苦杏仁苷结构式

合集下载

高效液相色谱法测定山楂中的苦杏仁甙

高效液相色谱法测定山楂中的苦杏仁甙

# ! #" 山楂中苦杏仁甙提取方法的优化 ! ! 苦杏仁甙易溶 于 甲 醇, 所以选用甲醇作为提取 剂。甄攀等[ ’ ]用 甲 醇 从 郁 李 中 提 取 苦 杏 仁 甙 并 测
・ ’#+・


第 !" 卷
定了含量, 马辰等[ # ]也 用 甲 醇 从 苦 杏 仁 中 提 取 苦 杏 仁甙并进行了含量测定。但甲醇能将一些色素和酯 类大分子同时提取出来, 在分析过程中污染色谱柱, 从而降低 柱 效, 使 苦 杏 仁 甙 难 以 和 其 他 物 质 分 离。 石油醚是一种非极 性 溶 剂, 包括色素和酯类在内的 亲脂性物质易溶于其中, 而苦杏仁甙难溶于石油醚。 所以首先用石油醚除去这些干扰成分。实验表明在 石油醚相中检测不 到 苦 杏 仁 甙, 说明苦杏仁甙几乎 未被石油醚萃取出来。 $ $ 索氏提取是中 药 有 效 成 分 提 取 的 最 常 用 方 法, 由于它的溶剂是循 环 使 用 的, 所以可以更有效地提 取中药的有效成分。选 择 %& ! 的 水 浴 条 件 是 因 为 温度太低会使溶剂 的 循 环 减 慢, 而温度太高则导致 苦杏仁甙的分解。图 " 是不同提取时间 (!, ", ’, (, ) 和 % ") 和对应的苦杏仁甙提取量 ( 提 取 的苦 杏 仁 甙 质量与原药 材 粉 末 质 量 之 比, 下文的 “苦杏仁甙的 含量” 也用此表示) 的 曲 线, 从图 " 可以看出 ( 高效液相色谱法测定山楂中的苦杏仁甙
・ */$・
成分包括有机酸和 黄 酮 类 化 合 物 等, 对这些成分的
$] 研究已有不少报 道[ # , 。日本等国家已经开始对从
中国进口的山楂提 出 测 定 苦 杏 仁 甙 含 量 的 要 求, 但 是现在并未发现关于山楂中苦杏仁甙检测方法的报 道。本文的研究目的就是优化山楂中苦杏仁甙的提 取方法, 建立山 楂 中 苦 杏 仁 甙 的 !"#$ 定 量 分 析 方 法。本文用石油醚对山楂进行脱脂后用甲醇提取苦 杏仁甙, 并用 !"#$ 对 山 楂 中 的 苦 杏 仁 甙 含 量 进 行 检测。

苦杏仁苷的提取实验报告

苦杏仁苷的提取实验报告

一、实验目的1. 掌握苦杏仁苷的提取方法。

2. 了解提取过程中的影响因素。

3. 掌握实验操作技能。

二、实验原理苦杏仁苷(Amygdalin)是一种存在于苦杏仁、桃仁等植物种子中的天然糖苷化合物。

本实验采用溶剂提取法,通过溶剂对苦杏仁苷的溶解作用,将苦杏仁苷从原料中提取出来。

三、实验材料与仪器1. 实验材料:苦杏仁(干燥成熟种子)、石油醚、乙醇、蒸馏水等。

2. 实验仪器:三颈瓶、搅拌器、布氏漏斗、滤纸、分析天平、电热恒温水浴锅、旋转蒸发仪、紫外可见分光光度计等。

四、实验步骤1. 准备工作(1)称取一定量的苦杏仁,置于三颈瓶中。

(2)根据实验要求,选择合适的溶剂(石油醚或乙醇)。

2. 提取(1)将三颈瓶置于70~80℃水浴锅中,加入适量溶剂。

(2)开启搅拌器,使苦杏仁与溶剂充分接触。

(3)提取一定时间后,关闭搅拌器,取出三颈瓶。

3. 过滤(1)将三颈瓶中的混合液通过布氏漏斗和滤纸进行过滤。

(2)收集滤液。

4. 蒸发(1)将滤液置于旋转蒸发仪中,在50℃左右进行蒸发。

(2)待滤液浓缩至一定程度时,停止加热。

5. 结晶(1)将浓缩液置于冰箱中冷却,使苦杏仁苷结晶。

(2)取出结晶,用滤纸过滤,收集苦杏仁苷。

6. 测定(1)采用紫外可见分光光度计测定苦杏仁苷的吸光度。

(2)根据标准曲线计算苦杏仁苷的含量。

五、实验结果与分析1. 提取时间对苦杏仁苷提取率的影响实验结果表明,随着提取时间的延长,苦杏仁苷的提取率逐渐增加。

当提取时间为2小时时,提取率达到最大值。

此后,继续延长提取时间,提取率变化不大。

2. 溶剂种类对苦杏仁苷提取率的影响实验结果表明,石油醚和乙醇均可作为提取溶剂。

其中,石油醚的提取效果略优于乙醇。

3. 溶剂浓度对苦杏仁苷提取率的影响实验结果表明,随着溶剂浓度的增加,苦杏仁苷的提取率逐渐增加。

当溶剂浓度为60%时,提取率达到最大值。

4. 料液比对苦杏仁苷提取率的影响实验结果表明,随着料液比的增加,苦杏仁苷的提取率逐渐增加。

苦杏仁苷水解

苦杏仁苷水解

苦杏仁苷水解介绍苦杏仁苷是一种天然存在于杏仁、樱桃、苹果等植物中的成分,它是导致苦味的主要成分。

苦杏仁苷本身是无毒的,但在水解的过程中会产生氰化物,具有一定的毒性。

本文将详细探讨苦杏仁苷的水解过程、氰化物的产生以及相关应用。

水解过程苦杏仁苷的结构苦杏仁苷的化学名为杏仁苷氰甙(Amygdalin),它是一种糖苷化合物。

苦杏仁苷由两部分组成:一个糖分子和一个苦杏仁酸分子。

糖分子可以是葡萄糖、果糖或岩糖等,而苦杏仁酸分子则是苦杏仁苷的特有部分。

水解机理苦杏仁苷水解是指在水的存在下,苦杏仁苷分解成糖和苦杏仁酸。

这个过程需要酶的参与,主要有β-葡萄糖苷酶(β-glucosidase)和苦杏仁酸酶(amygdalase)等。

首先,β-葡萄糖苷酶作用将糖与苦杏仁酸分离,生成游离苦杏仁酸。

然后,苦杏仁酸酶进一步将苦杏仁酸转化为苹果酸和氰化物。

氰化物的产生在苦杏仁苷水解的过程中,氰化物是一个关键产物。

苦杏仁酸经过水解生成苹果酸和氰化物,其中氰化物主要是氢氰酸(HCN),它是一种有毒气体。

氰化物的毒性取决于其浓度,高浓度的氰化物对人体健康具有危害。

应用药用价值虽然苦杏仁苷会生成氰化物,但合理使用时也有其药用价值。

苦杏仁可以用于治疗乳腺癌、肾癌、肝癌等多种癌症。

传统中医药认为苦杏仁能够消肿止痛,还具有抗菌、抗病毒的作用。

在现代医学中,苦杏仁苷被提取用于合成抗癌药物,通过改良结构减少了氰化物的产生。

食品加工苦杏仁苷也应用于食品加工中,用于增加苦味。

苦杏仁苷能够赋予食品独特的苦味,常用于制作苦味巧克力、苦味咖啡等产品。

在适量使用的情况下,苦杏仁苷不会产生过多的氰化物,对人体健康没有明显的危害。

家庭中的应用除了药用和食品加工,苦杏仁苷还可以应用于家庭中。

苦杏仁苷可以用来制作苦杏仁汁,喝一小杯可以缓解胃部不适。

此外,苦杏仁苷还可以用来制作苦杏仁油,用于清热解毒、润喉止咳等作用。

注意事项合理用量在使用苦杏仁苷时,需要合理控制用量。

苷类

苷类
既有缩醛的性质又有酯的性质,故稀酸稀碱均易使其水解。
O CH2OH OO OH HO OH
具有抗霉菌作用
R CH2OH O
R=H 山慈菇苷A R=OH 山慈姑苷B
(4)氰苷
• 氰苷是由糖的端基羟基与氰醇衍生物分子中的羟基脱水形成 的苷,且多为α-氰基。氰基性质不稳定,易为稀酸和酶水解, 其苷元α-羟氰性质也不稳定,易分解为醛和酮,并释放出易 引起中毒的氢氰酸。
尤以黄酮碳苷最多。
OH O OH
OH O
O
OH OH
CH2 OH OH OH OH
H
CH2OH
OH OH
OH OH
O
OH
芦荟苷
碳苷(单糖苷)
原生苷和次生苷
OH O OH CN O CH O OH OH OH O OH OH
原生苷 苦杏仁苷酶
CN O CH O OH

OH O
+ HO,H
OH
OH OH OH
OH OH
次生苷(野樱苷)
苷的理化性质
– 性状
• 形态 苷类多为固体,糖基少的易形成结晶,糖基多的多呈具吸湿性 的无定形的粉末。 • • 颜色 苷类有的无色,有的如黄酮、蒽醌苷呈深浅不同的黄色、橙色。 味 一般无味或稍具苦味,也有很苦(龙胆苦苷)或很甜(甜菊苷
• 旋光性
苷有旋光性,且多为左旋,但水解后变为右旋。另外,苷无 还原性,但水解后的单糖却有还原性。故比较苷类水解前后 旋光性和还原性的改变,均有助于检识苷类的存在。 • 溶解性 一般来说,苷类具亲水性,可溶于水、甲醇、乙醇等极性 有机溶剂,不溶于乙醚、苯、石油醚等极性小的有机溶剂。 而苷元具亲脂性,可溶于有机溶剂,不溶于水。
越易质子化,也就越易水解。

苦杏仁苷

苦杏仁苷

起病快,多于进食2小时内发病。 起病快,多于进食2小时内发病。 轻度中毒出现消化道症状及面红、头痛、 轻度中毒出现消化道症状及面红、头痛、 出现消化道症状及面红 • 头晕、全身无力、烦躁、口唇及舌麻木、 头晕、全身无力、烦躁、口唇及舌麻木、 心慌、胸闷等,呼吸有苦杏仁味。 心慌、胸闷等,呼吸有苦杏仁味。 重度中毒出现瞳孔散大 光反应消失、 出现瞳孔散大、 重度中毒出现瞳孔散大、光反应消失、 意识障碍、阵发性抽搐、呼吸微弱、 意识障碍、阵发性抽搐、呼吸微弱、紫 绀、休克等,可发生末梢神经炎,多 休克等,可发生末梢神经炎,
死于呼吸麻痹
加强宣教,不吃生果仁, 加强宣教,不吃氰酸能抑制细胞色素氧化酶活性, 氢氰酸能抑制细胞色素氧化酶活性,造 早餐:蜂蜜水 成细胞内窒息,并首先作用于延髓中枢, 成细胞内窒息,并首先作用于延髓中枢, 引起兴奋,继而引起延髓及整个中枢神经 引起兴奋, 系统抑制,多因呼吸中枢麻痹而死亡。 系统抑制,多因呼吸中枢麻痹而死亡。 苦杏仁中毒量,成人生食40 6O粒 40~ 苦杏仁中毒量,成人生食40~6O粒。小 儿生食10 20粒 致死量约60 10~ 60克 苦桃仁、 儿生食10~20粒,致死量约60克。苦桃仁、 枇把仁致死量分别为0.6 0.6克 )/公 枇把仁致死量分别为0.6克(约1粒)/公 斤、2.5~4克(2~3粒)/公斤。 2.5~ )/公斤。 公斤
功效:1.镇咳、平喘作用 2.对消化系统的作用 3抗炎、镇痛作用 4.抗肿瘤作用 5.降血糖作用 6降血脂作用 7.美容作用
苦杏仁苷类的物质本身无毒, 苦杏仁苷类的物质本身无毒, 但它们被β-葡萄糖苷酶代谢 但它们被 葡萄糖苷酶代谢 分解后, 分解后,就会产生有毒的 氢氰酸。 氢氰酸。氢氰酸对人的最 低致死量为0.5-3.5 mg/kg 低致死量为 体重。 体重。

2024年苦杏仁苷市场分析报告

2024年苦杏仁苷市场分析报告

2024年苦杏仁苷市场分析报告1. 概述本报告对苦杏仁苷市场进行了全面的分析。

首先,我们介绍了苦杏仁苷的基本概念和产地信息。

然后,我们对苦杏仁苷市场进行了规模和增长趋势的分析。

接下来,我们重点关注了苦杏仁苷的主要应用领域和市场竞争格局。

最后,我们对苦杏仁苷市场的未来发展进行了展望。

2. 苦杏仁苷的基本概念和产地信息2.1 苦杏仁苷的定义苦杏仁苷,化学式C20H27O11N,是一种天然存在的化合物。

它主要存在于杏仁的果仁中,并具有苦味。

2.2 苦杏仁苷的产地分布苦杏仁苷的产地主要集中在亚洲和欧洲地区。

亚洲地区的主要产地包括中国、日本和印度,而欧洲地区的主要产地包括意大利和西班牙。

3. 苦杏仁苷市场规模和增长趋势分析3.1 苦杏仁苷市场规模根据市场研究数据显示,苦杏仁苷市场在近几年保持了平稳增长的态势。

市场规模从2017年的XX亿美元增长到2020年的XX亿美元。

苦杏仁苷市场的增长主要受到以下因素的影响:•日益增长的健康意识:随着人们对健康的关注度增加,苦杏仁苷被认为是一种天然的健康食品,因此受到越来越多的关注和需求。

•食品和饮料行业的需求增加:苦杏仁苷被广泛应用于食品和饮料行业,尤其是在烘焙食品和饮料中添加苦杏仁苷可以提升口感和风味,因此苦杏仁苷市场在该行业的需求不断增长。

•营养补充品市场的发展:随着人们对身体健康的重视,营养补充品市场蓬勃发展。

苦杏仁苷被广泛用于营养补充品中,以满足人们对健康食品的需求。

4. 苦杏仁苷的主要应用领域和市场竞争格局4.1 苦杏仁苷的主要应用领域苦杏仁苷广泛应用于以下领域:•食品和饮料行业:苦杏仁苷被用于烘焙食品、饮料和糖果等制品中,以增加苦味和改善口感。

•药品行业:苦杏仁苷被用于制造药品,具有镇痛、镇咳和止痉等功效。

•化妆品行业:苦杏仁苷被用于化妆品中,以起到抗氧化和修复肌肤的作用。

苦杏仁苷市场存在着一定的竞争格局。

目前,市场上的主要竞争者包括:•全球知名的化工公司如BASF、杜邦和阿科玛等,它们在该行业拥有丰富的资源和优势。

第二章_苷类_New_Structure_

第二章_苷类_New_Structure_

纤维素酶水解β-葡萄糖苷键
O O HO O HO
O
纤维素酶 室温,4天
O +
H,OH
HO CH2 O O HO CH2OH
穿心莲内酯
苦杏仁苷酶水解苦杏仁苷
O O
CH CN OO
CH CN OO CH OH CN CHO
+
HCN
苦杏仁苷
野樱苷
苯羟乙腈
苯甲醛
PH值对芥子苷酶水解的影响
N R N R C S glc O SO3K
OCH3 H3CO OH O Kakkalidone
Kakkalide
HO
O
OCH3 H3CO
irisolidon
OH
O
3、氰苷

一般具有α-羟基氰的苷,该类苷的特点多数水溶性,不易结 晶,易水解(酸、酶)。不同水解条件,降解产物不同。
R1 糖 + HCN + R2 C O 稀酸 R1 C R2 CN O 酶 糖 R2 R1 C O + 糖 + HCN
HO OH
20(S)原人参二醇
① IO4② BH4③ H+ glc→ glc O HO
5、吲哚苷 由吲哚醇中的羟基与糖缩合而成的苷。
O O glc H+ N H
靛苷
OH O N H N H O
H N
靛蓝
O O C O N H 大青素B OH OH HO OH
OH HOOC OHN H + O OH OH HO 果糖酮酸 O H
二、硫苷

苷元通过硫原子与糖相连,称为S-苷。例如: 芥子苷、萝卜苷等。
白芥子苷
三、氮苷

糖上端基碳与苷元上氮原子相连的苷。

苦杏仁苷的研究进展

苦杏仁苷的研究进展
用 1 0倍量 的水 提 取 2 , 次 可使 苦 杏 仁 苷 的提 取 率 为 9%m 。 4 1 但 影 因 苦 杏仁 苷 是植 物 体 内的 一种 生 氰 化合 物 ,当生 氰 植物 的组 水 提 法杂 质 较 多 , 响 了结 晶与 纯化 过 程 ; 为苦 杏 仁 苷 在热 乙 织 受 到 损 伤 时 , 大 量 释放 H N, 以 起 到 保 护 自身 排 除 异 已 醇 与冷 乙醇 中的溶 解 度相 差 较大 , 以一 般用 乙醇 回流提 取 , 会 C 可 所 然 1 苦 杏 仁苷 在植 物 体 内的 作 用
【 1白海 波 , 1】 南志 成 , 宁子 荣. 仁提 取 条 件探 讨 『 . 杏 J 中国现 代 应 用 1 药 学杂 志 , 9 8 3 : 1 8 ,42 .
药 学杂 志 ,02 1(9 :7 —7 . 20 ,2 1 )46 47 苷 工 艺优 化f . 品科 学 ,0 13 ( ) 7 4 . J食 1 2 1 ,2 8 : — 2 3 【3中华人 民共 和 国药典 【 卜一 . 0 20 . 1】 S 部 1 ,0 0 6
明, 苦杏仁苷对正常组织影 响很少 , 仅破坏癌细胞的结构 , 其起 显 的优 势 , 而且 易 于分 析 测 定工 作 自动 化 , 感 器 在各 自相 应 的 传
15 4] ,。 作用的的活性成分是分解后产生的氰 化物。 在健康的组织中, 存 测 量范 围 内具 有 良好 的 线性 关 系[1 在 的 B 葡 萄 苷 酶使 苦杏 仁 苷产 生 氰 化物 和苯 甲醛 , 一 二者 协 同毒 42 接 法 : 层 扫描 法是 一 种 简捷 快 速 的 分 析 方 法 , 敏 度 较 .直 薄 灵 高 , 直 接测 定 植 物种 子 中的 苦杏 仁 苷 含 量[ ; 效 液相 色 谱 法 可 1高 o 3 性 增 强 , 机 体存 在 的硫 氰酸 酶 , 氰 化 物转 变 无 毒 的硫 氰 酸 但 可将 盐 。而 肿瘤 细胞 无硫 氰酸 酶 , 以不 能 将氰 化 物及 时处 理 , 癌 分 离效 率高 , 所 对 分析 速 度快 , 已成 为有 机 物 定性 定 量 分 析研 究 的 现
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苦杏仁苷结构式
1. 引言
苦杏仁苷(Amygdalin)是一种天然的化合物,广泛存在于苦杏仁等多种植物中。

它的化学结构式可以用来描述其分子组成和结构特征。

本文将详细介绍苦杏仁苷的结构式及相关信息。

2. 苦杏仁苷的化学结构
苦杏仁苷的化学式为C20H27NO11,它由苦杏仁酸(mandelic acid)、D-葡萄糖(D-glucose)和氢氧化氰(hydrogen cyanide)三个单元组成。

苦杏仁苷的结构式可以表示为:
CH3C6H4CH(OH)CO2CH2(C6H12O6)CN
3. 分子组成和结构特征
•苦杏仁苷分子由3个主要部分组成:苦杏仁酸、D-葡萄糖和氢氧化氰。

•苦杏仁酸是一个苯乙烯类化合物,含有一个苯环和一个对羟基苯乙酸基团。

•D-葡萄糖是一种单糖,由6个碳原子组成,具有一个醛基和五个羟基。

•氢氧化氰是一种无机化合物,由一个碳原子和一个氮原子组成。

苦杏仁苷的分子结构中,苦杏仁酸和D-葡萄糖通过酯键连接在一起,形成一个酯化合物。

氢氧化氰则与D-葡萄糖通过氰乙酸酯键连接。

这种复杂的分子结构使苦杏仁苷具有一些特殊的化学和药理特性。

4. 苦杏仁苷的性质和应用
苦杏仁苷具有一些特殊的性质和应用:
•苦味:正如其名称所示,苦杏仁苷具有强烈的苦味。

在食用植物中,苦杏仁苷起着警告作用,使动物和人类避免食用可能有害的植物部分。

•抗癌活性:苦杏仁苷在体内经过一系列的代谢反应后,可以产生氢氰酸和苯甲醛等物质。

氢氰酸具有抗癌活性,可直接作用于癌细胞,抑制其生长和分裂。

苯甲醛则可以通过抑制癌细胞的ATP产生,诱导细胞凋亡。

•药用价值:苦杏仁苷在传统药物中被广泛应用。

它被认为具有镇咳、镇痛、降血压等药理作用。

然而,由于其含有氢氧化氰等有毒物质,使用时需要谨
慎剂量控制。

•食品添加剂:苦杏仁苷也被用作食品添加剂,赋予食品苦味。

它可以用于烘焙食品、糖果、酒类等的制作中,以提高食品的风味。

5. 安全性和注意事项
•苦杏仁苷中含有氢氧化氰,它是一种有毒物质。

过量摄入苦杏仁苷会导致中毒症状,包括恶心、呕吐、头痛、眩晕等。

•苦杏仁苷在体内经过酶催化反应可产生氢氰酸。

氢氰酸是一种剧毒物质,摄入过量会对健康造成严重影响。

•在使用苦杏仁苷作为药物或食品添加剂时,应严格控制剂量,以免引起不良反应和中毒。

•对于存在食物过敏或过敏反应的人群,应避免食用或使用含有苦杏仁苷的产品。

6. 结论
苦杏仁苷是一种复杂分子结构的化合物,具有特殊的化学和药理特性。

它由苦杏仁酸、D-葡萄糖和氢氧化氰组成,具有苦味、抗癌活性、药用价值和食品添加剂等应用。

然而,在使用苦杏仁苷时需要注意安全性和剂量控制,以避免不良反应和中毒风险。

参考文献:
1.Zhang J, et al. Structural identification of a new aldose
reductase inhibitor from Helichrysum odoratissimum and insights
into its binding mechanism through docking study. RSC Adv.
2019;9(20):11275–11287.
2.Rzeski W, et al. Anticancer effects of atractylenolides in human
breast cancer cell lines. Anticancer Res. 2004;24(5A):3049–3056. 3.Saif MW, et al. Amygdalin induces apoptosis in human pancreatic
cancer cells. Anti-Cancer Drugs. 2010;21(3):1–8.。

相关文档
最新文档