北大第四版高等代数课本知识点整理

合集下载

高等代数知识点总结

高等代数知识点总结

特殊行列式的计算方法
二阶行列式
一般形式为a11a22-a12a21,计算方法为 将a11和a22相乘,然后减去a12和a21的乘 积。
三阶行列式
一般形式为 a11a22a33+a12a23a31+a13a21a32a13a22a31-a12a21a33-a11a23a32,计 算方法为将每一项都按照这个公式进行展开 ,然后将各项相加即可得到结果。
3
互换行列式的两行(列),行列式的值变号,即 |...|=|-...|。
行列式的定义与性质
01
若行列式的某行(列)所有元素都是两数乘积,则可以对该行(列) 进行拆项,拆项后行列式的值不变。
02
若行列式的某行(列)所有元素都是同一个数,则可以对该行(列)
进行提公因式,提公因式后行列式的值不变。
若行列式的两行(列)对应元素互为相反数,则可以对该行(列)进
线性变换可以用于图像旋转,通 过矩阵乘法可以实现图像的旋转 。
线性变换可以用于图像剪切,通 过矩阵乘法可以实现图像的剪切 。
二次型在经济分析中的应用
要点一
投入产出模型
要点二
经济均衡模型
二次型可以用于描述投入产出模型,通过求解二次型的特 征值可以得到经济的平衡状态。
二次型可以用于描述经济均衡模型,通过求解二次型的特 征值可以得到经济的均衡状态。
03
线性变换的运算
两个线性变换的加法定义为对应元素之间的加法运算;数与线性变换的
乘法定义为数乘运算;两个线性变换的乘法定义为对应元素之间的乘法
运算。
线性变换的矩阵表示
线性变换的矩阵表示
设V是数域P上的线性空间,T是V的线性变换,对于V中 的任意一组基ε1,ε2,...,εn,有 $T(α)=T(ε1α1+ε2α2+...+εnαn)=T(ε1α1)+T(ε2α2)+... +T(εnαn)=ε1T(α1)+ε2T(α2)+...+εnT(αn)$,则称矩阵 A=(T(α1),T(α2),...,T(αn))为线性变换T关于基ε1,ε2,...,εn 的矩阵表示。

高等代数知识点总结

高等代数知识点总结
定义(集合的映射) 设 A 、 B 为集合。如果存在法则 f ,使得 A 中任意元素 a 在法则 f 下对应 B 中唯一确定的元素(记做 f (a) ),则称 f 是 A 到 B 的一个映射,记为
f : A B, a f (a).
如果 f (a) b B ,则 b 称为 a 在 f 下的像, a 称为 b 在 f 下的原像。 A 的所有元素
称为矩阵的行(列)初等变换。
定义(齐次线性方程组) 数域 K 上常数项都为零的线性方程组称为数域 K 上的齐次
线性方程组。 这类方程组的一般形式是
a11x1 a12 x2 a1n xn 0, a12 x1 a22 x2 a2n xn 0, ...... am1x1 am2 x2 amn xn 0.
f (x) a0 (x 1 )(x 2 )......(x n ) 证明 利用高等代数基本定理和命题 1.3,对 n 作数学归纳法。
2.高等代数基本定理的另一种表述方式
定义 设 K 是一个数域, x 是一个未知量,则等式
a0 x n a1 x n1 ...... an1 x an 0
命题 变元个数大于方程个数的齐次线性方程组必有非零解; 证明 对变元个数作归纳。 说明 线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。事实上, 在(通过矩阵的初等变换)用消元法解线性方程组时,只进行加、减、乘、除的运算。如果
所给的是数域 K 上的线性方程组,那么做初等变换后仍为 K 上的线性方程组,所求出的解 也都是数域 K 中的元素。因此,对 K 上线性方程组的全部讨论都可以限制在数域 K 中进行。
命题 n 次代数方程在复数域C内有且恰有 n 个根(可以重复)。
命题(高等代数基本定理的另一种表述形式)给定C上两个n次、m次多项式

《高等代数》知识点梳理

《高等代数》知识点梳理

《高等代数》知识点梳理高等代数是一门重要的数学学科,它是线性代数的延伸和深化,主要研究向量空间和线性变换的性质和应用。

以下是《高等代数》常见的知识点梳理:1.矩阵和线性方程组:-矩阵:矩阵的定义和运算、矩阵的行列式、逆矩阵等。

-线性方程组:线性方程组的定义和解的分类、线性方程组的矩阵表示、线性方程组的消元法、高斯-约当法等。

2.向量空间:-向量空间的定义:向量空间的基本性质和运算规则。

-子空间和张成空间:子空间和子空间的运算、线性组合和线性相关、张成空间的定义和性质。

-基和维数:线性无关和极大线性无关组、基和维数的相关定义和性质。

3.线性变换:-线性变换的定义和性质:线性变换的基本性质和运算。

-线性变换的矩阵表示:矩阵的表示和判断、线性变换的示例和应用。

-矩阵相似和对角化:矩阵相似的定义和性质、对角化的定义和条件、对角化的意义和应用。

4.特征值和特征向量:-特征值和特征向量的定义:特征值和特征向量的基本概念和性质。

-特征多项式和特征方程:特征多项式和特征方程的定义和性质、求解特征多项式和特征方程的方法。

-对角化和相似对角化:对角化和相似对角化的概念和条件、对角化和相似对角化的关系和应用。

5.矩阵的特征值和特征向量的应用:-线性微分方程组:线性微分方程组的特征方程和特解、线性微分方程组的解的表示和求解方法。

-线性差分方程组:线性差分方程组的特征方程和特解、线性差分方程组的解的表示和求解方法。

- Markov过程:Markov过程的概念和性质、Markov过程的平稳分布和转移概率矩阵。

6.内积空间和正交变换:-内积和内积空间的定义:内积的基本性质和运算规则、内积空间的定义和性质。

-正交向量和正交子空间:正交向量和正交子空间的定义和性质。

-正交变换和正交矩阵:正交变换和正交矩阵的概念、正交变换的性质和应用。

7.对偶空间和广义逆:-对偶空间的定义和性质:对偶空间的定义和对偶基的求解方法、对偶空间的性质和应用。

高等代数北大第四版1-1

高等代数北大第四版1-1
第一章 多项式
§1 数域 §2 一元多项式 §3 整除的概念 §4 最大公因式 §5 因式分解 §6 重因式
§7 多项式函数 §8 复、实系数多项式
的因式分解 §9 有理系数多项式 §10 多元多项式 * §11 对称多项式 *

南 财
一、数域

大 学
二、数域性质定理
§1.1 数域
Hale Waihona Puke 数的范围云 按照所研究的问题,常常要明确规定所考虑的

b

或 a 0,b 0 a b 2 0. 矛盾)

经 大
c d 2 (c d 2)(a b 2)
学 a b 2 (a b 2)(a b 2)
ac a2
2bd 2b2
ad bc a2 2b2
2 Q.
Q( 2)为数域.
Gauss数域
类似可证 Q(i) a bi a,b Q, i 1 是数域.
m 0 m P.
n
n
而任意一个有理数可表成两个整数的商,
Q P.
§1.1 数域
附:
云 南
数环 设P为非空数集,若


a,b P, a b P, a b P

学 则称P为一个数环.
例如,整数集Z 就作成一个数环.
§1.1 数域
财 外,在作代数问题时,不但要考虑一些数,而且
经 往往要对这些数作加减乘除四种运算。因此所考
大 虑的数集还必须满足条件:其中任两个数的和差
学 积商仍在这个集合内。
关于数的加、减、乘、除等运算的性质称为 数的代数性质。
§1.1 数域
一、数域
云 定义 设P是由一些复数组成的集合,其中包括

高等代数知识点总结课件

高等代数知识点总结课件
详细描述
二阶行列式计算较为简单,直接按照定义进行计算即可。三 阶行列式可以利用代数余子式展开,也可以利用对角线法则 进行计算。高阶行列式可以利用递推法或化简法进行计算。
矩阵的秩的定义与性质
总结词
矩阵的秩是矩阵中线性无关的行(或列) 向量的个数,具有一些重要的性质。
VS
详细描述
矩阵的秩具有一些重要的性质,如秩的传 递性、秩的唯一性、秩的性质等。矩阵的 秩可以用来判断线性方程组的解的情况, 如当系数矩阵的秩等于增广矩阵的秩时, 线性方程组有解。
利用秩判断线性方程组解的情况
总结词
利用矩阵的秩可以判断线性方程组解的情况。
详细描述
当系数矩阵的秩等于增广矩阵的秩时,线性 方程组有解;当系数矩阵的秩小于增广矩阵 的秩时,线性方程组无解;当系数矩阵的秩 大于增广矩阵的秩时,线性方程组有无穷多 解。此外,利用矩阵的秩还可以判断线性方 程组解的个数和类型。
逆矩阵的性质
逆矩阵是唯一的;逆矩阵与原矩阵的乘积为单位矩阵;逆矩阵的逆矩阵是原矩阵。
逆矩阵的求法
高斯消元法、伴随矩阵法、初等变换法等。
线性方程组的解法
高斯消元法
将增广矩阵转化为上三角矩阵,从而得到解。
回带求解
将得到的上三角矩阵的解回代到原方程组中, 得到未知数的值。
克拉默法则
当方程组系数行列式不为0时,可以用克拉默 法则求解唯一解。
准型有助于简化二次型的计算和性质研究。
二次型的正定性判断
总结词
正定性判断是确定二次型是否为正定的过程, 正定的二次型具有一些重要的性质。
详细描述
正定性判断是二次型研究中的一个重要问题。 一个二次型被称为正定的,如果它对应于一 个正定矩阵。正定的二次型具有一些重要的 性质,如存在唯一的极小值点,且该极小值 点是全局最小值点。此外,正定的二次型还 具有一些几何意义,如对应于一个凸多面体

高等代数知识点总结

高等代数知识点总结
Laplace定理
分块三角矩阵的行列式
Cauchy-Binet 公式
Vandermonde 行列式
定义
性质
*
*
分块三角形行列式
Laplace定理 (按第i1,...,ik行展开)
Cauchy-Binet公式 设U是m×n矩阵, V是n×m矩阵, m≥n, 则
*
*
融资项目商业计划书
单击此处添加副标题
重要结论: 带余除法定理 对于任意多项式f(x)和非零多项式g(x),有唯一的q(x)和r(x)使得 f(x)=g(x)q(x)+r(x),r(x)=0或degr(x)<degg(x). 最大公因式的存在和表示定理 任意两个不全为0的多项式都有最大公因式,且对于任意的最大公因式d(x)都有u(x)和v(x)使得 d(x)=f(x)u(x)+g(x)v(x) 互素 f(x)和g(x)互素有u(x)和v(x)使得 f(x)u(x)+g(x)v(x)=1.
向量组等价:
S和T等价,即S,T可以互相表示 S,T的极大无关组等价 S,T的秩数相等,且其中之一可由另一表示
对于向量组S,T,下列条件等价
线性相关与线性表示: 1,...,r线性相关当且仅当其中之一可由其余的线性表示 若,1,...,r线性相关,而1,...,r线性无关,则可由1,...,r线性表示,且表法唯一
A,B等价有可逆矩阵P,Q使得A=PBQ 每个秩数为r的矩阵都等价于
矩阵等价
*
可逆矩阵vs列满秩矩阵
对于n阶矩阵A,下列条件等价 A是可逆矩阵 |A|0 秩A=n 有B使得AB=I或BA=I A是有限个初等矩阵之积 A(行或列)等价于I A的列(行)向量组线性无关 方程组Ax=0没有非零解 对任意b,Ax=b总有解 对某个b,Ax=b有唯一解 A是可消去的(即由AB=AC或BA=CA恒可得B=C) 对于m×r矩阵G,下列条件等价 G是列满秩矩阵, G有一个r阶的非零子式 秩G=列数 G有左逆,即有K使得KG=I 有矩阵H使得(G, H)可逆 G行等价于 G的列向量组线性无关 方程组Gx=0没有非零解 对任意b,若Gx=b有解则唯一 对某个b,Gx=b有唯一解 G是左可消去的(即由GB=GC恒可得B=C)

《高等代数》知识点梳理

高等代数知识点梳理第四章 矩阵一、矩阵及其运算 1、矩阵的概念(1)定义:由n s ×个数ij a (s i ,2,1=;n j ,2,1=)排成s 行n 列的数表sn s n a a a a 1111,称为s 行n 列矩阵,简记为n s ij a A ×=)(。

(2)矩阵的相等:设n m ij a A ×=)(,k l ij a B ×=)(,如果l m =,k n =,且ij ij b a =,对m i ,2,1=;n j ,2,1=都成立,则称A 与B 相等,记B A =。

(3)各种特殊矩阵:行矩阵,列矩阵,零矩阵,方阵,(上)下三角矩阵,对角矩阵,数量矩阵,单位矩阵。

2、矩阵的运算(1)矩阵的加法:++++= +sn sn s s n n sn s n sn s n b a b a b a b a b b b b a a a a 1111111111111111。

运算规律:①A B B A +=+②)()(C B A C B A ++=++③A O A =+ ④O A A =−+)((2)数与矩阵的乘法:= sn s n sn s n ka ka ka ka a a a a k 11111111运算规律:①lA kA A l k +=+)( ②kB kA B A k +=+)(③A kl lA k )()(= ④O A A =−+)((3)矩阵的乘法:= sm s m nm n m sn s n c c c c b b b b a a a a 111111111111其中nj in i i i i ij b a b a b a c +++= 2211,s i ,2,1=;m j ,2,1=。

运算规律:①)()(BC A C AB = ②AC AB C B A +=+)( ③CA BA A C B +=+)( ④B kA kB A AB k )()()(==一般情况,①BA AB ≠②AC AB =,0≠A ,⇒C B = ③0=AB ⇒0=A 或0=A(4)矩阵的转置: =sn s n a a a a A 1111,A 的转置就是指矩阵=ns n s a a a a A 1111'运算规律:①A A =)''( ②'')'(B A B A +=+③'')'(A B AB = ④')'(kA kA =(5)方阵的行列式:设方阵1111n n nn a a A a a= ,则A 的行列式为1111||n n nn a a A a a = 。

高等代数第四版知识点

高等代数第四版知识点高等代数是大学数学课程中的重要一环。

它涵盖了许多关键的数学概念和技巧,不仅在纯数学领域有广泛的应用,而且在物理学、工程学以及计算机科学等应用科学中也占有重要地位。

本文将介绍高等代数第四版教材中的一些重要知识点。

1. 向量空间向量空间是高等代数的基础概念之一。

它是一种具有加法和数乘运算的集合,满足一些特定的性质。

学习向量空间的时候,我们需要了解向量、向量的线性组合、向量空间的子空间以及向量空间的维数等几个重要概念。

2. 线性方程组线性方程组是高等代数中的常见问题。

我们通过矩阵和向量的形式来表示线性方程组,利用高斯消元法或者矩阵的逆来求解方程组的解。

在学习线性方程组的过程中,我们需要掌握方程组的矩阵表示、齐次方程组与非齐次方程组的区别,以及解的存在唯一性等。

3. 行列式行列式是描述线性变换性质的重要工具。

我们通过行列式来判断方阵的可逆性、计算矩阵的秩,以及求解线性方程组的解等问题。

在学习行列式的时候,我们需要了解行列式的定义、行列式的性质,以及行列式的计算方法等。

4. 特征值与特征向量特征值与特征向量是描述线性变换规律的关键概念。

通过求解矩阵的特征方程,我们可以得到矩阵的特征值和对应的特征向量。

特征值和特征向量在矩阵对角化、矩阵的谱分解、矩阵的相似变换等问题中发挥着重要的作用。

5. 线性变换与线性映射线性变换是高等代数中的核心概念之一。

它描述了一个向量空间到另一个向量空间的映射关系,并保持向量空间的线性结构。

线性映射是线性变换在向量空间之间的具体表示方式。

在学习线性变换和线性映射的时候,我们需要了解线性变换与线性映射的定义、线性变换的矩阵表示,以及线性变换的核、像、秩等重要性质。

6. 内积空间与正交性内积空间是一种具有内积运算的向量空间,它将向量空间的线性结构推广到了一种度量结构。

通过内积,我们可以定义向量的长度、夹角以及正交性等概念。

在学习内积空间的时候,我们需要了解内积的定义与性质、Cauchy-Schwarz不等式、勾股定理以及正交补空间等基本概念。

高等代数知识点总结课件


行列式的展开定理
• 总结词:行列式的展开定理是行列式计算的核心,它提供了计算行列式 值的有效方法。
• 详细描述:行列式的展开定理指出,一个$n$阶行列式等于它的主对角线上的元素的乘积与其它元素乘积的代数和的相 反数。具体来说,对于一个$n$阶行列式$|\begin{matrix} a{11} & a{12} & \cdots & a{1n} \ a{21} & a{22} & \cdots & a{2n} \ \vdots & \vdots & \ddots & \vdots \ a{n1} & a{n2} & \cdots & a{nn} \end{matrix}|$,其值等于 $a{11}A{11} + a{21}A{21} + \cdots + a{n1}A{n1}$,其中$A{ii}$表示去掉第$i$行和第$i$列后得到的$(n-1)$阶行列 式的值。
04
线性函数与双线性函数
线性函数的定义与性质
线性函数的定义
线性函数是数学中的一种函数,其图 像为一条直线。在高等代数中,线性 函数是指满足 f(ax+by)=af(x)+bf(y) 的函数。
线性函数的性质
线性函数具有一些重要的性质,如加 法性质、数乘性质、零元素性质和负 元素性质等。这些性质在解决实际问 题中具有广泛的应用。
欧几里得空间与酉空间
欧几里得空间
欧几里得空间是一个几何空间,它满足 欧几里得几何的公理。在欧几里得空间 中,向量的长度和角度都可以用实数表 示。
VS
酉空间
酉空间是一种特殊的线性空间,它满足酉 几何的公理。在酉空间中,向量的长度和 角度都可以用复数表示。酉空间在量子力 学、信号处理等领域有广泛应用。

北京大学数学系《高等代数》考点讲义

目 录
绪 论 1 第一章 多项式 4 第二章 行列式 13 第三章 线性方程组 19 第四章 矩阵 25 第五章 二次型 31 第六章 线性空间 35 第七章 线性变换 40 第八章 λ-矩阵 43 第九章 欧氏空间 44
三、教材选用
主要参考教材:《高等代数》(第三版),高等教育出版社,2003,北京大学数学系几何与代数教研 室代数小组编.
1.该教材的内容覆盖了《高等代数》考试大纲的所有内容和知识点. 2.全国采用该教材的学校所占比例非常大. 3.该教材荣获全国高等学校优秀教材. 4.该教材习题编排较好,有梯度.
四、考题综述及变化趋势
— 1—
量、矩阵的若当标准型、矩阵的方幂、矩阵的对角化、矩阵的秩、矩阵张成的线性空间、正定矩阵等概 念,分值占到 150分中的 105分.
厦门大学 2012年考题中,16道题中有 10道题考察了矩阵的相关概念和理论. 中科院研究生院 2012年考题中,8道题中有 5道题考察了矩阵的相关内容. (2)线性空间和线性变换理论. 南开 2012年试题中,9道题中有 4道题考察了线性空间及线性变换的内容,占到 150分中的 70分. (3)多项式理论. 多项式理论在各校的考研题中所占的比例适中,一般占到 150分的 15分至 25分,但这部分内容 是各校考试题中的必考内容. 3.从方法看,考察的热点有: (1)矩阵的初等变换方法; (2)特征值和特征向量方法; (3)标准正交化方法; (4)子空间直和的判定方法. 4.发展趋势 (1)题型仍会以证明题和计算题为主,因为研究生考试重点考察学生分析问题的能力及综合利用 知识解决问题的能力. 但随着数学在各个领域的应用逐渐扩大,计算题的比重有上升的趋势. (2)考察内容仍将以矩阵理论、线性空间和线性变换理论、多项式理论和线性方程组为热点内容. (3)注意新的概念和新的理论的出现. 中山大学 2001年考察了线性空间商空间的概念、对偶空间、子空间的零化子等概念. (4)反问题的讨论. (南京航天航空大学 2011)(20分)设二次型 f(x1,x2,x3) =a(x2 1 +x2 2 +x2 3)+2b(x1x2 +x1x3 + x2x3)经过正交变换 X =CY化为二次型 3y2 1 +3y2 2,求参数 a,b的值及正交矩阵.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档