知识点总结高等代数
高等代数知识点总结

特殊行列式的计算方法
二阶行列式
一般形式为a11a22-a12a21,计算方法为 将a11和a22相乘,然后减去a12和a21的乘 积。
三阶行列式
一般形式为 a11a22a33+a12a23a31+a13a21a32a13a22a31-a12a21a33-a11a23a32,计 算方法为将每一项都按照这个公式进行展开 ,然后将各项相加即可得到结果。
3
互换行列式的两行(列),行列式的值变号,即 |...|=|-...|。
行列式的定义与性质
01
若行列式的某行(列)所有元素都是两数乘积,则可以对该行(列) 进行拆项,拆项后行列式的值不变。
02
若行列式的某行(列)所有元素都是同一个数,则可以对该行(列)
进行提公因式,提公因式后行列式的值不变。
若行列式的两行(列)对应元素互为相反数,则可以对该行(列)进
线性变换可以用于图像旋转,通 过矩阵乘法可以实现图像的旋转 。
线性变换可以用于图像剪切,通 过矩阵乘法可以实现图像的剪切 。
二次型在经济分析中的应用
要点一
投入产出模型
要点二
经济均衡模型
二次型可以用于描述投入产出模型,通过求解二次型的特 征值可以得到经济的平衡状态。
二次型可以用于描述经济均衡模型,通过求解二次型的特 征值可以得到经济的均衡状态。
03
线性变换的运算
两个线性变换的加法定义为对应元素之间的加法运算;数与线性变换的
乘法定义为数乘运算;两个线性变换的乘法定义为对应元素之间的乘法
运算。
线性变换的矩阵表示
线性变换的矩阵表示
设V是数域P上的线性空间,T是V的线性变换,对于V中 的任意一组基ε1,ε2,...,εn,有 $T(α)=T(ε1α1+ε2α2+...+εnαn)=T(ε1α1)+T(ε2α2)+... +T(εnαn)=ε1T(α1)+ε2T(α2)+...+εnT(αn)$,则称矩阵 A=(T(α1),T(α2),...,T(αn))为线性变换T关于基ε1,ε2,...,εn 的矩阵表示。
高等代数知识点总结

f : A B, a f (a).
如果 f (a) b B ,则 b 称为 a 在 f 下的像, a 称为 b 在 f 下的原像。 A 的所有元素
称为矩阵的行(列)初等变换。
定义(齐次线性方程组) 数域 K 上常数项都为零的线性方程组称为数域 K 上的齐次
线性方程组。 这类方程组的一般形式是
a11x1 a12 x2 a1n xn 0, a12 x1 a22 x2 a2n xn 0, ...... am1x1 am2 x2 amn xn 0.
f (x) a0 (x 1 )(x 2 )......(x n ) 证明 利用高等代数基本定理和命题 1.3,对 n 作数学归纳法。
2.高等代数基本定理的另一种表述方式
定义 设 K 是一个数域, x 是一个未知量,则等式
a0 x n a1 x n1 ...... an1 x an 0
命题 变元个数大于方程个数的齐次线性方程组必有非零解; 证明 对变元个数作归纳。 说明 线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。事实上, 在(通过矩阵的初等变换)用消元法解线性方程组时,只进行加、减、乘、除的运算。如果
所给的是数域 K 上的线性方程组,那么做初等变换后仍为 K 上的线性方程组,所求出的解 也都是数域 K 中的元素。因此,对 K 上线性方程组的全部讨论都可以限制在数域 K 中进行。
命题 n 次代数方程在复数域C内有且恰有 n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C上两个n次、m次多项式
《高等代数》知识点梳理

《高等代数》知识点梳理高等代数是一门重要的数学学科,它是线性代数的延伸和深化,主要研究向量空间和线性变换的性质和应用。
以下是《高等代数》常见的知识点梳理:1.矩阵和线性方程组:-矩阵:矩阵的定义和运算、矩阵的行列式、逆矩阵等。
-线性方程组:线性方程组的定义和解的分类、线性方程组的矩阵表示、线性方程组的消元法、高斯-约当法等。
2.向量空间:-向量空间的定义:向量空间的基本性质和运算规则。
-子空间和张成空间:子空间和子空间的运算、线性组合和线性相关、张成空间的定义和性质。
-基和维数:线性无关和极大线性无关组、基和维数的相关定义和性质。
3.线性变换:-线性变换的定义和性质:线性变换的基本性质和运算。
-线性变换的矩阵表示:矩阵的表示和判断、线性变换的示例和应用。
-矩阵相似和对角化:矩阵相似的定义和性质、对角化的定义和条件、对角化的意义和应用。
4.特征值和特征向量:-特征值和特征向量的定义:特征值和特征向量的基本概念和性质。
-特征多项式和特征方程:特征多项式和特征方程的定义和性质、求解特征多项式和特征方程的方法。
-对角化和相似对角化:对角化和相似对角化的概念和条件、对角化和相似对角化的关系和应用。
5.矩阵的特征值和特征向量的应用:-线性微分方程组:线性微分方程组的特征方程和特解、线性微分方程组的解的表示和求解方法。
-线性差分方程组:线性差分方程组的特征方程和特解、线性差分方程组的解的表示和求解方法。
- Markov过程:Markov过程的概念和性质、Markov过程的平稳分布和转移概率矩阵。
6.内积空间和正交变换:-内积和内积空间的定义:内积的基本性质和运算规则、内积空间的定义和性质。
-正交向量和正交子空间:正交向量和正交子空间的定义和性质。
-正交变换和正交矩阵:正交变换和正交矩阵的概念、正交变换的性质和应用。
7.对偶空间和广义逆:-对偶空间的定义和性质:对偶空间的定义和对偶基的求解方法、对偶空间的性质和应用。
高等代数知识点总结笔记

高等代数知识点总结笔记一、集合论基础1. 集合的定义和表示2. 集合的运算:交集、并集、补集、差集3. 集合的基本性质:幂集、空集、自然数集、整数集等4. 集合的关系:子集、相等集、包含关系5. 集合的基本运算律:结合律、交换律、分配律二、映射和函数1. 映射的定义和表示2. 映射的类型:单射、满射、双射3. 函数的定义和性质4. 函数的运算:复合函数、反函数5. 函数的极限、连续性6. 函数的导数、几何意义三、向量空间1. 向量和向量空间的定义2. 向量的线性运算:加法、数乘、点积、叉积3. 向量空间的性质:线性相关、线性无关、维数、基和坐标4. 线性变换和矩阵运算5. 特征值和特征向量四、矩阵与行列式1. 矩阵的定义和基本性质:零矩阵、单位矩阵、方阵2. 矩阵的运算:加法、数乘、矩阵乘法、转置、逆矩阵3. 行列式的定义和性质:行列式的展开法则、克拉默法则4. 线性方程组的解法:克拉默法则、矩阵消元法、逆矩阵法五、线性方程组1. 线性方程组的定义和分类2. 线性方程组的解法:高斯消元法、矩阵法、逆矩阵法3. 线性方程组的特解和通解:齐次线性方程组、非齐次线性方程组4. 线性方程组的解的性质:解的唯一性、解空间六、特征值和特征向量1. 特征值和特征向量的定义和性质2. 矩阵的对角化和相似矩阵3. 特征值和特征向量的应用:矩阵的对角化、变换矩阵4. 矩阵的谱定理和矩阵的相似对角化5. 实对称矩阵和正定矩阵的性质七、多项式与代数方程1. 多项式的定义和性质:零次多项式、一次多项式、多项式的加减乘除2. 代数方程的解法:一元一次方程、一元二次方程、高次方程3. 代数方程的根与系数的关系:韦达定理、牛顿定理、斯图姆定理4. 代数方程的不可约性和可解性八、群、环、域1. 代数结构的定义和性质2. 群的定义和性质:群的封闭性、结合律、单位元、逆元3. 环的定义和性质:交换环、整环、域4. 域的定义和性质:有限域、无限域、极大理想以上就是高等代数的一些基本知识点总结,希望对大家有所帮助。
高等代数知识点总结课件

二阶行列式计算较为简单,直接按照定义进行计算即可。三 阶行列式可以利用代数余子式展开,也可以利用对角线法则 进行计算。高阶行列式可以利用递推法或化简法进行计算。
矩阵的秩的定义与性质
总结词
矩阵的秩是矩阵中线性无关的行(或列) 向量的个数,具有一些重要的性质。
VS
详细描述
矩阵的秩具有一些重要的性质,如秩的传 递性、秩的唯一性、秩的性质等。矩阵的 秩可以用来判断线性方程组的解的情况, 如当系数矩阵的秩等于增广矩阵的秩时, 线性方程组有解。
利用秩判断线性方程组解的情况
总结词
利用矩阵的秩可以判断线性方程组解的情况。
详细描述
当系数矩阵的秩等于增广矩阵的秩时,线性 方程组有解;当系数矩阵的秩小于增广矩阵 的秩时,线性方程组无解;当系数矩阵的秩 大于增广矩阵的秩时,线性方程组有无穷多 解。此外,利用矩阵的秩还可以判断线性方 程组解的个数和类型。
逆矩阵的性质
逆矩阵是唯一的;逆矩阵与原矩阵的乘积为单位矩阵;逆矩阵的逆矩阵是原矩阵。
逆矩阵的求法
高斯消元法、伴随矩阵法、初等变换法等。
线性方程组的解法
高斯消元法
将增广矩阵转化为上三角矩阵,从而得到解。
回带求解
将得到的上三角矩阵的解回代到原方程组中, 得到未知数的值。
克拉默法则
当方程组系数行列式不为0时,可以用克拉默 法则求解唯一解。
准型有助于简化二次型的计算和性质研究。
二次型的正定性判断
总结词
正定性判断是确定二次型是否为正定的过程, 正定的二次型具有一些重要的性质。
详细描述
正定性判断是二次型研究中的一个重要问题。 一个二次型被称为正定的,如果它对应于一 个正定矩阵。正定的二次型具有一些重要的 性质,如存在唯一的极小值点,且该极小值 点是全局最小值点。此外,正定的二次型还 具有一些几何意义,如对应于一个凸多面体
高等代数知识点总结精编版

第一章 代数学的经典课题
§1 若干准备知识
1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,
则称这样的一个体系为一个代数系统。 1.1.2 数域的定义
定义(数域) 设 K 是某些复数所组成的集合。如果K中至少包含两个不同的复数,且 K 对复数的加、减、乘、除四则运算是封闭的,即对 K 内任意两个数 a 、b( a 可以等于 b ), 必有 a b K,ab K,且当 b 0时,a / b K ,则称K为一个数域。 例 1.1 典型的数域举例: 复数域 C;实数域 R;有理数域 Q;Gauss 数域:Q (i) = { a b i | a,b ∈Q},其中 i = 1 。
第一学期第四次课
第二章 向量空间与矩阵
第一节 m 维向量空间
2.1.1 向量和m维向量空间的定义及性质
定义(向量)设 K 是一个数域。 K 中 m 个数 a1 , a2 ,......, am 所组成的一个 m 元有序数
证明 由已知,
a0 n a1 n1 ...... an1 an 0 . 两边取复共轭,又由于 a0 , a1 ,......, an R,所以
a0 n a1 n1 ...... an1 an 0 .
推论 实数域上的奇数次一元代数方程至少有一个实根。
证明 因为它的复根(非实根)必成对出现,已知它在 C 内有奇数个根,故其中必有一
在 f 下的像构成的 B 的子集称为 A 在 f 下的像,记做 f ( A) ,即 f ( A) f (a) | a A。
若 a a' A, 都有 f (a) f (a'), 则称 f 为单射。若 b B, 都存在 a A ,使得 f (a) b ,则称 f 为满射。如果 f 既是单射又是满射,则称 f 为双射,或称一一对应。
大一上期高等代数知识点

大一上期高等代数知识点高等代数是大一上学期的一门重要课程,主要涉及代数方程、线性代数等内容。
下面将介绍一些大一上期高等代数的核心知识点。
一、代数方程1. 一次方程与二次方程一次方程是形如ax + b = 0的方程,其中a和b为已知数。
解一次方程的方法包括等式两边同时加减同一个数,合并同类项等。
二次方程是形如ax² + bx + c = 0的方程,其中a、b、c为已知数,并且a ≠ 0。
解二次方程的方法包括配方法、因式分解和求根公式等。
2. 求根与判别式二次方程的求根公式为x = (-b ± √(b² - 4ac))/(2a),其中√表示平方根。
判别式Δ = b² - 4ac可用来判断二次方程的解的性质。
当Δ > 0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ < 0时,方程无实数根。
二、线性代数1. 矩阵与行列式矩阵是一个由m行n列数组成的矩形阵列,常用大写字母表示。
行列式是一个用来描述矩阵性质的数值,常用竖线符号表示。
行列式的计算包括对角线法则和展开法则等。
2. 线性方程组线性方程组是由若干个线性方程组成的方程组。
求解线性方程组的方法包括消元法、逆矩阵法等。
消元法通过行变换将线性方程组转化为相等的简化形式,从而求得方程组的解。
逆矩阵法利用矩阵的逆矩阵来求解线性方程组,前提是矩阵存在逆矩阵。
三、向量与空间1. 向量向量是用来表示方向和大小的量,常用小写字母表示。
向量的运算包括加法、减法及数量乘法等。
向量的模表示向量的大小,向量的内积和外积是常见的向量运算。
2. 空间与子空间空间是指向量所在的集合,常用R^n表示n维空间。
子空间是指在一个空间中的子集,满足一些特定条件,比如封闭性和包含零向量等。
以上是大一上期高等代数的一些核心知识点。
通过学习这些知识,我们可以理解和解决代数方程、线性方程组等问题,为后续学习打下坚实基础。
高等代数知识点总结

适用例子: 习题3.7.5; 3.7.9~11:
2.正则化方法
① 证明当A可逆时结论成立
② 考虑xI+A,有无穷多个x使得该矩阵可逆
③ 将要证明的结论归结为多项式的相等
④ 若两个多项式在无穷多个点处的值相同,则这两
个多项式在任意点的值相等,特别地,取x=0. 适用例子: 习题3.6.4; 3.7.7; 3.7.11:
转置 加 法
取逆
伴随
(A+B)T=AT+B
T
数 乘
乘 法 转 置
(kA)T= k AT (AB)T= BT AT (AT)T=A
(kA)1= k1A1 (AB) 1= B1 A1 (AT) 1=(A1)T
(kA)*= kn1A* (AB)*= B*A* (AT)*=(A*)T
取 逆
1B A O B I A O B D CA1B D I
O A B I A1B A O 1 C D O O D CA B I I
Cauchy-Binet
| UV |
i1 im ------- 式 式V U i i -------i1 im ห้องสมุดไป่ตู้ 1 m
公式 Vandermonde 行列式 定义 性质
15
;
Laplace定理 (按第i1,...,ik行展开)
| A |
j1
jk
i1 式A j1
伴 随 其
(A1) 1=A
(A1)*=(A*)1
(A*)*=|A|n2A* AA*=A*A=|A|I
-1
-1
*
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章行列式知识点总结一行列式定义1、n 级行列式111212122212n n ijnn n nna a a a a a a a a a =(1)等于所有取自不同行不同列的n 个元素的乘积1212n j j nj a a a (2)的代数和,这里12n j j j 是一个n 级排列。
当12n j j j 是偶排列时,该项前面带正号;当12n j j j 是奇排列时,该项前面带负号,即:1212121112121222()1212(1)n n nn n j j j ij j j nj nj j j n n nna a a a a a a a a a a a a τ==-∑。
2、等价定义121212()12(1)n n ni i i ij i i i n ni i i a a a a τ=-∑和121211221212()()(1)n n n n n ni i i j j j ij i j i j i j ni i i j j j a a a a ττ+=-∑和3、由n 级排列的性质可知,n 级行列式共有!n 项,其中冠以正号的项和冠以负号的项(不算元素本身所带的负号)各占一半。
4、常见的行列式1)上三角、下三角、对角行列式111111222222112200nn nn nnnna a a a a a a a a a a a *===*2)副对角方向的行列式111(1)212,12,1212,111110(1)nnnn n n n n n n n n n n a a a a a a a a a a a a -----*===-*3)范德蒙行列式:1222212111112111()(2)n n i j j i nn n n na a a a a a a a a a a n ≤<≤---=-≥∏二、行列式性质1、行列式与它的转置行列式相等。
2、互换行列式的两行(列),行列式变号。
3、行列式中某一行(列)中所有的元素都乘以同一个数,等于用这个数乘以此行列式。
即:某一行(列)中所有的元素的公因子可以提到整个行列式的外面。
4、若行列式中有两行成比例,则此行列式等于零。
5、若某一行(列)是两组数之和,则这个行列式等于两个行列式之和,而这两个行列式除这一行(列)以外全与原来行列式的对应的行(列)一样。
6、把行列式某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上,行列式不变。
三、行列式的按行(列)展开1、子式1)余子式:在n 级行列式ij D a =中,去掉元素ij a 所在的第i 行和第j 列后,余下的n-1级行列式称为ij a 的余子式,记作ij M 。
2)代数余子式:(1)i j ij ij A M +=-称为ij a 的代数余子式。
3)k 级子式:在n 级行列式ij D a =中,任意选定k 行和k 列(1)k n ≤≤,位于这些行列交叉处的2k 个元素,按原来顺序构成一个k 级行列式M ,称为D 的一个k 级子式。
当()k n <时,在D 中划去这k 行和k 列后余下的元素按照原来的次序组成的n k -级行列式M '称为k 级子式M 的余子式。
2、按一行(列)展开1)行列式任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值,即 按第i 行展开1122(1,2,,);i i i i in in D a A a A a A i n =+++= 按第j 列展开1122(1,2,,);j j j j nj nj D a A a A a A j n =+++=2)行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等零,即11220();i j i j in jn a A a A a A i j +++=≠或11220,().i j i j ni nj a A a A a A i j +++=≠3、按k 行(k 列)展开拉普拉斯定理:在n 级行列式中,任意取定k 个行(k 列)(11)k n ≤≤-,由这k 行(k 列)元素组成的所有的k 级子式与它们的代数余子式的乘积之和等于行列式的值。
4、其他性质1)设A 为n 阶方阵,则A A '=; 2)设A 为n 阶方阵,则nkA k A =;3)设,A B 为n 阶方阵,则AB A B =,但A B A B ±≠±;4)设A 为m 阶方阵,设B 为n 阶方阵,则00A A AB BB*==*,但A B A B ±≠±。
5)行列式的乘法定理:两个n 级行列式乘积等于n 级行列式1111111111122111111,,1,2,,.nnnij i j i j in nj n n n n n n a a b b c c c a b a b a b i j n a a b b c c •==++=其中四、行列式的计算1、计算行列式常用方法:定义法、化三角形法、递推法、数学归纳法、拉普拉斯定理等等。
具体计算时需要根据等到式中行(或列)元素的特点来选择相应的解题方法。
方法一:递推法分为直接递推法和间接递推法。
用直接递推法的关键是找出一个关于1n D -的代数式来表示n D ,依次从1234n D D D D D →→→→,逐级递推便可以求出n D 的值。
方法二:数学归纳法。
第一步发现和猜想;第二步证明猜想的正确性。
第二步的关键是首先要得到n D 关于1n D -和2n D -的递推关系式。
方法三:加边法。
加边法是将所要计算的n 级行列式适当地添加一行一列(或m 行m 列)得到一个新的n+1(或m+1)级行列式,保持行列式的值不变,但是所得到的n+1(或m+1)级行列式较易计算。
其一般做法如下:11111111111100n nn n n n n a a a a a a a a a a =或111111111111100nn n n n n a a b a a a a b a a =特殊情况取121n a a a ===或121n b b b ===。
方法四:拆行(列)法。
将所给的行列式拆成两上或若干个行列式之和,然后再求行列式的值。
拆行(列)法有两种情况:一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项和形式,这时需作保持行列式值不变,使其化为两项和。
方法五:析因子法。
如果行列式D 中有一些元素是变数x (或某个参变数)的多项式,那么可以将行列式D 当作一个多项式()f x ,然后对行列式()f x 实行某些变换,求出()f x 的互素的一次因式,使得()f x 与这些因式的乘积()g x 只相差一个常数因子c ,根据多项式相等的定义,比较()f x 与的()g x 某一项系数,求出c 值,便可求得()D cg x =。
2、行列式计算中常用的类型:类型一:“两条线”型行列式(非零元分布在两条线上,例如,*等等)。
注:“两条线”型行列式一般采取直接展开降阶法计算,或用拉普拉斯定理展开,降阶后的行列式或为三角形行列式,或得到一个递推公式。
类型二:“三条线”行列式(非零元分布在三条线上)。
(1)“三对角”行列式(,)。
注:“三对角”行列式可以按如下方法进行求解。
首先得到一个一般的递推公式12n n n D pD qD --=+,然后可以用以下两种方法之一求出n D 的表达式: 先计算123,,D D D 等,找出规律进行猜想,然后再用数学归纳法进行证明。
间接递推法:借助于行列式中元素的对称性,交换行列式构造出关于n D 和1n D -的方程组,从而消去1n D -就可解得n D 。
(2)“爪型”行列式()。
注:“爪型”行列式可以按行(列)提取公因子,然后化为上(下)三角形行列式进行求解。
(3)Hessenerg 型行列式()。
类型三:各行(列)元素之和相等(或多数相等仅个别不相等)的行列式。
注:行加法(或列加法)再化为三角形行列式进行求解。
类型四:除主对角线外其余元素相同(或成比例)型行列式。
注:拆行(列)法或再结合其他方法进行求解。
类型五:可利用范德蒙行列式计算的行列式。
类型六:其他形式行列式。
五、克莱姆法则1、克莱姆法则:如果含有n 个未知量的n 个方程的线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的系数行列式不等于零,即111110nn n a a D a a =≠, 则方程组有唯一解:1212,,,n n D D Dx x x D DD===其中(1,2,)j D j n =是把系数行列式D 中第j 列的元素用方程组右端的常数项代替后所得到的n 级行列式。
2、含n 个未知量的n 个方程的齐次线性方程组111122121122221122000n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩只有零解的充要条件是系数行列式0D ≠;有非零解的充要条件是系数行列式0.D =。