算法与优化复习题补充
优化设计复习题(原)

word 教育资料优化设计复习题一、单项选择题(在每小题列出的选项中只有一个选项是符合题目要求的)1.多元函数F(X)在点X *附近偏导数连续, F ’(X *)=0且H(X *)正定,则该点为F(X)的( ) ①极小值点 ②极大值点 ③鞍点 ④不连续点 2.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( ) ①凸函数 ②凹函数 3.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( ) ①0.382 ②0.186 ③0.618 ④0.816 4.在单峰搜索区间[x 1,x 3](x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1,x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( ) ①[x 1,x 4] ②[x 2,x 3] ③[x 1,x 2] ④[x 4,x 3] 5.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) ①n 次 ②2n 次 ③n+1次 ④2次6.下列特性中,梯度法不具有的是( ) ①二次收剑性 ②要计算一阶偏导数 ③对初始点的要求不高 ④只利用目标函数的一阶偏导数值构成搜索方向 8.对于极小化F(X),而受限于约束g μ(X)≤0(μ=1,2,…,m)的优化问题,其内点罚函数表达式为( ) ① Ф(X,r (k))=F(X)-r(k)11/()gX u u m=∑② Ф(X,r (k))=F(X)+r(k)11/()gX u u m =∑③ Ф(X,r (k))=F(X)-r(k)max[,()]01gX u u m=∑④ Ф(X,r (k))=F(X)-r (k)min[,()]01g X u u m=∑9.外点罚函数法的罚因子为( ) ①递增负序列 ②递减正序列 ③递增正序列 ④递减负序列 10.函数F (X )为在区间[10,20]内有极小值的单峰函数,进行一维搜索时,取两点13和16,若F (13)<F (16),则缩小后的区间为( ) ①[10,16] ②[10,13] ③[13,16] ④[16,20] 11.多元函数F (X )在X *处存在极大值的充分必要条件是:在X *处的Hesse 矩阵( ) ①等于零 ②大于零 ③负定 ④正定 12.对于函数F (x )=x 21+2x 22,从初始点x (0)={1,1}T 出发,沿方向s (0)={-1,-2}T进行一维搜索,最优步长因子为( )①10/16 ②5/9 ③9/34 ④1/213.目标函数F (x )=x 21+x 22-x 1x 2,具有等式约束,其等式约束条件为h(x)=x 1+x 2-1=0,则目标函数的极小值为( ) ①1 ②0.5 ③0.25 ④0.1 14. 优化设计的自由度是指( )① 设计空间的维数 ② 可选优化方法数 ③ 所提目标函数数 ④ 所提约束条件数 15. 在无约束优化方法中,只利用目标函数值构成的搜索方法是( ) ①梯度法 ② Powell 法 ③共轭梯度法 ④变尺度法 17. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( ) ①[0,0.382] ② [0.382,1] ③ [0.618,1]④ [0,1]18. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hesse 矩阵是( ) ① ⎥⎦⎤⎢⎣⎡--2332 ② ⎥⎦⎤⎢⎣⎡2332③ ⎥⎦⎤⎢⎣⎡2112 ④ ⎥⎦⎤⎢⎣⎡--3223 19. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )①()i i 1F X g (X)mi λ=∇=∇∑,其中λi 为拉格朗日乘子② ()i i 1F X =g (X)mi λ=-∇∇∑,其中λi 为拉格朗日乘子③ ()i i 1F X g (X)qi λ=∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数④()i i 1F X g (X)qi λ=-∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数20. 在共轭梯度法中,新构造的共轭方向S (k+1)为( ) ① S (k+1)= ∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数② S (k+1)=∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 ③ S (k+1)=-∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数④ S (k+1)=-∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 21. 用内点罚函数法求目标函数F(X)=ax+b 受约束于g(X)=c-x ≤0的约束优化设计问题,其惩罚函数表达式为( ) ① (k)1ax b r c-x+-,r (k)为递增正数序列② (k)1ax b r c-x +-,r (k)为递减正数序列 ③ (k)1ax b r c-x ++,r (k)为递增正数序列word 教育资料④ (k)1ax b r c-x++,r (k)为递减正数序列22. f(x)在区间[x 1,x 3]上为单峰函数,x 2为区间中的一点,x 4为利用二次插值法求得的近似极值点,若x 4-x 2<0,且f(x 4)≥f(x 2),则新的搜索区间为( )① [x 1,x 4] ② [x 2,x 3] ③ [x 1,x 2] ④[x 4,x 3]23. 已知F(X)=x 1x 2+2x 22+4,则F(X)在点X (0)=⎭⎬⎫⎩⎨⎧-11的最大变化率为( )① 10 ② 4 ③ 2 ④ 1024.试判别矩阵1111⎡⎣⎢⎤⎦⎥,它是( )矩阵 ①单位 ②正定矩 ③负定 ④不定 ⑤半正定 ⑥半负定 25.约束极值点的库恩——塔克条件为:-∇=∇=∑F X g Xii qi()()**λ1,当约束函数是g i (X)≤0和λi>0时,则q 应为( )①等式约束数目 ②不等式约束数目 ③起作用的等式约束数目 ④起作用的不等式约束数目26.在图示极小化的约束优化问题中,最优点为( ) ①A ②B ③C ④D27.内点罚函数(X,r (k))=F(X)-r (k)101g X g X u u u m(),(())≤=∑,在其无约束极值点X ·(r (k))逼近原目标函数的约束最优点时,惩罚项中( ) ①r (k)趋向零,11g X u u m()=∑不趋向零 ②r (k)趋向零,11g X u u m()=∑趋向零 ③r (k)不趋向零,11g X u u m()=∑趋向零 ④r (k)不趋向零,11g X u u m()=∑不趋向零 29.0.618法在迭代运算的过程中,区间的缩短率是( )①不变的 ②任意变化的 ③逐渐变大 ④逐渐变小 30.对于目标函数F(X)受约束于g u (X) ≤0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表达式是( )①()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递增正数序列②()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递减正数序列③()()(k)(k)2()1X,M F X M {min[(),0]},mk u u g x M =Φ=+∑为递增正数序列 ④()()(k)(k)2()1X,MF X M {min[(),0]},mk uu g x M=Φ=+∑为递减正数序列31.对于二次函数F(X)=12X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( )①零 ②无穷大 ③正值 ④负值 32.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( )①可行方向法 ②复合形法 ③内点罚函数法 ④外点罚函数法33.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00⎧⎨⎩⎫⎬⎭处的梯度为( )①∇=⎧⎨⎩⎫⎬⎭F X ()()000 ②∇=-⎧⎨⎩⎫⎬⎭F X ()()020 ③∇=⎧⎨⎩⎫⎬⎭F X ()()040 ④∇=-⎧⎨⎩⎫⎬⎭F X ()()04034.Powell 修正算法是一种( )①一维搜索方法②处理约束问题的优化方法③利用梯度的无约束优化方法④不利用梯度的无约束优化方法 二、多项选择题(在每小题列出的多个选项中有两个以上选项是符合题目要求的,多选、少选、错选均无分) 35.下列矢量组中,关于矩阵A=105051--⎡⎣⎢⎤⎦⎥..共轭的矢量组是( )①s 1={0 1} ,s 2={1 0}T②s 1={-1 1}T ,s 2={1 1}T③s 1={1 0}T ,s 2={1 2}T④s 1={1 1}T ,s 2={1 2}T⑤.s 1={1 2}T ,s 2={2 1}T36. 对于只含不等式约束的优化设计问题,可选用的优化方法有( )① Powell 法 ② 变尺度法 ③ 内点罚函数法 ④ 外点罚函数法E. 混合罚函数法37. 根据无约束多元函数极值点的充分条件,已知驻点X*,下列判别正确的是( )①若Hesse矩阵H(X*)正定,则X*是极大值点②若Hesse矩阵H(X*)正定,则X*是极小值点③若Hesse矩阵H(X*)负定,则X*是极大值点④若Hesse矩阵H(X*)负定,则X*是极小值点⑤若Hesse矩阵H(X*)不定,则X*是鞍点38.下述Hesse矩阵中,正定矩阵为()①3335⎡⎣⎢⎤⎦⎥②313153337⎡⎤⎢⎥-⎢⎥-⎢⎥⎣⎦③3445⎡⎣⎢⎤⎦⎥④245434542⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⑤523222327⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦39.F(X)在区间[a,b]上为单峰函数,区间内函数情况如图所示:F1=F2。
计算机算法与设计复习题(含答案)

1、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。
2、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。
3、直接或间接地调用自身的算法称为(递归算法)。
4、 记号在算法复杂性的表示法中表示(渐进确界或紧致界)。
5、在分治法中,使子问题规模大致相等的做法是出自一种(平衡(banlancing)子问题)的思想。
6、动态规划算法适用于解(具有某种最优性质)问题。
7、贪心算法做出的选择只是(在某种意义上的局部)最优选择。
8、最优子结构性质的含义是(问题的最优解包含其子问题的最优解)。
9、回溯法按(深度优先)策略从根结点出发搜索解空间树。
10、拉斯维加斯算法找到的解一定是(正确解)。
11、按照符号O的定义O(f)+O(g)等于O(max{f(n),g(n)})。
12、二分搜索技术是运用(分治)策略的典型例子。
13、动态规划算法中,通常不同子问题的个数随问题规模呈(多项式)级增长。
14、(最优子结构性质)和(子问题重叠性质)是采用动态规划算法的两个基本要素。
15、(最优子结构性质)和(贪心选择性质)是贪心算法的基本要素。
16、(选择能产生最优解的贪心准则)是设计贪心算法的核心问题。
17、分支限界法常以(广度优先)或(以最小耗费(最大效益)优先)的方式搜索问题的解空间树。
18、贪心选择性质是指所求问题的整体最优解可以通过一系列(局部最优)的选择,即贪心选择达到。
19、按照活结点表的组织方式的不同,分支限界法包括(队列式(FIFO)分支限界法)和(优先队列式分支限界法)两种形式。
20、如果对于同一实例,蒙特卡洛算法不会给出两个不同的正确解答,则称该蒙特卡洛算法是(一致的)。
21、哈夫曼编码可利用(贪心法)算法实现。
22概率算法有数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法23以自顶向下的方式求解最优解的有(贪心算法)24、下列算法中通常以自顶向下的方式求解最优解的是(C)。
算法设计与分析复习题整理 (1)

一、基本题:算法:1、程序是算法用某种程序设计语言的具体实现。
2、算法就是一组有穷的序列(规则) ,它们规定了解决某一特定类型问题的一系列运算。
3、算法的复杂性是算法效率的度量,是评价算法优劣的重要依据。
4、算法的“确定性”指的是组成算法的每条指令是清晰的,无歧义的。
5、算法满足的性质:输入、输出、确定性、有限性。
6、衡量一个算法好坏的标准是时间复杂度低。
7、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂性和空间复杂性。
8、任何可用计算机求解的问题所需的时间都与其规模有关。
递归与分治:9、递归与分治算法应满足条件:最优子结构性质与子问题独立。
10、分治法的基本思想是首先将待求解问题分解成若干子问题。
11、边界条件与递归方程是递归函数的两个要素。
12、从分治法的一般设计模式可以看出,用它设计出的程序一般是递归算法。
13、将一个难以直接解决的大问题,分解成一些规模较小的相同问题,以便各个击破。
这属于分治法的解决方法。
14、Strassen矩阵乘法是利用分治策略实现的算法。
15、大整数乘积算法是用分治法来设计的。
16、二分搜索算法是利用分治策略实现的算法。
动态规划:17、动态规划算法的两个基本要素是最优子结构性质和重叠子问题性质。
18、下列算法中通常以自底向上的方式求解最优解的是动态规划法。
19、备忘录方法是动态规划算法的变形。
20、最优子结构性质是贪心算法与动态规划算法的共同点。
21、解决0/1背包问题可以使用动态规划、回溯法,其中不需要排序的是动态规划,需要排序的是回溯法。
贪心算法:22、贪心算法总是做出在当前看来最好的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的局部最优解。
23、最优子结构性质是贪心算法与动态规划算法的共同点。
24、背包问题的贪心算法所需的计算时间为 O(nlogn) 。
回溯法:25、回溯法中的解空间树结构通常有两种,分别是子集树和排列树。
优化设计复习题(原)

优化设计复习题一、单项选择题(在每小题列出的选项中只有一个选项是符合题目要求的)1.多元函数F(X)在点X *附近偏导数连续, F ’(X *)=0且H(X *)正定,则该点为F(X)的( )①极小值点 ②极大值点 ③鞍点 ④不连续点2.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( )①凸函数 ②凹函数3.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( ) ①0.382 ②0.186 ③0.618 ④0.8164.在单峰搜索区间[x 1,x 3](x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1,x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( )①[x 1,x 4] ②[x 2,x 3] ③[x 1,x 2] ④[x 4,x 3]5.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( )①n 次 ②2n 次 ③n+1次 ④2次 6.下列特性中,梯度法不具有的是( )①二次收剑性 ②要计算一阶偏导数 ③对初始点的要求不高 ④只利用目标函数的一阶偏导数值构成搜索方向 8.对于极小化F(X),而受限于约束g μ(X)≤0(μ=1,2,…,m)的优化问题,其内点罚函数表达式为( ) ① Ф(X,r (k))=F(X)-r(k)11/()gX u u m=∑② Ф(X,r (k))=F(X)+r(k)11/()g X u u m=∑③ Ф(X,r (k))=F(X)-r(k)max[,()]01gX u u m =∑④ Ф(X,r (k))=F(X)-r (k)min[,()]01g X u u m=∑9.外点罚函数法的罚因子为( ) ①递增负序列 ②递减正序列 ③递增正序列 ④递减负序列 10.函数F (X )为在区间[10,20]内有极小值的单峰函数,进行一维搜索时,取两点13和16,若F (13)<F (16),则缩小后的区间为( ) ①[10,16] ②[10,13] ③[13,16] ④[16,20]11.多元函数F (X )在X *处存在极大值的充分必要条件是:在X *处的Hesse 矩阵( )①等于零 ②大于零 ③负定 ④正定 12.对于函数F (x )=x 21+2x 22,从初始点x (0)={1,1}T 出发,沿方向s (0)={-1,-2}T进行一维搜索,最优步长因子为( )①10/16 ②5/9 ③9/34 ④1/213.目标函数F (x )=x 21+x 22-x 1x 2,具有等式约束,其等式约束条件为h(x)=x 1+x 2-1=0,则目标函数的极小值为( )①1 ②0.5 ③0.25 ④0.1 14. 优化设计的自由度是指( )① 设计空间的维数 ② 可选优化方法数 ③ 所提目标函数数 ④ 所提约束条件数15. 在无约束优化方法中,只利用目标函数值构成的搜索方法是( )①梯度法 ② Powell 法 ③共轭梯度法 ④变尺度法 17. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( ) ①[0,0.382] ② [0.382,1] ③ [0.618,1]④ [0,1]18. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hesse 矩阵是( ) ① ⎥⎦⎤⎢⎣⎡--2332 ② ⎥⎦⎤⎢⎣⎡2332③ ⎥⎦⎤⎢⎣⎡2112 ④ ⎥⎦⎤⎢⎣⎡--322319. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )① ()i i 1F X g (X)mi λ=∇=∇∑,其中λi 为拉格朗日乘子② ()i i 1F X =g (X)mi λ=-∇∇∑,其中λi 为拉格朗日乘子③ ()i i 1F X g (X)qi λ=∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数④()i i 1F X g (X)qi λ=-∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数20. 在共轭梯度法中,新构造的共轭方向S (k+1)为( ) ① S (k+1)= ∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数② S (k+1)=∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 ③ S (k+1)=-∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数④ S (k+1)=-∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 21. 用内点罚函数法求目标函数F(X)=ax+b 受约束于g(X)=c-x ≤0的约束优化设计问题,其惩罚函数表达式为( )① (k)1ax b r c-x +-,r (k)为递增正数序列 ② (k)1ax b r c-x +-,r (k)为递减正数序列 ③ (k)1ax b r c-x ++,r (k)为递增正数序列 ④ (k)1ax b r c-x ++,r (k)为递减正数序列22. f(x)在区间[x 1,x 3]上为单峰函数,x 2为区间中的一点,x 4为利用二次插值法求得的近似极值点,若x 4-x 2<0,且f(x 4)≥f(x 2),则新的搜索区间为( )① [x 1,x 4] ② [x 2,x 3] ③ [x 1,x 2] ④[x 4,x 3]23. 已知F(X)=x 1x 2+2x 22+4,则F(X)在点X (0)=⎭⎬⎫⎩⎨⎧-11的最大变化率为( )① 10 ② 4 ③ 2 ④ 1024.试判别矩阵1111⎡⎣⎢⎤⎦⎥,它是( )矩阵 ①单位 ②正定矩 ③负定 ④不定 ⑤半正定 ⑥半负定 25.约束极值点的库恩——塔克条件为:-∇=∇=∑F X g Xii qi()()**λ1,当约束函数是g i (X)≤0和λi >0时,则q 应为( )①等式约束数目 ②不等式约束数目 ③起作用的等式约束数目 ④起作用的不等式约束数目26.在图示极小化的约束优化问题中,最优点为( ) ①A ②B ③C ④D27.内点罚函数(X,r (k))=F(X)-r(k)101gX g X u u u m(),(())≤=∑,在其无约束极值点X ·(r (k))逼近原目标函数的约束最优点时,惩罚项中( ) ①r (k)趋向零,11g X u u m()=∑不趋向零 ②r (k)趋向零,11g X u u m()=∑趋向零 ③r (k)不趋向零,11g X u u m()=∑趋向零④r (k)不趋向零,11g X uu m()=∑不趋向零 29.0.618法在迭代运算的过程中,区间的缩短率是( ) ①不变的 ②任意变化的 ③逐渐变大 ④逐渐变小 30.对于目标函数F(X)受约束于g u (X) ≤0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表达式是( ) ①()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递增正数序列②()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递减正数序列③()()(k)(k)2()1X,M F X M {min[(),0]},mk u u g x M =Φ=+∑为递增正数序列④()()(k)(k)2()1X,M F X M {min[(),0]},mk u u g x M =Φ=+∑为递减正数序列31.对于二次函数F(X)=12X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( )①零 ②无穷大 ③正值 ④负值 32.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( )①可行方向法 ②复合形法 ③内点罚函数法 ④外点罚函数法33.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00⎧⎨⎩⎫⎬⎭处的梯度为( ) ①∇=⎧⎨⎩⎫⎬⎭F X()()000 ②∇=-⎧⎨⎩⎫⎬⎭F X ()()020③∇=⎧⎨⎩⎫⎬⎭F X()()040 ④∇=-⎧⎨⎩⎫⎬⎭F X ()()040 34.Powell 修正算法是一种( )①一维搜索方法②处理约束问题的优化方法③利用梯度的无约束优化方法④不利用梯度的无约束优化方法 二、多项选择题(在每小题列出的多个选项中有两个以上选项是符合题目要求的,多选、少选、错选均无分) 35.下列矢量组中,关于矩阵A=105051--⎡⎣⎢⎤⎦⎥..共轭的矢量组是( )①s 1={0 1} ,s 2={1 0}T②s 1={-1 1}T ,s 2={1 1}T③s 1={1 0}T ,s 2={1 2}T④s 1={1 1}T ,s 2={1 2}T⑤.s 1={1 2}T ,s 2={2 1}T36. 对于只含不等式约束的优化设计问题,可选用的优化方法有( )① Powell 法 ② 变尺度法 ③ 内点罚函数法 ④ 外点罚函数法 E. 混合罚函数法37. 根据无约束多元函数极值点的充分条件,已知驻点X *,下列判别正确的是( )①若Hesse矩阵H(X*)正定,则X*是极大值点②若Hesse矩阵H(X*)正定,则X*是极小值点③若Hesse矩阵H(X*)负定,则X*是极大值点④若Hesse矩阵H(X*)负定,则X*是极小值点⑤若Hesse矩阵H(X*)不定,则X*是鞍点38.下述Hesse矩阵中,正定矩阵为()①3335⎡⎣⎢⎤⎦⎥②313153337⎡⎤⎢⎥-⎢⎥-⎢⎥⎣⎦③3445⎡⎣⎢⎤⎦⎥④245434542⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⑤523222327⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦39.F(X)在区间[a,b]上为单峰函数,区间内函数情况如图所示:F1=F2。
算法期末复习题2

填空题:1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:确定性有穷性可行性 0个或多个输入一个或多个输出2.算法的复杂性有时间复杂性和空间复杂性之分,衡量一个算法好坏的标准是时间复杂度高低。
3.某一问题可用动态规划算法求解的显著特征是该问题具有最优子结构性质。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解6.动态规划算法的基本思想是将待求解问题分解成若干子问题_,先求解子问题,然后从这些子问题的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为回溯法。
8.0-1背包问题的回溯算法所需的计算时间为o(n*2n),用动态规划算法所需的计算时间为o(min{nc,2n})。
9.动态规划算法的两个基本要素是最优子结构和重叠子问题。
10.二分搜索算法是利用动态规划法实现的算法。
11.一个算法复杂性的高低体现在计算机运行该算法所需的时间和存储器资源上,因此算法的复杂性有时间复杂性和空间复杂性之分。
12.出自于“平衡子问题”的思想,通常分治法在分割原问题,形成若干子问题时,这些子问题的规模都大致相同。
13.动态规划算法有一个变形方法备忘录方法。
这种方法不同于动态规划算法“自底向上”的填充方向,而是“自顶向下”的递归方向,为每个解过的子问题建立了备忘录以备需要时查看,同样也可避免相同子问题的重复求解。
14、这种不断回头寻找目标的方法称为回溯法。
15、直接或间接地调用自身的算法称为递归算法。
16、 记号在算法复杂性的表示法中表示渐进确界或紧致界。
17、由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
18、建立计算模型的目的是为了使问题的计算复杂性分析有一个共同的客观尺度。
19、下列各步骤的先后顺序是②③④①。
①调试程序②分析问题③设计算法④编写程序。
20、最优子结构性质的含义是问题的最优解包含其子问题的最优解。
算法设计复习题

一、选择题1.选出不是算法所必须具备的特征(C)。
A有穷性 B确切性 C高效性 D可行性2.不属于给合问题的是( C )。
A Euler的36名军官问题B 图的Hamiliton C求二项式展开系数 D 集合的幂集 3.下列(C )不是衡量算法的标准。
A 时间效率B 空间效率C 问题的难度D 适应能力4.下列函数关系随着输入量增大增加量最快的是( D )。
A logn Bn3 C2n D n!5.如果某一算法的执行时间不超过输入规模的2倍,那么算法渐近时间复杂度为( B )。
A O(2n)B O(n)C (n)D (n)6.下列程序段的算法时间复杂度是( D )for (i=1;i<=n;i++)for (j=1;i<=m;m++)S;A O(n2)B O(m2)C O(m+n)D O(mn)7.下列程序段S执行次数为( C )。
for (i=1;i<=n;i++)for (j=1;i<=m;m++)S;A n2B n2/2C n(n+1)D n(n+1)/28.使用F(n)=n*f(n-1)递归求F(4),递归调用子函数的次数为(D )。
A 3次B 4次C 5次D 8次9.递推关系M(n)=M(n-1)+1,M(0)=0的算法时间复杂度为( C )。
A O(n!)B O(2n)C O(n)D O(1)10.与递推关系x(n)=2x(n-1)+1,x(1)=1等价的通项公式为( B )。
A x(n)=2nB x(n)=2n-1C x(n)=2n+1D x(n)=n!11.三个盘子的汉诺塔,至少要执行移动操作次数为( D )。
A1次 B 3次 C 6次 D 7次12.Fibonacci数列第10项为(D)。
A 3B 13C 21D 3413.12个金币中有一枚是假币,至少需要称量的次数是( C )。
A 0B 1C 3D 414.二维最近邻点问题,如果使用分治法,对于一个子集上的某一点,另一个子集上需要检查的点的个数是(C )。
最优化计算方法与实现 复习题

最优化计算方法与实现 复习题 (工程硕士用) 一、 填空题(1)MATLAB 在数值运算具备了比其他软件更全面、更强大的_____________功能(2)语句(5,4)b ones =的功能是_________________________________。
(3)A 为矩阵,语句A(r,:)表示_____________________(4)在MATLAB 中,实现循环结构,用__________________或___________语句。
(5)建立优化问题数学模型的三要素包括:____________________________________(6) 用MATLAB 求解最优化问题数学模型时,问题的类型一般都是___________________。
(7)函数optimset 的主要功能是_______________________。
(创建或优化选项参数结构) (8)优化工具箱要求非线性不等式约束为____________________________。
(9)在函数调用格式:[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub)中,A 表示____________________,Aeq 表示_______________________,lb 表示___________________,ub 表示_______________。
(10)在Matlab 中,求解无约束优化问题的多变量函数有_________________________________________ (11)将代数式0.8cos(/8)| 1.5|e π-++写成MATLAB 语言的表达式______________________(12)整数规划包含四种类型,分别是_____________________________________________. (13)线性规划的主流解法是__________________________________。
算法分析复习题

算法分析复习题⼀、单项选择题:1、算法的五⼤特征是确定性、有穷性、输⼊、输出和可⾏性。
其输⼊⾄少是( A )个。
A、0B、1C、n D、-12、⼤整数的乘法是利⽤的算法( C )。
A、贪⼼法B、动态规划法C、分治策略D、回溯法3、采⽤贪⼼算法的最优装载问题的主要计算量在于将集装箱依其重量从⼩到⼤排序,故算法的时间复杂度为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)4、⼀个问题可⽤动态规划算法或贪⼼算法求解的关键特征是问题的( B )。
A、重叠⼦问题B、最优⼦结构性质C、贪⼼选择性质D、定义最优解5、设⼀个算法的输⼊规模为n,Dn是所有输⼊的集合,任⼀输⼊I∈Dn,P(I)是I出现的概率,有=1,T(I)是算法在输⼊I下所执⾏的基本语句次数,则该算法的平均执⾏时间为(D)。
A、B、C、D、6、把递归算法转化为⾮递归算法有如下两种基本⽅法:(1)直接⽤循环结构的算法替代递归算法。
(2)⽤( A )模拟系统的运⾏过程,通过分析只保存必须保存的信息,从⽽⽤⾮递归算法替代递归算法。
A、栈B、队列C、顺序表D、链表7、算法分析中,记号表⽰(A)。
A、渐进下界B、渐进上界C、⾮紧上界D、紧渐进界9、贪⼼算法与动态规划算法的主要区别是(B )。
A、最优⼦结构B、贪⼼选择性质C、构造最优解D、定义最优解10、回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A、⼴度优先B、活结点优先C、扩展结点优先D、深度优先11. 回溯法的问题的解空间树是(B),并不需要在算法运⾏时构造⼀棵真正的树结构,然后再在该解空间树中搜索问题的解,⽽是只存储从根结点到当前结点的路径。
A、顺序⽅式的⼆叉树B、虚拟的树C、满⼆叉树D、完全⼆叉树12. 应⽤回溯法求解问题时,⾸先应该明确问题的解空间。
解空间中满⾜约束条件的决策序列称为(C)。
A、最优解B、局部最优解C、可⾏解D、最优⼦序列解13. ⼀个问题的最优解包含其⼦问题的最优解,则称此问题具有(D)性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设X和Y都是n位二进制整数,若按普通乘法规则计算,要进行O(n2)步运算才能得到XY的乘积,若用分治法来计算,可有效地降低其复杂性。
简述采用分治法求解XY乘积的基本过程。
解:即为大整数的乘法(参照书上2.4节P29):2.扩展Hanoi塔问题:设a,b,c,d是4个塔座。
开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。
各圆盘从小到大编号为1,2,…,n,现要求采用递归算法将塔座a上的这一叠圆盘移到塔座d上,并仍按同样顺序叠置。
在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c,d中任一塔座上。
设计算法实现一种移动方案,并分析算法的时间复杂度。
解:书2.1节例2.6 (P23)3.比较分治法、动态规划法和贪心算法的使用条件。
解:分治法和递归是紧密相联系的,分治法就是把大问题分解成小问题,然后大问题的解可以通过小问题的解得出来。
小问题是相互独立的,可以递归解决。
分治法所能解决的问题一般具有以下几个特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
如下问题使用分治法解决:计算逆序,找出平面上最近的点,等等经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。
简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。
例如典型的Fibonacci数列的求解。
两种动态规划算法:备忘录和迭代贪心法是自然的方法,也是最直观的方法,贪心法的当前选择依赖于已经作出的所有选择,但不依赖于有待于做出的选择和子问题。
因此贪心法自顶向下,一步一步地作出贪心选择,但是该方法不能保证最后得出的解是最优的,需要反复选择策略,加以比较,有时候一些选择策略可以很巧妙的解决问题。
贪心法主要有两种思想,即贪心算法领先和交换论证,用来证明所得的解是最优的,交换论证的思想为首先假设一个最优解和通过贪心法所得到的解,然后逐步修改最优解,但保持每步的最优性,最后使得最优解跟通过贪心法所得的解相同。
如下问题可用贪心法解决:区间调度,最小延迟调度,最短路径,最小生成树,聚类等等。
4.比较回溯法与分支限界法的区别。
解:分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。
但在一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
分支限界法类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。
但在一般情况下,分支限界法与回溯法的求解目标不同。
回溯法的求解目标是找出T中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。
由于求解目标不同,导致分支限界法与回溯法在解空间树T上的搜索方式也不相同。
回溯法以深度优先的方式搜索解空间树T,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T。
分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。
为了有效地选择下一扩展结点,以加速搜索的进程,在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
问题的解空间树是表示问题解空间的一棵有序树,常见的有子集树和排列树。
在搜索问题的解空间树时,分支限界法与回溯法对当前扩展结点所使用的扩展方式不同。
在分支限界法中,每一个活结点只有一次机会成为扩展结点。
活结点一旦成为扩展结点,就一次性产生其所有儿子结点。
在这些儿子结点中,那些导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。
这个过程一直持续到找到所求的解或活结点表为空时为止。
有一些问题其实无论用回溯法还是分支限界法都可以得到很好的解决,但是另外一些则不然。
也许我们需要具体一些的分析——到底何时使用分支限界而何时使用回溯呢?下表列出了回溯法和分支限界法的一些区别:方法对解空间树的搜索方式存储结点的常用数据结构结点存储特性常用应用回深度优先搜堆栈活结点的所有可行子找出满足约束条件的溯法索 结点被遍历后才被从栈中弹出 所有解 分支限界法广度优先或最小消耗优先搜索 队列、优先队列 每个结点只有一次成为活结点的机会 找出满足约束条件的一个解或特定意义下的最优解5. 概率算法分为哪几类?它们求得问题的解分别具有什么样的特点? 解:1)数值概率算法:常用于数值问题的求解,得到的往往是近似解(1)解的精度随计算时间的增加而提高(2)在许多情况下,计算出问题的精确解是不可能或没必要2)蒙特卡罗算法:用于求解问题的准确解,可以求得问题的一个解,但该解未必正确(1)求得正确解的概率依赖于算法的计算时间,多次执行蒙特卡罗算法,可以提高获得正确解的概率(2)无法有效判定所得到的解是否肯定正确。
3)拉斯维加斯算法:不会得到不正确的解(1)有时找不到问题的解(2)找到正确解的概率随算法计算时间的增加而提高(3)用同一拉斯维加斯算法反复对问题实例求解足够多次,可使求解失败的概率任意小。
4)舍伍德算法:总能求解得到问题的一个解,而且所求得得解总是正确的。
将确定性算法引入随机性改造成舍伍德算法,可消除或减少问题对于好坏实例间的差别。
6. 给定非线性规划问题221221212min (2)..0 0x x s t x x x x ⎧-+⎪-≥⎨⎪-+≥⎩,验证下列两点(1)(2)01, 01x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦是否为K-T 点?解:参照群共享,最新刘伟整理的第3题。
7. 简述无约束最优化问题的最优性条件。
解:参照群共享,最新刘伟整理的第6题。
8. 给定非线性规划问题22121222112122121231214122min (,)(3)(2)..(,)50(,)240(,)0(,)0f x x x x s t g x x x x g x x x x g x x x g x x x ⎧=-+-⎪⎪=+-≤⎪⎨=+-≤⎪=-≤⎪⎪=-≤⎩,验证下列两点(1)(2)20, 10x x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦是否为K-T 点?解:参照群共享,最新刘伟整理的第2题。
9. 矩阵连乘问题可以采用动态规划法求得最少的数乘次数和最优的加括号方式,试证明该问题具有最优子结构性质。
解;参照书3.1节,3.1矩阵连乘问题, 1.分析最优解的结构,在吹点牛B P63页。
10. 设1:,1,2,n i g R R i m →=和m m i R R h n i ,1,:1+=→都是线性函数,证明下面的约束问题是凸规划问题。
解:参照群共享,最新刘伟整理的第1题。
11. 背包问题可以采用贪心算法求得最优解,证明该问题满足贪心选择性质。
解:参照群共享,旧的刘伟整理的第3题(后半段证明不要了)12. 以下为最小顶点覆盖问题的近似算法,其中cset 用来存储顶点覆盖中的各顶点,初始为空,不断从边集e1中选取一边(u,v),将边的端点加入cset 中,并将e1中已被u 和v 覆盖的边删去,直至cset 已覆盖所有边。
证明该算法的性能比为2。
VertexSet approxVertexCover (Graph g){cset=∅;e1=g.e ;while (e1!=∅){从e1中任取一条边(u,v);cset=cset ∪{u,v};从e1中删去与u 和v 相关联的所有边;}return cset;}解:参照PPT 第九章13. 二维0-1背包问题:给定n 种物品和一背包。
物品i 的重量是wi ,体积是bi ,其价值为vi ,背包的容量为c ,容积为d 。
问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品i 装入背包多次,也不能只装入部分的物品i 。
试设计一个解决此问题的动态规划算法,并分析算法的计算复杂性。
解:参照群共享,旧的刘伟整理的第2题14. 旅行售货员问题:设G 是有n 个顶点的有向图,设计一带有上界函数的算法,提高原算法的效率.解:参照群共享,旧的刘伟整理的第14题15. 皇后控制问题:在一个n*n 个方格组成的棋盘上的任一方格中放置一个皇后,该皇后可以控制所在的行,列以及对角线上的所有方格.对于给定的自然数n,在n*n 个方格组成的棋盘上最少要放置多少个皇后才能控制棋盘上的所有方格,且放置的皇后互不攻击.解:参照群共享,旧的刘伟整理的第15题16. 给定两个大整数u 和v,它们分别有m 和n 位数字,且m<<=n.设计计算时间低于O(mn) 的算法.解:参照群共享,旧的刘伟整理的第1题17. 用DFP 算法求解无约束最优化问题:其中12[]T X x x =,,取60[1,1]10T X ε-==,。
解:参照群共享,最新的刘伟整理的第5题18. 用外点罚函数法求解约束最优化问题,取610ε-=:解:参照群共享,最新的刘伟整理的第7题19. 解顶点覆盖问题的一个启发式算法如下:每次选择具有最高度数的顶点,然后将与其相关联的所有边删去。