(完整版)高数第七章无穷级数知识点,推荐文档

合集下载

高等数学第七章无穷级数.ppt

高等数学第七章无穷级数.ppt

推论 (比较审敛法) 设
是两个正项级数,
且存在
对一切

则有
(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
例1.
讨论
p
级数1
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
知存在 N Z , 当n N 时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
(2) 当 1 或 时,必存在 N Z , uN 0,当n N

从而
un1 un un1 uN
因此
lim
n
un
uN
0,
所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
不存在 , 因此级数发散.
由定义, 讨论 级数敛散性的方法 1. 先求部分和; 2. 求部分和的极限.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
利用此结论,可以直接判别某此级数的敛散性。例如:
例如:
公比 q 1 ,
2
q 1,
n1
(1) n1 2n1
3.按基本性质.
第三节 正项级数
第七章
一、正项级数收敛的基本定理 二、比较审敛法 三、比值审敛法 四、根值审敛法
一、正项级数收敛的基本定理
若 un 0, 则称 un 为正项级数 . n1
分析特点:部分和序列 单调递增。

高等数学无穷级数

高等数学无穷级数

第七章无穷级数10常数项级数概念及性质1、定义P264 ∑an=a1+a2+ +an+n=1∞an称为一般项或通项 Sn=u1+u2+ +un称为前n项部分和例1、1 =3+3+ +3+ =0.331010210n1+2+3+ +n+1-1+1-1+ +(-1)n-1+2、定义Sn=∑uKK=1nan=Sn+1-Sn如{Sn}收敛,则∑an收敛n=1∞3、几个重要极限等比级数(几何)∑aqn,当q<1 收敛,q≥1 发散;n=0∞P级数∑Pn=1∞1nP>1 收敛,P≤1 发散;∞1P=1当,∑ 又称调和级数。

n=1n4、级数性质 P266性质5是级数收敛的必要条件即∑an收敛→liman=0n=1n→∞∞例1、∑n=1∞n-11n-1 发散,∵ liman=lim=≠0 n→∞n→∞2n+122n+1 3n例2、∑ 发散,∵ lim=-1≠0 nnn→∞n-3n=1n-3∞3n例3、∑11 发散,但lim=0 n→∞nn=1n∞20正项级数判别法∑un∞n=1un≥0正项级数部分和数列{Sn}单调递增∴正项级数收敛部分和数列有上界1、比较判别法设Vn≥un,如∑Vn收敛,则∑un收敛n=1∞n=1∞∞∞ 如∑un发散,则∑Vn发散n=1n=1例、判别下列级数敛散性∞(1)∑n=114n+n2 (2)∑∞sin2n=1n2nπ 解(1)由于∞14n2+n≥14n2+n2=11⋅ 5n∵∑1发散,∴原级数发散 nn=1sin2(2)由于nπ∞1≤1,而∑收敛,∴原级数收敛 222n=1nnn比较判别法的极限形式如limun=A 则有n→∞Vn∞∞0<A<+∞时∑un,∑Vn,同时收敛,同时发散 n=1n=1A=0 如∑Vn 收敛,则∑un收敛n=1∞n=1∞∞∞A=+∞ 如∑un 收敛,则∑Vn收敛 n=1n=1判别下列级数敛散性例、∑lnn=1∞n+1 nlnn+1∞1=1 又∑发散,∴原级数发散 1n=1nn limn→∞1例、(1)∑ (2)∑(1-cos) nn=1n2+1+nn=1∞1∞ (3)∑lnn n=2n∞1解:(1)由limn→∞nn2+n+n=lim=1 21n→∞n+n+nn111-cos21(2)lim=lim= 1n→∞n→∞12n2n2∵ ∑∞12n=1n 收敛∴原级数收敛lnn1(3)∵ >nn∴∑例、P2712、比判别法∞(n≥3) ∵ ∑1 发散,nn=1∞lnn 发散 n=1n例7.7 7.8 设正项级数∑un的一般项满足n=1∞un+1lim=ρ n→∞un则当ρ<1时,级数收敛,ρ>1时发散,ρ=1不定3、根值法设∑un为正项级数,如limun=ρn=1∞n→∞则当ρ<1时,级数收敛,ρ>1时发散,ρ=1不定正项级数判别其敛散性的步骤:⎧≠0发散首先考察limun⎨ n→∞=0需进一步判别⎩①如un中含n!或n的乘积通常选用比值法;②如un是以n为指数幂的因子,通常用根值法,也可用比值法;③如un含形如nα(α可以不是整数)因子,通常用比较法;④利用级数性质判别其敛散性;⑤据定义判别级数敛散性,考察limSn是否存在,实际上考察{Sn}n→∞是否有上界。

无穷级数知识点汇总

无穷级数知识点汇总

无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。

无穷级数(全)

无穷级数(全)

无穷级数1、无穷级数:表达式 +++++n u u u u 321 称为无穷级数,简称级数.记作∑∞=1n nu, 其中n u 称为级数的一般项.2、部分和: 级数∑∞=1n nu的前n 项和 ∑==nk kn uS 1称为级数∑∞=1n nu的部分和.3、收敛的定义: 如果级数∑∞=1n nu的部分和数列}{n S 有极限S ,即S S n n =∞→lim ,则称级数∑∞=1n nu收敛.S 称为级数∑∞=1n nu的和, 并写成: ++++=321u u u S ∑∞==1n nu.如果}{n S 没有极限, 则称级数∑∞=1n nu发散.4、常数项级数收敛的必要条件:若级数∑∞=1n nu收敛,则必有0lim =∞→n n u ,反之若0lim ≠∞→n n u ,则级数一定发散5常用级数敛散性判定方法: ①等比级数:∑∞=0n n aq ,当 1q < 收敛,且级数收敛于qa -111q ≥ 发散当然等比级数的敛散性也可以由等比级数的部分和数列来判断:若S 存在则收敛,反之则发散. ②P-级数:∑∞=1n P n 11p >收敛,1p ≤发散(p=1时为调和级数);③常数级数:∑∞=0n C 当0≠C 时级数发散,0=C 时,级数收敛.6、级数收敛的性质 以下假设∑∞=1n nu与∑∞=1n nv收敛于S 与T , 则①∑∑∞=∞==11n n n nu u λλ, (λ为常数). ②∑∑∑∞=∞=∞=±=±111)(n n n n n n nv u v u.③∑∞=1n nu收敛⇔对任意的非负整数m ,有∑∞+=1m n nu收敛.即: 在级数前面去掉或加上有限项不影响级数的敛散性. ④若S un n=∑∞=1,则将级数的项任意加括号后所成的级数S n n=∑∞=1σ. 反之不然.7、正项级数敛散性的判定方法: ①充要条件:部分和数列有界②比较法:对级数的缩放,利用已知的级数来判断未知级数的敛散性;适用于含有P(型)-级数、、多项式和正余弦的级数.其中P(型)-级数、对数、多项式主要是删减低次项和常数项,而正余弦主要是利用其小于1的性质.③比阶法:找到一个已知敛散性的级数,通过其与需求级数作商曲极限,来判断需求级数的敛散性.适用于P(型)-级数,等比级数、多项式等.定义如下:设∑∞=1n n u 与∑∞=1n n v 均为正项级数,若L v u nnn =∞→lim,则(1)当L=0时,若∑∞=1n nv收敛,则∑∞=1n nu也收敛;(2)当L=+∞时,若∑∞=1n nv发散,则∑∞=1n nu也发散.(3)当0<L<+∞时,∑∞=1n nv与∑∞=1n nu有相同敛散性.④比值法:通过对级数通向第n+1项与第n 项作商取极限来判断级数敛散性.不适用含有对数、多项式和正余弦的级数.定义如下:设∑∞=1n n u 为正项级数,若ρ=+∞→nn n u u 1lim,则(1)1<ρ时, 级数∑∞=1n nu收敛;(2) 1>ρ或+∞=ρ时, 级数∑∞=1n nu发散;(3)1=ρ时, 级数∑∞=1n nu可能收敛也可能发散.⑤其他常用方法(1)关于级数中带有多项式的分式方程的:ⅰ分子最高次≥分母最高次则级数一定发散; ⅱ分子最高次<分母最高次,则用比阶法来判断. 设sn n V 1=(s 为分子最高项-分母最高项的差值) (2)关于级数中带有对数的:用比阶法题目中()c n U tn +=ln ,就设tn n V 1=作商取极限,需要用L ,hospital 定理8、交错级数的审敛法:(莱布尼茨定理) 设∑∞=--11)1(n n n u 为交错级数, 若满足(1) n n u u ≤+1, ,2,1=n ; (2) 0lim =∞→n n u , 则 ∑∞=--11)1(n n n u 收敛,9、任意项级数的绝对收敛和条件收敛 ①绝对收敛的级数∑∞=1n nu :∑∞=1||n nu 收敛;②条件收敛的级数∑∞=1n n u:∑∞=1||n nu发散, 但∑∞=1n n u 收敛.③∑∞=1||n nu收敛 ⇒ ∑∞=1n n u 收敛. 反之不然.④此类级数多用比值法来判断绝对值级数是否发散 ⑤若任意项级数∑∞=1n nu条件收敛,则其所有正项或者负项构成的级数均为发散的.10、函数项级数①定义: 设 ),(,),(),(21x u x u x u n 是定义在I 上的函数,则++++=∑∞=)()()()(211x u x u x u x u nn n称为定义在区间I 上的(函数项)无穷级数.②收敛域(1) 收敛点I x ∈0—— ∑∞=10)(n nx u 收敛;(2) 发散点I x ∈0——∑∞=10)(n nx u 发散;(3) 收敛域D —— ∑∞=1)(n nx u 的所有收敛点的全体D ;(4) 发散域G ——∑∞=1)(n n x u 的所有发散点的全体G .(5)解题方法:已知级数∑∞=1)(n nx u,求其收敛域.ⅰ用比值法算出大致收敛域:)(的式子关于x 1Q x lim==+∞→nn n u u ρ,令)(x Q <1,算出x 收敛大范围(a ,b ),收敛半径R=2b-a (()∞++∞∞-∈可以为R R ,,) ⅱ将端点值带入级数∑∞=1)(n nx u中,算出∑∞=1)(n n a u 与∑∞=1)(n n b u 的敛散性,判断端点值是否可以取到,过程可以略过. ⅲ综上所述,写出级数∑∞=1)(n nx u的收敛域③和函数)(x S —— ∑∞==1)()(n nx u x S , D x ∈.解题方法:已知级数∑∞=1)(n nx u,求其和函数.ⅰ求出其收敛域;ⅱ将级数经过求导或者积分,得到一个等比级数 ⅲ用等比级数收敛公式qa -11算出和函数的导数或者原函数的表达式;ⅳ将求出的表达式积分或求导,写成)(x S 的形式,并注明收敛域.【注】已知级数∑∞=1)(n nx u,求∑∞=1n n V 的和ⅰ-ⅳ步骤同上ⅴ将n n V x u 与)(建立起联系,想当x 为何值时n n V x u =)(,然后将x 带入)(x S 中.11、函数项级数的展开式.(1) f (x ) = e x= ∑∞=0!n nn x , x ∈(-∞, +∞);(2) f (x ) = sin x = ∑∞=++-012!)12()1(n n n xn ,x ∈(-∞, + ∞);(3) f (x ) = cos x = ∑∞=-02!)2()1(n nn x n ,x ∈(-∞, + ∞);(4) 11()1n n f x x x ∞===-∑ ,x ∈(-1, 1);(5) 11()()1n n f x x x ∞===-+∑ ,x ∈(-1, 1);(6) f (x ) = ln (1 + x ) = ∑∞=+-11)1(n nn x n , x ∈(-1, 1]。

高数无穷级数知识点总结

高数无穷级数知识点总结

高数无穷级数知识点总结一、引言无穷级数是数学中一个重要的概念,它在数学和其他学科的研究中有着广泛的应用。

在高等数学中,无穷级数是一个重要的知识点。

本文将从无穷级数的基本概念、收敛性与发散性、常见的收敛判别法和应用等方面,对高数无穷级数进行总结。

二、无穷级数的基本概念无穷级数是指由一个数列的项求和而得到的数值。

具体地说,对于一个实数数列{an},其无穷级数可以表示为∑an。

其中,an表示数列的第n项,∑表示对数列的所有项进行求和。

三、收敛性与发散性1. 收敛性当无穷级数的部分和Sn在n趋于无穷大时存在有限极限L,即lim (n→∞) Sn = L时,称该无穷级数收敛,L称为该无穷级数的和。

2. 发散性当无穷级数的部分和Sn在n趋于无穷大时不存在有限极限,即lim (n→∞) Sn不存在或为无穷大时,称该无穷级数发散。

四、常见的收敛判别法1. 正项级数判别法对于无穷级数∑an,若该级数的每一项an都是非负数,并且该级数的部分和Sn有上界,则该级数收敛;若Sn没有上界,则该级数发散。

2. 比值判别法对于无穷级数∑an,若lim (n→∞) |an+1/an| = L,其中L为常数,若L<1,则该级数收敛;若L>1,则该级数发散;若L=1,则判别不出。

3. 根值判别法对于无穷级数∑an,若lim (n→∞) |an|^1/n = L,其中L为常数,若L<1,则该级数收敛;若L>1,则该级数发散;若L=1,则判别不出。

4. 整项判别法对于无穷级数∑an,若存在另一个级数∑bn,使得|an|≤bn,且∑bn 收敛,则∑an也收敛;若∑bn发散,则∑an也发散。

五、应用无穷级数在数学和其他学科中有广泛的应用,下面举几个例子进行说明。

1. 泰勒级数泰勒级数是一种用无穷级数表示函数的方法。

根据泰勒级数,我们可以将一个函数在某个点的邻域内展开为无穷级数的形式,从而可以近似计算函数的值。

2. 统计学中的无穷级数在统计学中,无穷级数经常用于描述随机变量的分布。

高等数学:无穷级数

高等数学:无穷级数
3
化 为小数时,就会出现无限循环小
数,即 =0.3·.现在我们分析一下0.3·,看从中能得到什么 样的
表现形式:
无穷级数
无穷级数
1
这样, 这个有限的量就被表示成无穷多个数相加的形式.
3
从这个例子我们可以看出, 无穷多个数相加可能得到一个确
定的有限常数.也就是说,在一定条件下,无穷多个数相 加是有
无穷级数
无穷级数
无穷级数
三、 无穷级数的性质
性质10-1 若级数
也收敛,且收敛于kS.即,若
收敛于S,则对任意常数k,级数
则有
这说明,级数的每一项同乘以一个不为零的常数后,它的
敛散性不改变.
无穷级数
性质10-2 若级数

则有
分别收敛于S1 和S2,则级
也收 敛,且收敛于S1 ±S2.即,若
无穷级数
直接展开法的具体步骤为:
有直接展开
无穷级数
2.间接展开法
无穷级数
无穷级数
无穷级数
无穷级数
三、 幂级数的应用
1.利用幂级数进行近似计算
无穷级数
例10-21 【付款的现值问题】某基金会与一个学校签约,
合同规定基金会每年支付 300万元人民币用以资助教育,有效
期为10年,总资助金额为3000万元人民币.自签约之 日起支付
设想公式 (10-7)的项 数趋向无穷而成为幂级数,即
式(10-10)称为f(x)在点x0 处的泰勒级数.
无穷级数
当x0 =0时,幂级数
称为f(x)的麦克劳林级数.
无穷级数
无穷级数
无穷级数
二、 将函数展开成幂级数
将函数f(x)展开成x 的幂级数

无穷级数知识点

无穷级数知识点

无穷级数知识点
嘿,朋友们!今天咱来聊聊无穷级数这个有意思的知识点。

啥是无穷级数呢?简单来说,就是把一堆数按照一定规则加起来,不过这堆数有无穷多个呢!就好像你有无限多的糖果,然后把它们一个一个地加起来。

无穷级数有很多种类型哦。

比如说正项级数,这些数都是正数呢。

那怎么判断一个正项级数收不收敛呢?有好多方法呀!就像我们判断一件事情能不能成功一样,有各种标准。

还有交错级数,这些数一会儿正一会儿负,就像坐过山车一样起起伏伏。

对于交错级数,也有专门的判别法来看看它是不是收敛的。

那无穷级数有啥用呢?哎呀,用处可大啦!比如在数学的很多领域都能看到它的身影。

它就像是一把万能钥匙,可以打开很多知识的大门。

想象一下,如果没有无穷级数,很多数学问题就没办法解决啦,那该多可惜呀!它就像一个神奇的工具,帮助我们更好地理解和探索数学的奥秘。

在物理学中,无穷级数也常常出现呢!比如在研究一些波动现象的时候,无穷级数就能发挥大作用啦。

总之,无穷级数是数学中非常重要的一部分,它充满了魅力和神奇。

它让我们看到了数学的无限可能,让我们对知识的追求永无止境。

所以呀,大家可别小看了无穷级数哦,它真的超级厉害的!。

高数第七章无穷级数知识点

高数第七章无穷级数知识点

第七章 无穷级数一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性):1、形如∑∞=-11n n aq的几何级数(等比级数):当1<q 时收敛,当1≥q 时发散。

2、形如∑∞=11n pn的P 级数:当1>p 时收敛,当1≤p 时发散。

3、⇒≠∞→0lim n n U 级数发散; 级数收敛lim =⇒∞→n n U4、比值判别法(适用于多个因式相乘除):若正项级数∑∞=1n nU,满足条件lU U n n n =+∞→1lim:当1<l 时,级数收敛;当1>l 时,级数发散(或+∞=l );当1=l 时,无法判断。

5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞=1n nU,满足条件λ=∞→n n n U lim :当1<λ时,级数收敛;当1>λ时,级数发散(或+∞=λ);当1=λ时,无法判断。

注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。

(通过不等式的放缩)推论:若∑∞=1n nU与∑∞=1n nV均为正项级数,且lV U nnn =∞→lim(n V 是已知敛散性的级数) 若+∞<<l 0,则级数∑∞=1n nU与∑∞=1n nV有相同的敛散性;若0=l 且级数∑∞=1n nV收敛,则级数∑∞=1n nU收敛;若+∞=l 且级数∑∞=1n nV发散,则级数∑∞=1n nU发散。

7、定义判断:若⇒=∞→C S n n lim 收敛,若nn S ∞→lim 无极限⇒发散。

8、判断交错级数的敛散性(莱布尼茨定理):满足1+≥n n U U ,⇒=∞→0lim n n U 收敛,其和1u S ≤。

9、绝对收敛:级数加上绝对值后才收敛。

条件收敛:级数本身收敛,加上绝对值后发散。

二、无穷级数的基本性质:1、两个都收敛的无穷级数,其和可加减。

2、收敛的无穷级数∑∞=1n nU,其和为S ,则∑∞=1n naU,其和为aS (0≠a )(级数的每一项乘以不为0的常数后,敛散性不变) 3、级数收敛,加括号后同样收敛,和不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 无穷级数
一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性):
1、形如∑∞
=-11
n n aq 的几何级数(等比级数):当1<q 时收敛,当1≥q 时
发散。

2、形如∑∞
=1
1
n p
n
的P 级数:当1>p 时收敛,当1≤p 时发散。

3、⇒
≠∞
→0lim n n U 级数发散; 级数收敛
lim =⇒∞
→n n U
4、比值判别法(适用于多个因式相乘除):若正项级数
∑∞
=1
n n
U
,满足
条件l
U U n n n =+∞→1
lim

①当1<l 时,级数收敛;
②当1>l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。

5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞
=1n n
U
,满足
条件λ
=∞
→n n n U lim :
①当1<λ时,级数收敛;
②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。

注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。

(通过不等式的放缩)
推论:若∑∞
=1n n
U 与∑∞
=1
n n
V 均为正项级数,且l
V U n n
n =∞→lim
(n V 是已知敛散
性的级数)
①若+∞<<l 0,则级数∑∞
=1n n
U

∑∞
=1
n n
V
有相同的敛散性;
②若0=l 且级数∑∞
=1
n n
V
收敛,则级数
∑∞
=1
n n
U
收敛;
③若+∞=l 且级数∑∞
=1n n
V
发散,则级数
∑∞
=1
n n
U
发散。

7、定义判断:若⇒
=∞
→C S n n lim 收敛,若n n S
∞→lim 无极限⇒发散。

8、判断交错级数的敛散性(莱布尼茨定理): 满足
1
+≥n n U U ,⇒
=∞
→0lim n n U 收敛,其和1u S ≤。

9、绝对收敛:级数加上绝对值后才收敛。

条件收敛:级数本身收敛,加上绝对值后发散。

二、无穷级数的基本性质:
1、两个都收敛的无穷级数,其和可加减。

2、收敛的无穷级数
∑∞
=1
n n
U
,其和为S ,则∑∞
=1
n n
aU
,其和为aS (0≠a )
(级数的每一项乘以不为0的常数后,敛散性不变) 3、①级数收敛,加括号后同样收敛,和不变。

(逆否命题:加括号后发散,则原级数发散) ②加括号后级数收敛,原级数未必收敛。

相关文档
最新文档