逆变器滤波器参数设置(参考资料)
基于PWM逆变器的LC滤波器

第 5期
俞杨威 ,等 : 基于 PWM 逆变器的 LC滤波器
・51・
因此 ,滤波器设计目标包括 : ① 输出电压的谐波含量 小; ② 滤波参数和体积小 ; ③ 滤波器的阻频特性好 ; ④ 滤波系统消耗的功率小 。根据以上原则 , 即可 对滤波器的特性进行分析 。 LC 滤波器的传递函数为 :
U o ( s) = U i ( s) 1 s +
ω1 —基波角频率 ;ωm —m 次谐波角频率 ; Is — 式中 电感电流的基波有效值 ; ^ Im s —m 次电感电流的谐波
^ 有效值 ; U o —电容电压的基波有效值 ; U m 次电 mo —
容电压的谐波有效值 。 对于 PWM逆变器的输出电压而言 , 谐波分量相 对于基波来说非常小 , 因而式 ( 2 ) 可以简化为 : 2 2 ( 3) Q ≈ ω1 L Is +ω1 CU o ωL = LC 滤波器的截止角频率 :
参考文献 ( Reference) :
[1] 伍家驹 ,章义国 ,任吉林 ,等 . 单相 PWM 逆变器的滤波
3 设计实例
本研究针对单相 PWM 逆变电源进行了滤波器 参数设计 , 逆变器参数如下 :输出电压 U o = 240 V , 容量 6 kVA , 输出基波频率 f1 = 50 H z, 载波频率 fs = 20 kH z。 逆变器主电路拓扑 , 如图 1 所示 , 控制电 路用数字控制实现 。 综合考虑滤波器输出电压 THD、 系统的动态响 应以及体积 、 重量等因素 , 选取截止频率 fL = 0. 1 fs = 2 kHz,结合式 ( 11) , 选取 :L = 700 μH; C = 10 μF。 此时 , 滤波器传递函数为 :
1
LC ( 4)
逆变器调试参数表

一、参数复位到工厂设置P053=6 允许通过PMU和串口变更参数P060=2 选择固定设置菜单P366=0 具有PMU的标准设置,通过MOP的设定值P970=0 参数复位二、系统设置P060=5 选择系统设置菜单P068=0 没有输出滤波器P071=510 装置输入电压P095=10 电机类型:异步/同步IEC(国际标准)P100=1 开环V/F控制=4 带编码器的闭环控制P101=380 输入电机额定电压P102=?输入电机额定电流(成组传动:所有电机电流之和)P107=50 输入电机额定频率P108=?输入电机额定转速P114=0 标准应用=3 高强度的冲击系统(轧钢传动)P115=1 计算电机模型,自动参数设置P130=10 无编码器=11 有脉冲编码器P151= 编码器脉冲数P330=0 特性:线性(恒转矩传动)(P100=0、1、2时才设置)1 特性:抛物线特性(风机/泵)(P100=0、1、2时才设置)P380=?用于输出警告A023“电机过热”的电机温度传感器选择,=1激活PTC P381=?用于输出故障F023“电机过热”的电机温度传感器选择,=1激活PTC P382==0 电机冷却,自风冷1电机冷却,强迫风冷P383==?电机发热时间常数0 电机不希望有发热保护P384.2=?电机负载限制(百分数)P452=?正转的最大频率或者速度P453= ?反转的最大频率或者速度P060=1 回到参数菜单P128= (默认值,装置最大输出电流)P462=10 从静止加速到参考频率(P352)的时间P463=0 升速时间的单位(S)P464=10 从参考频率(P352)减速到静止的时间P465=0 减速时间的单位(S)三、简单应用设置(仅用于出厂调试)P060=3 选择简单应用设置菜单P071=510 装置输入电压P095=10 电机类型:异步/同步IEC(国际标准)P100=1 开环V/F控制=4 带编码器的闭环控制P101=380 输入电机额定电压P102=?输入电机额定电流(成组传动:所有电机电流之和)P107=50 输入电机额定频率P108=?输入电机额定转速P114=0 标准应用=3 高强度的冲击系统(轧钢传动)P368=0 PUM+MOP给定=1 端子排上的模拟量/数字量输入给定=6 PROFIBUS(CBP)给定P422=?MOP给定的下限幅,默认为0,不能通过MOP改变转向。
三相并网逆变器LCL滤波特性分析及控制研究

三相并网逆变器LCL滤波特性分析及控制研究一、概述随着可再生能源的快速发展,三相并网逆变器在分布式发电系统中扮演着越来越重要的角色。
由于并网逆变器产生的谐波会对电网造成污染,影响电能质量,滤波器的设计成为了一个关键问题。
LCL滤波器以其良好的滤波效果和较小的体积优势,在三相并网逆变器中得到了广泛应用。
LCL滤波器由电感、电容和电感组成,其特性分析对于优化滤波效果、提高电能质量具有重要意义。
本文将对三相并网逆变器LCL滤波器的滤波特性进行深入分析,包括其频率特性、阻抗特性等,以揭示其滤波机理和影响因素。
为了充分发挥LCL滤波器的优势,对逆变器的控制策略进行研究也是必不可少的。
本文将对三相并网逆变器的控制策略进行探讨,包括传统的PI控制、无差拍控制以及基于现代控制理论的先进控制策略等。
通过对不同控制策略的比较和分析,旨在找到最适合LCL滤波器的控制方法,以提高并网逆变器的性能和稳定性。
本文旨在通过对三相并网逆变器LCL滤波特性的分析和控制研究,为优化滤波效果、提高电能质量提供理论支持和实践指导。
这不仅有助于推动可再生能源的发展,也为电力电子技术的创新和应用提供了新的思路和方法。
1. 研究背景和意义随着可再生能源的快速发展和智能电网建设的深入推进,三相并网逆变器作为新能源发电系统与电网之间的关键接口设备,其性能与稳定性对于电力系统的安全、高效运行至关重要。
在实际应用中,并网逆变器产生的谐波会对电网造成污染,影响电能质量。
为了降低谐波污染,提高电能质量,LCL滤波器因其良好的滤波性能被广泛应用于三相并网逆变器中。
LCL滤波器作为一种典型的无源滤波器,能够有效地抑制并网逆变器产生的高频谐波,降低其对电网的污染。
LCL滤波器的引入也给并网逆变器的控制系统带来了新的挑战。
一方面,LCL滤波器的参数设计需要综合考虑滤波效果和系统稳定性另一方面,由于LCL滤波器固有的谐振特性,如果不加以控制,很容易引发系统振荡,影响逆变器的正常运行。
02-1 PVSYST7.0 逆变器参数设置与分析

1.46KW逆变器4个MPPT
实际组件容量为:8*20=160;160*540=86.4KW。
1.90KW逆变器有6个MPPT,非不 平衡每个MPPT对15KW; 2.当选择使用多MPPT选型时, 注意逆变器本身MPPT个数和选 用MPPT个数,会影响总容量和 台数。 3.MPPT数量和并联数要对应。
每个逆变器4个MPPT 8个MPPT意味2台逆变器。
多种阵列结构模式
多阵列模式 1.可以用于不同阵列结构(地形、容量不同) 2.达到最优精细配置
阵列1: 55KW组件 55KW逆变器
阵列2: 35KW组件 33KW逆变器
模拟结果
阵列1
阵列2
逆变器其他设置
主要参数
实训任务
在丽水地面拟建设290KW光伏电站,采用LONGJI的540W组件,选 用合适HUAWIEI逆变器,使电站容量接近290KW。采用3个大阵列多 MPPT、多台逆变器实现。 1.分析发电量情况 2.掌握多MPPT逆变器设置方法
系方统案设1:置
对应
串联时,在地温度下电压超范围 即串联数过多
1.90KW逆变器有6个MPPT,非不 平衡每个MPPT对15KW; 2.当选择使用多MPPT选型时, 注意逆变器本身MPPT个数和选 用MPPT个数,会影响总容量和 台数。 3.MPPT数量和并联数要对应。
8个MPPT,2台逆变器,共46×2=96,逆变器有点大
衢州职业技术学院信息工程学院.廖东进
实现。 1.掌握逆变器参数分析 2.掌握多MPPT逆变器设 串联10
逆变 器
电网
项目建立
建立quzhou气象数据,定义项目名称。
安装方式设置
1.选择固定倾斜安装 2.设置年最优辐照度 倾斜角23度。
逆变器滤波器参数设置

1滤波特性分析输出滤波方式通常可分为:L 型、LC型和 LCL 型,滤波方式的特点比较如下:(1)中的单L型滤波器为一阶环节,其结构简单,可以比较灵活地选择控制器且设计相对容易,并网控制策略不是很复杂,并网容易实现,是并网逆变器常用的滤波方式。
缺点在于其滤波能力有限,比较依赖于控制器的性能。
(2)中的 LC型滤波器为二阶环节, C 的引入可以兼顾逆变器独立、并网双模式运行的要求,有利于光伏系统功能的多样化。
然而,滤波电容电流会对并网电流造成一定影响。
(3)中的 LCL型滤波器在高频谐波抑制方面更具优势,在相同高频电流滤波效果下,其所需总电感值较小。
但因为其为三阶环节,在系统中引入了谐振峰,必须引入适当的阻尼来削减谐振峰,这就导致了其控制策略复杂,系统稳定性容易受到影响。
当三相光伏逆变器独立运行时,一般均采用 LC型滤波方式。
并网逆变器的滤波器要在输出的低频段(工频 50Hz)时要尽量少的衰减,而要尽量衰减输出的高频段(主要是各次谐波)。
采用伯德图来分析各种滤波器的频域响应。
[1]一般并网逆变器滤波部分的电感为毫亨级,电容为微法级,这里电感值取 1m H,电容取 100u F,电感中的电阻取0.02Ω,在研究LCL滤波器时,取电感值为 L1=L2=0.5m H,电阻R1=R2=0.01Ω。
对于单电感滤波器,以输入电压和输出电流为变量,并且实际的电感中含有一定电阻,其传递函数为:对于采用LC滤波器的并网逆变器,在并网运行时,电网电压直接加在滤波器中的电容两端,因此此时电容不起滤波作用,可以看作是一个负载,从滤波效果上来说,它等同于单电感滤波器。
并且对于被控量选取为电感电流IL 的采用 LC滤波的并网逆变器,由于有电容的作用,其控制电流IL与实际输出电流Io 之间有如下图所示:上式中可以看出,电感电流LI 将受到电网电压gU 的变化与并网电流0I 的影响。
所以在控制过程中要参照电网电压的有效值不断调整基准给定的幅值与相位。
光伏逆变器用直流滤波器

端接方式代号 Connection Type
额定电流数 Rated Current
附加位(可同时出现)/Option “D” 直流滤波器 / DC filter “H” 高工作电压型 / High voltage filter “M” 军用滤波器/ Military filter “B” 医用滤波器 / Medical filter “F” 400Hz 滤波器 / 400Hz filter “L” 低漏电流型 / Low leakage current filter “S” 小体积型 / Small size filter ......
直流 25/085/21
自冷
工作频率 Frequency
泄露电流(250VAC/50Hz)
试验电压(线-线)
绝缘电阻 Resistance
>200M@100VDC 试验电压(线-地)
包装 Packing
纸箱
运输方式 Transport
质保期 Warranty period
一年
公司网站:
◆ 光伏逆变器用直流滤波器外形尺寸
民恩制造 扬民族品牌
(mm) 如有需要请您联系《上海民恩电气有限公司》咨询!
光伏逆变器滤波器系列
民恩制造 扬民族品牌
如有需要请您联系《上海民恩电气有限公司》咨询!
光伏逆变器滤波器系列
额定电流 600A 滤波器代码 民恩公司 型号标示
三、光伏逆变器用直流滤波器波形图
民恩制造 扬民族品牌
如有需要请您联系《上海民恩电气有限公司》咨询!
光伏逆变器滤波器系列
七、光伏逆变器用直流滤波器安装使用说明
滤波器安装前请先阅读此注意事项!!! 1. 测试 上海民恩电气有限公司的每一只产品在出厂前均经过严格的测试,
三相PWM逆变器输出LC滤波器设计方法

三相PWM逆变器输出LC滤波器设计方法一、本文概述随着可再生能源和电力电子技术的快速发展,三相PWM(脉宽调制)逆变器在电力系统中得到了广泛应用。
为了改善逆变器的输出波形质量,降低谐波对电网的污染,LC滤波器被广泛应用于逆变器的输出端。
本文旨在探讨三相PWM逆变器输出LC滤波器的设计方法,分析滤波器的主要参数对滤波效果的影响,为工程师提供一套实用的滤波器设计流程和指导原则。
本文将首先介绍三相PWM逆变器的基本工作原理和LC滤波器的功能特点,然后详细阐述LC滤波器的设计步骤,包括电感、电容参数的选取,滤波器截止频率的计算等。
接着,本文将通过仿真和实验验证所设计的LC滤波器的性能,分析滤波效果与滤波器参数之间的关系。
本文将总结滤波器设计的关键因素,并给出一些实用建议,以帮助工程师在实际应用中更好地设计和优化LC滤波器。
通过本文的阅读,读者可以全面了解三相PWM逆变器输出LC滤波器的设计原理和方法,掌握滤波器参数的选择和优化技巧,为提升逆变器输出波形质量和电网稳定性提供有力支持。
二、三相PWM逆变器基础知识三相PWM(脉冲宽度调制)逆变器是一种电力电子设备,用于将直流(DC)电源转换为三相交流(AC)电源。
它是许多现代电力系统中不可或缺的一部分,特别是在可再生能源领域,如太阳能和风能系统中。
了解三相PWM逆变器的基础知识是设计其输出LC滤波器的前提。
三相PWM逆变器的基本结构包括三个独立的半桥逆变器,每个半桥逆变器都连接到一个交流相线上。
每个半桥由两个开关设备(通常是绝缘栅双极晶体管IGBT或功率MOSFET)组成,它们以互补的方式工作,以产生所需的输出电压波形。
PWM控制是逆变器的核心。
它涉及快速切换开关设备,以便在平均意义上产生所需的输出电压。
通过调整每个开关设备的占空比(即它在任何给定时间内处于“开”状态的时间比例),可以精确地控制输出电压的大小和形状。
三相PWM逆变器的一个关键特性是它能够产生近似正弦波的输出电压。
iData_400Hz逆变电源输出滤波器的优化设计_闫英敏

技术的发展, 使得当今的测试系统出现了技术更新
咨询编号:071103
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ( 上接第 9 页) 空载时可控谐振阻尼 LC 输出滤波器 制起到良好的作用。
具有很好的振荡抑制作用, 使输出电压波形质量 参考文献:
δ=(Uo1- Uo)/Uo1
( 3)
根据所设计逆变电源的参数要求, 单相输出电
压为 115 V, 故输出电压 Uo 已知。如果 δ给定, 可求 出其空载电压:
Uo1=Uo/( 1- δ)
( 4)
设空载时滤波器输入电压的模为 Ui1, 电感电压
的模为 ULo , 输出电压的模为 Uo1, 如图 3 所示。
令上式分子为零:
(2A- w2C2B)R2L+B- 2w4L2C2=0 将 A、B 值还原可得:
w2C2R2L- 2w4LC3R2L+1- 2w2LC=0 即: (1+w2C2R2L)(1- 2w2LC)=0 其中, 第一项为零,无意义。故令第二项为零, 即
LC=1/(2w2) 或 XL=XC/2
( 2)
扰动输入 Ur 引起的振荡电压分量为:
式中:
4 新型分离式滤波器参数设计
逆变电源的主要技术指标如下: Uo=115 V; fo= 400 Hz; P=4 kW; △U=±10%。采用新型分离式滤波 器结构, 参数设计如下:
1) 空载时滤波器的输出电压 Uo1: UO1=UO/(1- δ) =115/(1- 0.1)=128 V; 2) 滤波器输入端电压 Ui 为: Ui=Ui1=UO1/2=64 V 3) 电感 L 由公式( 8) 得:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1滤波特性分析
输出滤波方式通常可分为:L 型、LC 型和LCL 型,
滤波方式的特点比较如下:
(1)中的单L 型滤波器为一阶环节,其结构简单,可以比较灵活地选择控制器且设计相对容易,并网控制策略不是很复杂,并网容易实现,是并网逆变器常用的滤波方式。
缺点在于其滤波能力有限,比较依赖于控制器的性能。
(2)中的LC 型滤波器为二阶环节,C 的引入可以兼顾逆变器独立、并网双模式运行的要求,有利于光伏系统功能的多样化。
然而,滤波电容电流会对并网电流造成一定影响。
(3)中的LCL 型滤波器在高频谐波抑制方面更具优势,在相同高频电流滤波效果下,其所需总电感值较小。
但因为其为三阶环节,在系统中引入了谐振峰,必须引入适当的阻尼来削减谐振峰,这就导致了其控制策略复杂,系统稳定性容易受到影响。
当三相光伏逆变器独立运行时,一般均采用LC 型滤波方式。
并网逆变器的滤波器要在输出的低频段(工频50Hz)时要尽量少的衰减,而要尽量衰减输出的高频段(主要是各次谐波)。
采用伯德图来分析各种滤波器的频域响应。
[1]
一般并网逆变器滤波部分的电感为毫亨级,电容为微法级,这里电感值取1m H,电容取100u F,电感中的电阻取0.02Ω,在研究LCL滤波器时,取电感值
为L1=L2=0.5m H,电阻R1=R2=0.01Ω。
对于单电感滤波器,以输入电压和输出电流为变量,并且实际的电感中含有一定电阻,其传递函数为:
对于采用LC 滤波器的并网逆变器,在并网运行时,电网电压直接加在滤波器中的电容两端,因此此时电容不起滤波作用,可以看作是一个负载,从滤波效果上来说,它等同于单电感滤波器。
并且对于被控量选取为电感电流IL 的采用LC滤波的并网逆变器,由于有电容的作用,其控制电流IL与实际输出电流Io 之间有如下图所示:
上式中可以看出,电感电流LI 将受到电网电压gU 的变化与并网电流0I 的影响。
所以在控制过程中要参照电网电压的有效值不断调整基准给定的幅值与相位。
对于LCL 滤波电路,逆变器输出电流与输入电压之间的传递函数可以表示为:
对比可知,可以很清楚的看到,在低频时,单L 型滤波器与LCL 型滤波器的频域响应相同,都是以20d B/dec 的斜率进行衰减。
但在高频部分,单L型滤波器仍然以20d B/dec 进行衰减,但LCL 型滤波器以60d B/dec 的斜率进行衰减,表明相对于单L 型滤波器,LCL 型滤波器能够更好地对高频谐波进行衰减。
将式中的s 用jω代入后可以看出,低频时两式分母中含有ω的项都很小,特别是ω的高次方项,可以忽略不计。
因此在低频时,表达式中主要起作用的是电阻部分。
而随着ω的不断上升,两式分母中含有ω的项不断增大,特别是含有ω的高次方项,因此在高频段,其主要作用的是分母中含有ω的 3 次方项。
因此在高频段,LCL 滤波器是以60d B/dec 的斜率进行衰减。
对单L 型、LC 型及LCL 型滤波器进行比较。
在低频时,三者的滤波效果相同,并且在并网运行时LC 型滤波器中的电容只相当于负载,不起滤波作用。
而LCL 型滤波器对高频谐波的滤波效果要优于单L 型与LC 型滤波器。
2数学模型
2.1L型滤波器
2.2L C滤波器
2.2.1LC滤波器数学模型
这里选择电感电流、电容C2电压为状态变量,在三相平衡的情况下列出A、B、C 三相的状态方程为:
dq轴下的数学方程为:
则数学模型为:。