若等腰三角形的一个外角为130°,则它的底角为65°或50°度.【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题;分类讨论.【分析】根据已知可求得与这个外角相邻的内角,因为没有指明这个内角是顶角还是底角,所以分两情况进行分析,从而不难求得其底角的度数.【解答】解:∵等腰三角形的一个外角为130°,∴与这个外角相邻的角的度数为50°,∴当50°角是顶角时,其底角为65°;当50°角是底角时,底角为50°;故答案为:65°或50°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51 .【考点】镜面对称.【专题】几何图形问题.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为40cm .【考点】等腰梯形的性质.【专题】探究型.【分析】作DE∥AB交BC与点E.则四边形ABED是平行四边形,△DEC是等边三角形,即可求得CD,BE的长度,从而求解.【解答】解:作DE∥AB交BC与点E.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=AD=CD=DE=BE=8cm,∵∠C=60°,∴△DEC是等边三角形.∴EC=DC=AB=8cm.∴梯形ABCD的周长=AD+AB+BC+CD=AB+AD+BE+EC+CD=8×5=40cm.故答案为:40cm.【点评】本题考查等腰梯形的性质,正确作出辅助线,把等腰梯形转化成平行四边形与等边三角形是解答此题的关键.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC= 15 °;(2)若BC=21cm,则△BCE的周长是53cm .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)由DE垂直平分AB交AC于E,可得AE=BE,然后由等腰三角形的性质,可求得∠ABE的度数,又由AB=AC,∠ABC的度数,继而求得答案;(2)由AB=AC=32cm,BC=21cm,△BCE的周长=AC+BC,即可求得答案.【解答】解:(1)∵DE垂直平分AB交AC于E,∴AE=BE,∵∠A=50°,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C==65°,∴∠EBC=∠ABC﹣∠ABE=65°﹣50°=15°;(2)∵AB=AC=32cm,BC=21cm,∴△BCE的周长是:BC+BE+EC=BC+_AE+EC=BC+AC=21+32=53(cm).故答案为:(1)15,(2)53cm.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是 3 cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD 即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM= 5 ,理由是:直角三角形斜边上的中线等于斜边的一半.【考点】直角三角形斜边上的中线.【专题】网格型.【分析】先根据网格结构求出AB的长,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由图可知,AB=10,∵∠ACB=90°,M是AB的中点,∴CM=AB=×10=5(直角三角形斜边上的中线等于斜边的一半).故答案为:5,直角三角形斜边上的中线等于斜边的一半.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,读懂题目信息并熟练掌握性质是解题的关键.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长 5 cm.【考点】轴对称的性质.【分析】由O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,根据轴对称的性质,可得OE=ME,OF=NF,继而可得△OEF的周长=MN,则可求得答案.【解答】解:∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5.【点评】此题考查了轴对称的性质.此题比较简单,注意掌握转化思想的应用.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数45°或135°.【考点】等腰三角形的性质.【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为45°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为135°.【解答】解:①如图,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故答案为45°或135°.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有8 个.【考点】等腰三角形的判定;勾股定理.【专题】网格型.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC 其中的一条腰.【解答】解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故答案为:8.【点评】此题主要考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解,数形结合的思想是数学解题中很重要的解题思想.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【考点】利用轴对称设计图案.【专题】压轴题;开放型.【分析】因为正三角形是轴对称图形,其对称轴是从顶点向底边所作垂线,故只要所涂得小正三角形关于大正三角形的中垂线对称即可.【解答】解:如图.【点评】解答此题要明确:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【考点】作图—基本作图.【专题】作图题.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.【点评】解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)中垂线上的点到两个端点的距离相等.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.【考点】全等三角形的判定与性质.【专题】证明题;压轴题.【分析】利用SAS证得△ACD≌△ABD,从而证得BD=CD,利用等边对等角证得结论即可.【解答】证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ACD和△ABD中,∴△ACD≌△ABD,∴BD=CD,∴∠DBC=∠DCB.【点评】本题考查了全等三角形的判定与性质,特别是在应用SAS进行判定三角形全等时,主要A为两边的夹角.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.【考点】等腰梯形的性质.【分析】由AB=AD=CD,可知∠ABD=∠ADB,又AD∥BC,可推得BD为∠B的平分线,而由题可知梯形ABCD为等腰梯形,则∠B=∠C,那么在RT△BDC中,∠C+∠C=90°,可求得∠C=60°.【解答】解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°【点评】先根据已知条件可知四边形为等腰梯形,然后根据等腰梯形的性质和已知条件求解.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【解答】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【点评】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC .猜想:EF与BE、CF之间的关系是EF=BE+CF .理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC .在第(1)问中EF与BE、CF 间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC 交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.【考点】等腰三角形的判定.【专题】探究型.【分析】(1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得:∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出的等腰三角形有:△AEF、△OEB、△OFC、△OBC、△ABC;已知了△EOB和△FOC是等腰三角形,则EO=BE,OF=FC,则EF=BE+FC.(2)由(1)的证明过程可知:在证△OEB、△OFC是等腰三角形的过程中,与AB=AC的条件没有关系,故这两个等腰三角形还成立.所以(1)中得出的EF=BE+FC的结论仍成立.(3)思路与(2)相同,只不过结果变成了EF=BE﹣FC.【解答】解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.【点评】此题主要考查了等腰三角形的判定和性质,平行线、角平分线的性质等知识.进行线段的等量代换是正确解答本题的关键.。
苏科版数学八年级上第2章轴对称图形单元测试含答案解析

第2章轴对称图形一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.下列图形中,不是轴对称图形的是()A. B.C.D.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.4.下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.5.下列四个艺术字中,不是轴对称的是()A.B.C.D.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.7.下列图形中,是轴对称图形的是()A.B.C.D.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条9.下列图形中,不是轴对称图形的是()A.B.C.D.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条11.下列图形中,不是轴对称图形的是()A.B.C.D.12.下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形13.下列交通标志图案是轴对称图形的是()A.B.C.D.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.15.下列图案中,不是轴对称图形的是()A.B.C.D.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形17.下列图形是轴对称图形的是()A.B.C.D.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.422.下列四个图形中,不是轴对称图形的是()A.B. C.D.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.824.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个26.下列图形中,是轴对称图形的是()A.B.C.D.27.在下列图形中,是轴对称图形的是()A.B.C.D.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个29.下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.第2章轴对称图形参考答案与试题解析一、选择题(共29小题)1.下列“表情图”中,属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.3.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(•绵阳)下列“数字”图形中,有且仅有一条对称轴的是()A.B. C.D.【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,找到各选项中的对称轴即可.【解答】解:A、有一条对称轴,故本选项正确;B、没有对称轴,故本选项错误;C、有两条对称轴,故本选项错误;D、有两条对称轴,故本选项错误;故选:A.【点评】本题考查了轴对称图形,解答本题的关键是掌握轴对称图及对称轴的定义,属于基础题.5.(•台州)下列四个艺术字中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称的定义,结合各选项进行判断即可.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选C.【点评】本题考查了轴对称图形的知识,判断是轴对称图形的关键是寻找对称轴.6.下列学习用具中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.【解答】解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.【点评】本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.7.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条B.2条C.4条D.8条【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:所给图形有4条对称轴.故选C.【点评】本题考查了轴对称图形的知识,解答本题的关键掌握轴对称及对称轴的定义.9.(2014•成都)下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.正方形是轴对称图形,它的对称轴有()A.2条B.4条C.6条D.8条【考点】轴对称图形.【专题】常规题型.【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【解答】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选:B.【点评】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.11.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.(2014•甘孜州)下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2014•黑龙江)下列交通标志图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.下列标志中,可以看作是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.15.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.16.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形 C.菱形 D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.17.下列图形是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.18.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.19.以下是回收、节水、绿色包装、低碳四个标志,其中轴对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.20.如图,下面图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、是轴对称图形,故错误.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.21.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形及对称轴的定义求解.【解答】解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;22.下列四个图形中,不是轴对称图形的是()A.B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项判断即可.【解答】解:A、是轴对称图形,不符合题意,故A选项错误;B、不是轴对称图形,符合题意,故B选项正确;C、是轴对称图形,不符合题意,故C选项错误;D、是轴对称图形,不符合题意,故D选项错误;故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.23.下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8【考点】轴对称图形.【分析】根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.【解答】解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选:B.【点评】本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.24.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.25.下面四个“艺术字”中,轴对称图形的个数是()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的定义即可得出结论.【解答】解:由轴对称图形的性质可知,四个字中的轴对称图形有:美、赤.故选B.【点评】本题考查的是轴对称图形,熟知轴对称图形的定义是解答此题的关键.26.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.27.在下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【专题】计算题.【分析】利用轴对称图形的性质判断即可得到结果.【解答】解:是轴对称图形,故选:D.【点评】此题考查了轴对称图形,轴对称图形即为在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形.28.下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选:C.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.29.(2014•湘西州)下列图形既是轴对称图形,又是中心对称图象的是()A.B.C. D.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、解答题(共1小题)30.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用平移的性质得出平移后对应点位置进而得出答案.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点评】此题主要考查了轴对称变换以及平移变换,根据图形的性质得出对应点位置是解题关键.第21页共21页。
秋八年级数学上册 第二章《轴对称图形》典型题分类解析 (新版)苏科版-(新版)苏科版初中八年级上册数

第二章轴对称图形1.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为 ( )A.30° B.40°C.45° D.60°考点等腰三角形的性质.分析先根据等腰三角形的性质求出∠A DB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.解答解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°-∠ADB=100°,∵AD=CD,∴∠C=1802ADC-∠=1801002-=40°.故选B.点评本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.2.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=°.考点等腰三角形的性质;线段垂直平分线的性质分析根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出∠BAC=∠ABE=45°,再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答解:∵DE垂直平分AB.∴AE=BE,∵BE ⊥AC ,∴△ABE 是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC ,∴∠ABC =12(180°-∠BAC )=12(180°-45°)=67.5°,∴∠CBE =∠ABC -∠ABE =67.5°-45°=22.5°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,∴BF=EF ,∴∠BEF =∠CBE =22.5°,∴∠EFC =∠BEF +∠CBE =22.5°+22.5°=45°.故答案为:45.点评本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE 是等腰直角三角形是解题的关键.3.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若AD =6,DE =5,则CD 的长等于.考点勾股定理;直角三角形斜边上的中线分析由“直角三角形斜边上的中线等于斜边的一半”求得AC =2DE =10;然后在直角△ACD 中,利用勾股定理来求线段CD 的长度即可.解答解:如图,∵△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,DE =5,∴DE =12AC=5,∴AC =10.在直角△ACD 中,∠ADC =90°,AD =6,AC =10,则根据勾股定理,得CD=22AC AD -=22610+=8,故答案是:8.4.【问题情境】X老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C 作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得.PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C'处,点P为折痕EF上的任一点,过点P作PG⊥BE,PH⊥BC,垂足分别为G,H,若AD=8,CF=3,求PG+PH的值;考点四边形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理专题压轴题探究型分析【问题情境】如下图②,按照小军、小俊的证明思路即可解决问题.【变式探究】如下图③,借鉴小军、小俊的证明思路即可解决问题.【结论运用】易证BE=BF,过点E作EQ⊥BF,垂足为Q,如下图④,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.【迁移拓展】由条件AD·CE=DE·BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.解答【问题情境】证明:(方法1)连接AP,如图②∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP+S△ACP,∴12AB·CF=12AB·PD+12AC·PE.∵AB=AC,∴CF=PD+PE.(方法2) 过点P作PG⊥CF,垂足为G,如图②.∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°.∴四边形PDFG是矩形.∴DP=FG,∠DPG=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠PGC=∠CEP.∵∠BD P=∠DPG=90°.∴PG∥AB.∴∠GPC=∠B.∵AB=AC,∠B=∠ACB.∴∠GPC=∠ECP.在△PGC和△CEP中,PGC CEPGPC ECPPC CP∠=∠∠=∠=⎧⎪⎨⎪⎩∴△PGC≌△CEP.∴CG=PE.∴CF=CG +FG=PE+PD.【变式探究】证明:(方法1)连接AP,如图③.∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ABP-S△ACP,∴12AB·C F=12AB·PD-12AC·PE.∵AB=AC,∴CF=PD-PE.(方法2) 过点C作CG⊥DP,垂足为G,如图③.∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°.∴四边形CFDG是矩形.∴CF=GD,∠DGC=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠CGP=∠CEP.∵CG⊥DP,AB⊥PD.∴∠CGP=∠BDP=90°,∴CG∥AB.∴∠GCP=∠B.∵AB=AC.∴∠B=∠ACB.∵∠ACB=∠PCE,∴∠GCP=∠ECP.在△CGP和△CEP中,90CGP CEPGCP ECPCP CP∠=∠=∠=∠=⎧⎪⎪⎨⎪⎪⎩△CGP≌△CEP.∴PG=PE.∴CF=DG=DP-PG=DP-PE.【结论运用】过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°.∵AD=8,CF=3,∴BF=BC-CF=AD-CF=5.由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴=4.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是矩形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF.由问题情境中的结论可得:PG+PH=EQ.∴PG +PH=4.∴PG+PH的值为4.点评本题考查了矩形的性质与判定、等腰三角形的性质与判定、全等三角形的性质与判定、相似三角形的性质与判定、平行线的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。
苏科版八年级上册第二章轴对称图形 线段和最值问题(有答案)

苏科版八年级上册第二章轴对称图形线段和最值问题(有答案)一、选择题1.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为()A. 6B. 8C. 10D. 122.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.点D为BC边的中点,点M为线段EF上一动点,若CDM周长的最小值为8,则ABC 的面积为A. 12B. 16C. 24D. 323.如图,在ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CDM周长的最小值为()A. 7B.C. 9D.4.如图,∠MON=90°,OB=2,点A是直线OM上的一个动点,连结AB,作∠MAB与∠ABN的角平分线AF与BF,两角平分线所在的直线交于点F,求点A在运动过程中线段BF的最小值为()A. 2B. 4C.D.二、填空题5.如图,等腰ABC的底边BC长为4,面积是14,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则CDM周长的最小值为____.6.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.7.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.8.如图,等腰三角形ABC底边BC的长为4,面积是12,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则BDM的周长的最小值为_________.9.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.10.如图,四边形ABCD为菱形,∠C=120°,AB=4,H为边BC上的动点,连接AH,作AH的垂直平分线GF交CD于F点,则线段GF的最小值为.11.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则BDM的周长的最小值为______.12.如图,在锐角中,AB=,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为13.如图,在锐角ABC中,AB=3,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.14.15.如图,在ABC中,∠BAC=60°,AD是∠BAC的平分线,AC=,若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC的最小值是__________.三、解答题16.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.17.如图,是的角平分线,它的垂直平分线分别交于点,连接.(1)请判断四边形的形状,并说明理由;(2)若∠ ∠ ,点是上的一个动点,求的最小值.18.如图,在ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是______度.(2)若AB=8cm,MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出PBC周长的最小值.19.如图已知EF∥GH,AC⊥EF于点C,BD⊥EF于点D交HG于点K.AC=3,DK=2,BK=4.(1)若CD=6,点M是CD上一点,当点M到点A和点B的距离相等时,求CM的长;(2)若CD=,点P是HG上一点,点Q是EF上一点,连接AP,PQ,QB,求AP+PQ+QB 的最小值.答案和解析1.【答案】C【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD,由于ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD 的长为CM+MD的最小值,由此即可得出结论.【解答】解:如图,连接AD,∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC×AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴ CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选C.2.【答案】A【解析】【分析】此题考查了线段垂直平分线的性质、等腰三角形的性质,以及考查了轴对称中最短路线问题.熟知等腰三角形三线合一的性质是解答此题的关键.连接AD,根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,从而得到AD长,由等腰三角形三线合一的性质可得AD为BC边上的高,最后由三角形面积公式求得答案.【解答】解:连接AD,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,CDM的周长为CM+DM+CD,∴AD的长为CM+MD的最小值,∵CD=2,∴AD=6,∵AB=AC,D为BC中点,∴AD⊥BC,∴ ABC的面积为4×6÷2=12.故选A.3.【答案】C【解析】【分析】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD,由于ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC•AD=×4×AD=14,解得AD=7,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴ CDM的周长最短=(CM+MD)+CD=AD+BC=7+×4=7+2=9.故选C.4.【答案】C【解析】【分析】作FC⊥OB于C,FD⊥OA于D,FE⊥AB于E,由角平分线的性质得出FD=FC,证出点F在∠MON 的平分线上,∠BOF=45°,在点A在运动过程中,当OF⊥AB时,BF最小,OBF为等腰直角三角形,即可得出BF=OB=.【解答】解:作FC⊥OB于C,FD⊥OA于D,FE⊥AB于E,如图所示:∵∠MAB与∠ABN的角平分线AF与BF交于点F,∴FD=FE,FE=FC,∴FD=FC,∴点F在∠MON的平分线上,∠BOF=45°,在点A在运动过程中,当OF⊥AB时,F为垂足,BF最小,此时,OBF为等腰直角三角形,BF=OB=;故选C.5.【答案】9【解析】【分析】本题考查垂直平分线的性质,轴对称的性质和等腰三角形的性质,得出AD的长为CM+MD的最小值是解题的关键,先做C点关于EF的对称点A,连接AD交EF于M,此时CM+MD的值最小,求出周长即可.【解答】解:连接AD,∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC•AD=×4×AD=14,解得AD=7,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴ CDM的周长最短=(CM+MD)+CD=AD+BC=7+×4=8+2=9.故答案为9.6.【答案】8【解析】【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为ABC底边上的高线,依据三角形的面积为12可求得AD的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD交EF与点M′,连结AM.∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴ BDM的周长的最小值为DB+AD=2+6=8.故答案为8.7.【答案】8【解析】【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为ABC底边上的高线,依据三角形的面积为12可求得AD的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.【解答】解:连接AD交EF与点M′,连结AM.∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴ BDM的周长的最小值为DB+AD=2+6=8.8.【答案】8【解析】【分析】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD,由于ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:如图,连接AD,∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC•AD=×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴ BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故答案为8.9.【答案】8【解析】【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为ABC底边上的高线,依据三角形的面积为12可求得AD的长.【解答】解:连接AD交EF与点M′,连结AM.∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC⋅AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴ BDM的周长的最小值为DB+AD=2+6=8.故答案为8.10.【答案】3【解析】【分析】这是一道考查菱形的性质以及线段垂直平分线的性质的题目,解题关键在于知道当AH⊥BC时,GF 最短,即可求出答案.【解答】解:连接AF、HF,则当AH最短时,GF最小,此时AH⊥BC,AH⊥AB,∵GF为AH的垂直平分线,∴G为AH中点,F为CD中点,∴.故答案为3.11.【答案】8【解析】解:连接AD交EF与点M′,连结AM.∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴ BDM的周长的最小值为DB+AD=2+6=8.连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为ABC底边上的高线,依据三角形的面积为12可求得AD的长.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.12.【答案】6【解析】【分析】本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【解答】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在AME与AMN中,∠ ∠ ,∴ AME≌ AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=60°,此时,在Rt ABE中,得出BE=6,即BE取最小值为6,∴BM+MN的最小值是6.故答案为6.13.【答案】3【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在AME与AMN中,∠ ∠ ,∴ AME≌ AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又,∠BAC=45°,此时,ABE为等腰直角三角形,∴BE=3,即BE取最小值为3,∴BM+MN的最小值是3.故答案为3.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.14.【答案】【解析】【分析】本题考查了垂线段最短的性质,角的平分线的性质,勾股定理以及直角三角形的性质.解题关键是根据角平分线的性质和垂线段最短得出CE的长是PN+PC的最小值.作CE⊥AB于点E,则CE的长就是PN+PC的最小值,在Rt ACE中利用勾股定理求解即可.【解答】解:作CE⊥AB于点E,交AD于P点,∵AD是∠BAC的平分线,PN⊥AC,CE⊥AB,∴PN=PE,∴PN+PC=PE+PC=CE,∴根据“垂线段最短”可知CE的长就是PN+PC的最小值.在Rt ACE中,∠BAC=60°,AC=,∴,由勾股定理得:.故答案是.15.【答案】8【解析】【分析】本题主要考查三角形周长的知识,关键是知道线段垂直平分线的性质,知道等腰三角形的性质. 【解答】解:连接AD交EF与点M′,连结AM.∵ ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值6.∴ BDM的周长的最小值为DB+AD=2+6=8.故答案为8.16.【答案】解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在EFD和GFB中,∠ ∠∠ ∠ ,∴ EFD≌ GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,∴EM=BE=,∵DE∥BC,EM⊥BC,DN⊥BC,∴EM∥DN,EM=DN=,MN=DE=2,在RT DNC中,∵∠DNC=90°,∠DCN=45°,∴∠NDC=∠NCD=45°,∴DN=NC=,∴MC=3,在RT EMC中,∵∠EMC=90°,EM=.MC=3,∴EC===10.∵HG+HC=EH+HC=EC,∴HG+HC的最小值为10.【解析】本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.(1)结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可;(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT EMC中,求出EM、MC即可解决问题.17.【答案】(1)50(2)①6②14【解析】解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴ MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,MBC的周长是14,∴BC=14-8=6;②当点P与M重合时,PBC周长的值最小,理由:∵PB+PB=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴ PBC周长的最小值=AC+BC=8+6=14.【分析】(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出MBC 的周长=AC+BC,再代入数据进行计算即可得解,②当点P与M重合时,PBC周长的值最小,于是得到结论.本题主要考查了轴对称的性质,等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.18.【答案】解:(1)如图1中,连接AB,作线段AB的中垂线MN,交AB于N,交EF于M,连接AM,BM.设DM=x.在Rt ACM中,AM2=AC2+CM2=32+(6-x)2,在Rt BDM中,BM2=DM2+BD2=x2+62,∵AM=MB,∴32+(6-x)2=x2+62,解得x=,∴CM=CD-MD=6-=.(2)如图2中,如图,作点A故直线GH的对称点A′,点B关于直线EF的对称点B′,连接A′B′交GH于点P,交EF于点Q,作B′H⊥CA交CA的延长线于H.则此时AP+PQ+QB的值最小.根据对称的性质可知:PA=PA′,QB=QB′,∴PA+PQ+QB=PA′+PQ+QB′=A′B′,∴PA+PQ+PB的最小值为线段A′B′的长,在Rt A′B′H中,∵HB′=CD=,HA′=DB′+CA′=7+6=13,∴A′B′===,∴AP+PQ+QB的最小值为.【解析】(1)如图1中,连接AB,作线段AB的中垂线MN,交AB于N,交EF于M,连接AM,BM.设DM=x.根据MA=MB构建方程即可解决问题;(2)如图2中,如图,作点A故直线GH的对称点A′,点B关于直线EF的对称点B′,连接A′B′交GH于点P,交EF于点Q,作B′H⊥CA交CA的延长线于H.则此时AP+PQ+QB的值最小.最小值为线段A′B′的长;本题考查轴对称-最短问题,平行线的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用轴对称解决问题问题,学会利用参数构建方程解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章轴对称图形典型题分类解析
1.如图,在△ABC中,点D在BC上,AB=AD=DC,
∠B=80°,则∠C的度数为( )
A.30°B.40°
C.45°D.60°
考点等腰三角形的性质.
分析先根据等腰三角形的性质求出∠A DB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.
解答解:∵△ABD中,AB=AD,∠B=80°,
∴∠B=∠ADB=80°,
∴∠ADC=180°-∠ADB=100°,
∵AD=CD,
∴∠C=180
2
ADC
-∠
=
180100
2
-
=40°.
故选B.
点评本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.
2.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥
AC,AF⊥BC,则∠EFC= °.
考点等腰三角形的性质;线段垂直平分线的性质
分析根据线段垂直平分线上的点到线段两端点的距离相等可得
AE=BE,然后求出△ABE是等腰直角三角形,根据等腰直角三角
形的性质求出∠BAC=∠ABE=45°,
再根据等腰三角形两底角相等求出∠ABC,然后求出∠CBE,根据
等腰三角形三线合一的性质可得BF=CF,根据直角三角形斜边上的中线等于斜边的一半可得BF=EF,根据等边对等角求出∠BEF=∠CBE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
解答解:∵DE垂直平分AB.
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC=∠ABE=45°,
又∵AB=AC,
∴∠ABC=1
2
(180°-∠BAC)=
1
2
(180°-45°)=67.5°,
∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°,∵AB=AC,AF⊥BC,
∴BF=CF,
∴BF=EF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45.
点评 本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并求出△ABE 是等腰直角三角形是解题的关键.
3.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若
AD =6,DE =5,则CD 的长等于 .
考点 勾股定理;直角三角形斜边上的中线
分析 由“直角三角形斜边上的中线等于斜边的一半”求得
AC =2DE =10;然后在直角△ACD 中,利用勾股定理来求线段CD 的
长度即可.
解答 解:如图,∵△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,DE =5,
∴DE =12
AC=5, ∴AC =10.
在直角△ACD 中,∠ADC =90°,AD =6,AC =10,则根据勾股定理,得
CD=22AC AD -=22610+=8,
故答案是:8.
4.【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,
AB=AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF .
小军的证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得.PD +PE=CF .
小俊的证明思路是:如图2,过点P 作PG ⊥CF ,垂足为G ,可以证得:PD=GF ,PE=CG ,则PD +PE=CF .
【变式探究】如图3,当点P 在BC 延长线上时,其余条件不变,求证:PD -PE=CF ;请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】如图4,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C'处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE ,PH ⊥BC ,垂足分别为G ,H ,若AD =8,CF =3,求PG +PH 的值;
考点四边形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;直角三角形斜边上的中线;勾股定理
专题压轴题探究型
分析【问题情境】如下图②,按照小军、小俊的证明思路即可解决问题.
【变式探究】如下图③,借鉴小军、小俊的证明思路即可解决问题.
【结论运用】易证BE=BF,过点E作EQ⊥BF,垂足为Q,如下图④,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.
【迁移拓展】由条件AD·CE=DE·BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.解答【问题情境】证明:(方法1)连接AP,如图②∵PD⊥AB,PE⊥AC,CF⊥AB,且
S△ABC=S△ABP+S△ACP,∴1
2
AB·CF=
1
2
AB·PD+
1
2
AC·PE.∵AB=AC,∴CF=PD+PE.(方
法2) 过点P作PG⊥CF,垂足为G,如图②.∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°.∴四边形PDFG是矩形.∴DP=FG,∠DPG=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠PGC=∠CEP.∵∠BD P=∠DPG=90°.∴PG∥AB.∴∠GPC=∠B.∵AB=AC,∠B=∠ACB.∴∠GPC=∠ECP.在△PGC和△
CEP中,
PGC CEP
GPC ECP
PC CP
∠=∠
∠=∠
=
⎧
⎪
⎨
⎪
⎩
∴△PGC≌△CEP.∴CG=PE.∴CF=CG +FG=PE+PD.
【变式探究】证明:(方法1)连接AP,如图③.∵PD⊥AB,PE⊥AC,CF⊥AB,且
S△ABC=S△ABP-S△ACP,∴1
2
AB·C F=
1
2
AB·PD-
1
2
AC·PE.∵AB=AC,∴CF=P D-
PE.(方法2) 过点C作CG⊥DP,垂足为G,如图③.∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°.∴四边形CFDG是矩形.∴CF=GD,∠DGC=90°.∴∠CGP=90°.∵PE⊥AC,∴∠CEP=90°.∴∠CGP=∠CEP.∵CG⊥DP,AB⊥PD.∴∠CGP=∠BDP=90°,∴CG∥AB.∴∠GCP=∠B.∵AB=AC.∴∠B=∠ACB.∵∠ACB=
∠PCE,∴∠GCP=∠ECP.在△CGP和△CEP中,
90 CGP CEP
GCP ECP
CP CP
∠=∠=
∠=∠
=
⎧
⎪⎪
⎨
⎪
⎪⎩
△CGP≌△
CEP.∴PG=PE.∴CF=DG=D P-PG=D P-PE.
【结论运用】过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°.∵AD=8,CF=3,∴BF=B C-CF=A D-CF=5.由折叠可得:DF=BF,
∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC=
22
DF CF
-=22
53
-=4.∵EQ⊥
BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是矩形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF.由问题情境中的结论可得:PG+PH=EQ.∴PG +PH=4.∴PG+PH的值为4.
点评本题考查了矩形的性质与判定、等腰三角形的性质与判定、全等三角形的性质与判定、相似三角形的性质与判定、平行线的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.。