2009年重庆市高考数学试卷(理科)及答案

合集下载

2009年重庆市高考数学试卷(理科)答案与解析

2009年重庆市高考数学试卷(理科)答案与解析

2009年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•重庆)直线y=x+1与圆x2+y2=1的位置关系为()A.相切 B.相交但直线不过圆心C.直线过圆心D.相离【考点】直线与圆的位置关系.【专题】计算题.【分析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案.【解答】解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心.所以直线与圆的位置关系是相交但直线不过圆心.故选B【点评】此题考查学生掌握判断直线与圆位置关系的方法是比较圆心到直线的距离d与半径r的大小,灵活运用点到直线的距离公式化简求值,是一道中档题.2.(5分)(2009•重庆)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】由题意求出复数z,代入,复数分子、分母同乘分母的共轭复数,化简为a+bi (a,b∈R)的形式,可得选项.【解答】解:因为由条件知z=﹣1+2i,则=,故选A.【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2009•重庆)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.160【考点】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.【解答】解:设含x3的为第r+1,则Tr+1=C6r x6﹣r•2r,令6﹣r=3,得r=3,故展开式中x3的系数为C63•23=160.故选D.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.4.(5分)(2009•重庆)已知,则向量与向量的夹角是()A.B.C.D.【考点】平面向量数量积的运算;数量积表示两个向量的夹角.【专题】计算题.【分析】利用向量的运算法则及向量模的平方即是向量的平方求出,再利用向量的数量积公式求出向量的夹角余弦,求出向量夹角.【解答】解:∵==2.又,∴=3.即cos<a,b>=3=1×6cos<a,b>,得cos<a,b>=,∴a与b的夹角为,故选项为C.【点评】本题考查向量的运算律;向量模的性质;利用向量的数量积公式求向量的夹角.5.(5分)(2009•重庆)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2]D.(﹣∞,1]∪[2,+∞)【考点】绝对值不等式的解法.【专题】计算题;转化思想.【分析】利用绝对值的几何意义,求出|x+3|﹣|x﹣1|的最大值不大于a2﹣3a,求出a的范围.【解答】解:因为|x+3|﹣|x﹣1|≤4对|x+3|﹣|x﹣1|≤a2﹣3a对任意x恒成立,所以a2﹣3a≥4即a2﹣3a﹣4≥0,解得a≥4或a≤﹣1.故选A.【点评】本题考查绝对值不等式的解法,绝对值的几何意义,以及恒成立问题,是中档题.6.(5分)(2009•重庆)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.【考点】等可能事件的概率;组合及组合数公式.【分析】本题考查的知识点是古典概型,我们计算出总的滔法种类,再计算满足条件“从中任意舀取4个汤圆,则每种汤圆都至少取到1个”所包含的基本事件个数,然后代入古典概型公式计算,即可得到答案.【解答】解:因为总的滔法C154,而所求事件的取法分为三类,即芝麻馅汤圆、花生馅汤圆、豆沙馅汤圆,取得个数分别按1,1,2;1,2,1;2,1,1三类,故所求概率P==.故选C.【点评】古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.7.(5分)(2009•重庆)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C.D.【考点】三角函数的化简求值.【专题】计算题.【分析】利用向量的坐标表示可求=1+cos(A+B),结合条件C=π﹣(A+B)可得sin(C+=,由0<C<π可求C【解答】解:因为=又因为所以又C=π﹣(B+A)所以因为0<C<π,所以故选C.【点评】本题主要以向量的坐标表示为载体考查三角函数,向量与三角的综合问题作为高考的热点,把握它的关键是掌握好三角与向量的基本知识,掌握一些基本技巧,还要具备一些运算的基本技能.8.(5分)(2009•重庆)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.6【考点】极限及其运算.【专题】计算题.【分析】先通分得,然后由极限的性质知,由此可以求出a﹣b的值.【解答】解:∵已知==2,∴,∴a=2,b=﹣4;∴a﹣b=6.故选D.【点评】本题考查函数的极限,解题时注意函数极限的逆运算.9.(5分)(2009•重庆)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或2【考点】空间中直线与平面之间的位置关系.【专题】压轴题;分类讨论.【分析】三个互不重合的平面把空间分成六个部份有两种情形:一是其中两个平面平行,第三个平面都与它们相交;二是三个平面交于一条直线,考虑到两类即可解决.【解答】解:分两类:①当两个平面平行,第三个平面与它们相交时,有两条交线;②当三个平面交于一条直线时,有一条交线,故选D【点评】本题主要考查了空间中直线与平面之间的位置关系,考查空间想象能力和推理论证能力,属于基础题.10.(5分)(2009•重庆)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π【考点】函数的周期性;分段函数的解析式求法及其图象的作法;函数与方程的综合运用.【专题】计算题;压轴题.【分析】首先由题目中已知三角函数f(x)=sin2x﹣cos2x求周期,需要把函数化为标准型,然后根据周期公式求解即可得到答案.【解答】解:因为f(x)=sin2x﹣cos2x=,所以函数的周期T=,故答案选择B.【点评】此题主要考查三角函数周期性的求法,其中涉及到三角函数标准型的化法,涵盖知识点少,属于基础题目.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•重庆)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B={x|0<x<3}.【考点】交集及其运算.【专题】集合.【分析】要求A与B的交集,先要求出两个集合的区间,解出绝对值不等式得到集合A,根据指数函数的增减性得到集合B,然后取两集合的公共部分即可得到交集.【解答】解:由|x|<3解得﹣3<x<3;由2x>1=20,根据指数函数y=2x为增函数得到x>0 ∴A={x|﹣3<x<3},B={x|x>0},则A∩B={x|0<x<3}.故答案为:{x|0<x<3}【点评】此题考查学生会利用指数函数的增减性解不等式,理解交集的定义并会进行交集的运算.12.(5分)(2009•重庆)若f(x)=a+是奇函数,则a=﹣.【考点】奇函数;函数奇偶性的性质.【专题】常规题型.【分析】充分不必要条件:若奇函数定义域为R(即x=0有意义),则f(0)=0.或用定义:f(﹣x)=﹣f(x)直接求a.【解答】解:函数的定义域为R,且为奇函数,则f(0)=a+=0,得a+=0,得a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.【点评】若定义域中包括0在内函数f(x)为奇函数⇒f(0)=0,注意是充分不必要条件,所以此类问题求解后需要检验,此题也可以直接采用奇偶性的定义f(﹣x)=f(x)求解.13.(5分)(2009•重庆)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有36种(用数字作答).【考点】排列、组合及简单计数问题.【专题】计算题.【分析】由题意知将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,需要先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列排列,根据分步乘法原理得到结果.【解答】解:∵将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,∴先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列排列,共有C24A33=36.故答案为:36【点评】本题考查排列组合及简单的计数问题,是一个基础题,本题又是一个易错题,排列容易重复,注意做到不重不漏.14.(5分)(2009•重庆)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=2n+1.【考点】数列递推式.【专题】压轴题;创新题型.【分析】由题设条件得=,由此能够导出数列{b n}的通项公式b n.【解答】解:由条件得=且b1=4所以数列{b n}是首项为4,公比为2的等比数列,则b n=4•2n﹣1=2n+1.故答案为:2n+1.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意递推公式的合理运用.15.(5分)(2009•重庆)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是(1,).【考点】双曲线的应用;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】不防设点P(x o,y o)在右支曲线上并注意到x o>a.利用正弦定理求得,进而根据双曲线定义表示出|PF1|和|PF2|代入求得e的范围.【解答】解:不防设点P(x o,y o)在右支曲线上并注意到x o>a.由正弦定理有,由双曲线第二定义得:|PF1|=a+ex o,|PF2|=ex o﹣a,则有=,得x o=>a,分子分母同时除以a2,易得:>1,解得1<e<+1故答案为(1,)【点评】本题主要考查了双曲线的应用.考查了学生综合运用所学知识解决问题能力.三、解答题(共6小题,满分75分)16.(13分)(2009•重庆)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g(x)的最大值.【考点】三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法.【专题】计算题.【分析】(1)利用两角差的正弦公式及二倍角公式及化简三角函数;再利用三角函数的周期公式求出周期.(2)在y=g(x)上任取一点,据对称行求出其对称点,利用对称点在y=f(x)上,求出g (x)的解析式,求出整体角的范围,据三角函数的有界性求出最值.【解答】解:(1)f(x)===故f(x)的最小正周期为T==8(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)).由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而==当时,时,因此y=g(x)在区间上的最大值为【点评】本题考查常利用三角函数的二倍角公式及公式化简三角函数、利用轴对称性求函数的解析式、利用整体角处理的思想求出最值.17.(13分)(2009•重庆)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.【考点】离散型随机变量及其分布列;n次独立重复试验中恰好发生k次的概率.【专题】计算题.【分析】(1)甲两株中活一株符合独立重复试验,概率为,同理可算乙两株中活一株的概率,两值相乘即可.(2)ξ的所有可能值为0,1,2,3,4,分别求其概率,列出分布列,再求期望即可.【解答】解:设A k表示甲种大树成活k株,k=0,1,2B l表示乙种大树成活1株,1=0,1,2则A k,B l独立.由独立重复试验中事件发生的概率公式有P(A k)=C2k()k()2﹣k,P(B l)=C21()l()2﹣l.据此算得P(A0)=,P(A1)=,P(A2)=.P(B0)=,P(B1)=,P(B2)=.(1)所求概率为P(A1•B1)=P(A1)•P(B1)=×=.(2)解法一:ξ的所有可能值为0,1,2,3,4,且P(ξ=0)=P(A0•B0)=P(A0)•P(B0)=×=,P(ξ=1)=P(A0•B1)+P(A1•B0)=×+×=,P(ξ=2)=P(A0•B2)+P(A1•B1)+P(A2•B0)=×+×+×=,P(ξ=3)=P(A1•B2)+P(A2•B1)=×+×=.P(ξ=4)=P(A2•B2)=×=.综上知ξ有分布列ξ0 1 2 3 4P从而,ξ的期望为Eξ=0×+1×+2×+3×+4×=(株).解法二:分布列的求法同上,令ξ1,ξ2分别表示甲乙两种树成活的株数,则ξ1:B(2,),ξ2:B(2,)故有Eξ1=2×=,Eξ2=2×=1从而知Eξ=Eξ1+Eξ2=.【点评】本题考查离散型随机变量的分布列、期望、独立重复试验的概率等知识,以及利用概率知识分析问题、解决问题的能力.18.(13分)(2009•重庆)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f (x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】计算题.【分析】(Ⅰ)因为”函数在x=0处取得极值“,则有f'(0)=0,再由“曲线y=f(x)在(1,f(1))处的切线与直线x﹣2y+1=0相互垂直”,则有f'(1)=2,从而求解.(Ⅱ)由(Ⅰ)可得到:,令g'(x)=0,有x2﹣2x+k=0,因为还有参数k,由一元二次方程,分三种情况讨论,(1)当△=4﹣4k<0,函数g(x)在R上为增函数,(2)当△=4﹣4k=0,g(x)在R上为增函数(3)△=4﹣4k>0,方程x2﹣2x+k=0有两个不相等实根,则由其两根来构建单调区间.【解答】解:(Ⅰ)因f(x)=ax2+bx+k(k>0),故f'(x)=2ax+b又f(x)在x=0处取得极值,故f'(x)=0,从而b=0,由曲线y=f(x)在(1,f(1))处的切线与直线x+2y+1=0相互垂直可知该切线斜率为2,即f'(1)=2,有2a=2,从而a=1(6分)(Ⅱ)由(Ⅰ)知:、令g'(x)=0,有x2﹣2x+k=0(8分)(1)当△=4﹣4k<0,即当k>1时,g'(x)>0在R上恒成立,故函数g(x)在R上为增函数(10分)(2)当△=4﹣4k=0,即当k=1时,,K=1时,g(x)在R上为增函数(12分)(3)△=4﹣4k>0,即当0<k<1时,方程x2﹣2x+k=0有两个不相等实根当是g'(x)>0,故g(x)在上为增函数当时,g'(x)<0,故g(x)在上为减函数当时,g'(x)>0,故g(x)在上为增函数(14分)【点评】本题主要考查导数的几何意义,函数的极值及函数的单调性.综合性较强,充分考查了函数方程不等式三者的内在联系与转化.19.(12分)(2009•重庆)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.【考点】与二面角有关的立体几何综合题;点、线、面间的距离计算.【专题】计算题.【分析】(Ⅰ)根据线面平行的判定定理可知AD∥平面BCS,则从而A点到平面BCS的距离等于D点到平面BCS的距离,从而DS为点A到平面BCS的距离,在Rt△ADS中求出DS即可;(Ⅱ)过E点作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,根据二面角平面角的定义可知∠EGH为二面角E﹣CD﹣A的平面角,过E点作EF∥BC,交CS于点F,连接GF,在Rt△FEG中,求出此角即可.【解答】解:(Ⅰ)因为AD∥BC,且BC⊂平面BCS,所以AD∥平面BCS,从而A点到平面BCS的距离等于D点到平面BCS的距离.因为平面CSD⊥平面ABCD,AD⊥CD,故AD⊥平面CSD,从而AD⊥SD,由AD∥BC,得BC⊥DS,又由CS⊥DS知DS⊥平面BCS,从而DS为点A到平面BCS的距离,因此在Rt△ADS中(Ⅱ)如图,过E电作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,故∠EGH为二面角E﹣CD﹣A的平面角,记为θ,过E点作EF∥BC,交CS于点F,连接GF,因平面ABCD⊥平面CSD,GH⊥CD,易知GH⊥GF,故.由于E为BS边中点,故,在Rt△CFE中,,因EF⊥平面CSD,又EG⊥CD故由三垂线定理的逆定理得FG⊥CD,从而又可得△CGF~△CSD,因此而在Rt△CSD中,,在Rt△FEG中,可得,故所求二面角的大小为【点评】本题主要考查了点到平面的距离,以及二面角的度量等有关知识,同时考查了计算能力、推理能力、以及转化与划归的思想,属于中档题.20.(12分)(2009•重庆)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M在x轴上的射影,点Q满足条件:,、求线段QB的中点P的轨迹方程.【考点】直线与圆锥曲线的综合问题;轨迹方程.【专题】计算题;压轴题.【分析】(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b>0).设,由准线方程.由此能够求出椭圆方程.从而得到点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(Ⅱ)设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+y y=4.因为,(1﹣x Q﹣y Q)•(1﹣x N﹣y n)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.由此可导出动点P的轨迹方程为.【解答】解:(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b>0).设,由准线方程得.由得,解得a=2,c=,从而b=1,椭圆方程为.又易知C,D两点是椭圆的焦点,所以,|MC|+|MD|=2a=4从而|MC|•|MD|,当且仅当|MC|=|MD|,即点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(II)如图(20)图,设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+(y M)2=4 ①因为,(1﹣x Q﹣y Q)•(1﹣x N﹣y N)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.②记P点的坐标为(x P,y P),因为P是BQ的中点所以2x P=x Q+x P,2y P=y Q+y P由因为x N2+y N2=1,结合①,②得===故动点P的轨迹方程为【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细求解,知识方面注意椭圆的标准方程与焦点位置的关系以及向量与解析几何问题的综合运用.21.(12分)(2009•重庆)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.【考点】等差数列的性质;数列的应用;等比数列的性质;反证法与放缩法.【专题】压轴题;反证法.【分析】(1)利用等比数列的性质,用a1、d表示出a2009、a2008,结合已知,列方程即可解出a1、d,进而求出a n.(2)通过探求数列的周期性或利用反证法求解.【解答】解:(I)因a1,a2009,a2008,a1006是公比为d的等比数列,从而a2009=a1d,a2008=a1d2,由S2009=S2007+12a1得a2008+a2009=12a1,解得d=3或d=﹣4(舍去).∴d=3,又S3=3a1+3d=15.解得a1=2从而当n≤1005时,a n=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1当1006≤n≤2009时,由a1,a2009,a2008,a1006是公比为d的等比数列得a n=a1d2009﹣(n﹣1)=a1d2010﹣n(1006≤n≤2009)因此(II)由题意a n2=a n﹣12a n+12(1<n<m),a m2=a m﹣12a12,a12=a m2a22得有①得④由①,②,③得a1a2a n=(a1a2a n)2,故a1a2a n=1.⑤又,故有.⑥下面反证法证明:m=6k若不然,设m=6k+p,其中1≤p≤5若取p=1即m=6k+1,则由⑥得a m=a6k+1=a1,而由③得,得a2=1,由②得,而④及⑥可推得a n=1(1≤n≤m)与题设矛盾同理若P=2,3,4,5均可得a n=1(1≤n≤m)与题设矛盾,因此m=6k为6的倍数由均值不等式得由上面三组数内必有一组不相等(否则a1=a2=a3=1,从而a4=a5═a m=1与题设矛盾),故等号不成立,从而a1+a2+a3++a6>6又m=6k,由④和⑥得a72++a m2=(a72++a122)++(a6k﹣52++a6k2)=(k﹣1)(a12++a62)=因此由⑤得a1+a2+a3++a6+a72++a m2>6+6(k﹣1)=6k=m=ma1a2a3a m【点评】本题考查了等差数列和等比数列的通项公式、性质及方程、解不等式的有关知识,考查运算能力和推理能力.。

2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2009年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.257.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【考点】A5:复数的运算.【专题】11:计算题.【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选:A.【点评】本题考查复数的乘除运算,是一个基础题,在近几年的高考题目中,复数的简单的运算题目是一个必考的问题,通常出现在试卷的前几个题目中.2.(5分)设集合A={x||x|>3},B={x |<0},则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)【考点】1E:交集及其运算.【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x |<0}={x|1<x<4},∴A∩B=(3,4),故选:B.【点评】本题属于以不等式为依托,求集合的交集的基础题,也是高考常会考的题型.3.(5分)已知△ABC中,cotA=﹣,则cosA=()A .B .C .D .【考点】GG:同角三角函数间的基本关系.【专题】11:计算题.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选:D.【点评】本题考查同角三角函数基本关系的运用.主要是利用了同角三角函数中的平方关系和商数关系.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.x+4y﹣5=0D.x﹣4y+3=0【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选:B.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所形成角的余弦值为()A .B .C .D .【考点】LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5G:空间角.【分析】由BA1∥CD1,知∠A1BE是异面直线BE与CD1所形成角,由此能求出异面直线BE与CD1所形成角的余弦值.【解答】解:∵正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,∴BA1∥CD1,∴∠A1BE是异面直线BE与CD1所形成角,设AA1=2AB=2,则A1E=1,BE==,A1B==,∴cos∠A1BE===.∴异面直线BE与CD1所形成角的余弦值为.故选:C.【点评】本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A .B .C.5D.25【考点】91:向量的概念与向量的模;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选:C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.7.(5分)设a=log3π,b=log 2,c=log 3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【考点】4M:对数值大小的比较.【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A【点评】本题考查的是对数函数的单调性,这里需要注意的是当底不相同时可用1做为中介值.8.(5分)若将函数y=tan(ωx +)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx +)的图象重合,则ω的最小值为()A .B .C .D .【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx +)的图象重合,比较系数,求出ω=6k +(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx +),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan(ωx +)∴﹣ω+kπ=∴ω=k +(k∈Z),又∵ω>0∴ωmin =.故选:D.【点评】本题是基础题,考查三角函数的图象的平移,待定系数法的应用,考查计算能力,是常考题.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB ,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B 的坐标为,故选:D.【点评】本题主要考查了抛物线的简单性质.考查了对抛物线的基础知识的灵活运用.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【考点】D5:组合及组合数公式.【专题】11:计算题.【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故选:C.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用直接法或间接法.11.(5分)已知双曲线的右焦点为F,过F 且斜率为的直线交C于A、B 两点,若=4,则C的离心率为()A .B .C .D .【考点】I3:直线的斜率;KA:双曲线的定义.【专题】11:计算题;16:压轴题.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB 的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选:A.【点评】本题主要考查了双曲线的定义.解题的关键是利用了双曲线的第二定义,找到了已知条件与离心率之间的联系.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【考点】LC:空间几何体的直观图.【专题】16:压轴题.【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B【点评】本题主要考查多面体的展开图的复原,属于基本知识基本能力的考查.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为6.【考点】DA:二项式定理.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【考点】83:等差数列的性质.【专题】11:计算题.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为9【点评】本题主要考查了等差数列中等差中项的性质.属基础题.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C 的面积等于,则球O 的表面积等于8π.【考点】LG:球的体积和表面积.【专题】11:计算题;16:压轴题.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,【点评】本题考查学生对空间想象能力,以及球的面积体积公式的利用,是基础题.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【考点】N8:圆內接多边形的性质与判定.【专题】14:证明题;16:压轴题.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.【点评】本题考查了四点共圆的判定方法.也考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A +C)得cos (A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.【点评】三角函数给值求值问题的关键就是分析已知角与未知角的关系,然后通过角的关系,选择恰当的公式,即:如果角与角相等,则使用同角三角函数关系;如果角与角之间的和或差是直角的整数倍,则使用诱导公式;如果角与角之间存在和差关系,则我们用和差角公式;如果角与角存在倍数关系,则使用倍角公式.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;14:证明题.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG ,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.【点评】本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【考点】87:等比数列的性质;8H:数列递推式.【专题】15:综合题.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.由S n+1=4a n+2,①则当n≥2时,有S n=4a n﹣1+2,②①﹣②得a n+1=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),又b n=a n+1﹣2a n,所以b n=2b n﹣1(b n≠0),所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【考点】B3:分层抽样方法;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;48:分析法.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,ξ01 2 3P故Eξ==.【点评】本题较常规,比08年的概率统计题要容易.在计算P(ξ=2)时,采用求反面的方法,用直接法也可,但较繁琐.考生应增强灵活变通的能力.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【考点】K4:椭圆的性质.【专题】15:综合题;16:压轴题.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l 的距离为则,解得c=1又,∴(II)由(I )知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P 在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当【点评】本题主要考查了椭圆的性质.处理解析几何题,学生主要是在“算”上的功夫不够.所谓“算”,主要讲的是算理和算法.算法是解决问题采用的计算的方法,而算理是采用这种算法的依据和原因,一个是表,一个是里,一个是现象,一个是本质.有时候算理和算法并不是截然区分的.例如:三角形的面积是用底乘高的一半还是用两边与夹角的正弦的一半,还是分割成几部分来算?在具体处理的时候,要根据具体问题及题意边做边调整,寻找合适的突破口和切入点.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I )令g(x)=2x2+2x+a ,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)当时,h'(x)>0,∴h(x )在单调递增,故.【点评】本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.。

2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案

2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案

2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,23ξ01P故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。

2009年高考安徽数学(理科)试题及参考答案

2009年高考安徽数学(理科)试题及参考答案

2009年高考安徽数学理科试题及答案第I 卷 (选择题 共50分)一.选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)i 是虚数单位,若17(,)2ia bi ab R i+=+∈−,则乘积ab 的值是( ) (A )-15 (B )-3 (C )3 (D )15 (2)若集合{}21|21|3,0,3x A x x B xx ⎧+⎫=−<=<⎨⎬−⎩⎭则A ∩B 是( )(A ) 11232x x x ⎧⎫−<<−<<⎨⎬⎩⎭或 (B) {}23x x <<(C) 122x x ⎧⎫−<<⎨⎬⎩⎭ (D) 112x x ⎧⎫−<<−⎨⎬⎩⎭ (3)下列曲线中离心率为62的是( )(A )22124x y −= (B )22142x y −= (C )22146x y −= (D )221410x y −=(4)下列选项中,p 是q 的必要不充分条件的是( )(A )p:a c +>b+d , q:a >b 且c >d(B )p:a >1,b>1, q:()(10)xf x a b a =−≠>的图像不过第二象限 (C )p: x=1, q:2x x =(D )p:a >1, q: ()log (10)a f x x a =≠>在(0,)+∞上为增函数 (5)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )(A )21 (B )20 (C )19 (D ) 18 (6)设a <b,函数2()()y x a x b =−−的图像可能是( )(7)若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是( ) (A )73 (B ) 37 (C )43 (D ) 34(8)已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调区间是( )(A )5[,],1212k k k Z ππππ−+∈ (B )511[,],1212k k k Z ππππ++∈(C )[,],36k k k Z ππππ−+∈ (D )2[,],63k k k Z ππππ++∈ (9)已知函数()f x 在R 上满足2()2(2)88f x f x x x =−−+−,则曲线()y f x =在点(1,(1))f 处的切线方程是( )(A )21y x =− (B )y x = (C )32y x =− (D )23y x =−+ (10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( ) (A )175 (B ) 275 (C )375 (D )475二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。

09年全国高考数学试题——全国卷1(理科)含答案

09年全国高考数学试题——全国卷1(理科)含答案

09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。

重庆市高考数学试卷(理科)答案与解析

重庆市高考数学试卷(理科)答案与解析

2011年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=()A.B.C.D.【考点】复数代数形式的混合运算.【专题】计算题.【分析】利用i的幂的运算法则,化简分子,然后复数的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数====故选C【点评】题考查复数代数形式的混合运算,考查计算能力,是基础题.2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】由x<﹣1,知x2﹣1>0,由x2﹣1>0知x<﹣1或x>1.由此知“x<﹣1”是“x2﹣1>0”的充分而不必要条件.【解答】解:∵“x<﹣1”⇒“x2﹣1>0”,“x2﹣1>0”⇒“x<﹣1或x>1”.∴“x<﹣1”是“x2﹣1>0”的充分而不必要条件.故选A.【点评】本题考查充分条件、必要条件和充要条件的应用.3.(3分)(2011•重庆)已知,则a=()A.1 B.2 C.3 D.6【考点】极限及其运算.【专题】计算题.【分析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.【解答】解:原式==(分子分母同时除以x2)===2∴a=6故选:D.【点评】关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.4.(3分)(2011•重庆)(1+3x )n (其中n ∈N 且n≥6)的展开式中x 5与x 6的系数相等,则n=( ) A .6 B .7 C .8 D .9 【考点】二项式系数的性质. 【专题】计算题.【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x 5与x 6的系数,列出方程求出n . 【解答】解:二项式展开式的通项为T r+1=3r C n r x r ∴展开式中x 5与x 6的系数分别是35C n 5,36C n 6 ∴35C n 5=36C n 6 解得n=7 故选B【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.(3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【考点】对数函数的单调性与特殊点.【分析】根据零点分段法,我们易将函数f(x)=|lg(2﹣x)|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论.【解答】解:∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6.(3分)(2011•重庆)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B.C.1 D.【考点】余弦定理.【专题】计算题;解三角形.【分析】将(a+b)2﹣c2=4化为c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,再利用余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab 即可求得答案.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.【点评】本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【考点】基本不等式.【专题】计算题.【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴=()()=++≥+2=(当且仅当b=2a时等号成立)故选C【点评】本题主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原则.8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.【考点】圆的标准方程;两点间的距离公式.【专题】数形结合;直线与圆.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,然后利用AC与BD的乘积的一半即可求出四边形ABCD的面积.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=10,则圆心坐标为(1,3),半径为,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=2,MB=,ME==,所以BD=2BE=2=2,又AC⊥BD,所以四边形ABCD的面积S=AC•BD=×2×2=10.故选B.【点评】此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.学生做题时注意对角线垂直的四边形的面积等于对角线乘积的一半.9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A. B. C.1 D.【考点】点、线、面间的距离计算;球内接多面体.【专题】计算题;压轴题.【分析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD 的中心与顶点S之间的距离.【解答】解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O 的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1 故选C【点评】本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.10.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8 B.8 C.12 D.13【考点】二次函数的性质.【专题】计算题;压轴题.【分析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.【解答】解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,=13.z=m+k取得最小值,即zmin故选D.【点评】此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.二、填空题(共5小题,每小题3分,满分15分) 11.(3分)(2011•重庆)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8= 74 . 【考点】等差数列的性质. 【专题】计算题.【分析】根据等差数列的性质所有下标之和相同的两项之和相等,看出第三项与第七项的和等于第四项与第六项的和等于第二项与第八项的和,得到结果.【解答】解:等差数列{a n }中,a 3+a 7=37, ∵a 3+a 7=a 2+a 8=a 4+a 6=37 ∴a 2+a 4+a 6+a 8=37+37=74, 故答案为:74【点评】本题考查等差数列的性质,这是经常用到的一个性质的应用,注意解题要灵活,不要出现数字运算的错误是一个送分题目.12.(3分)(2011•重庆)已知单位向量,的夹角为60°,则|2﹣|=.【考点】平面向量数量积的坐标表示、模、夹角. 【专题】计算题.【分析】利用向量模的平方等于向量的平方,将已知等式平方,利用向量的数量积公式及将已知条件代入,求出模.【解答】解:===5﹣4cos60°=3∴故答案为【点评】本题考查求向量的模常利用向量模的平方等于向量的平方、考查向量的数量积公式.13.(3分)(2011•重庆)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为.【考点】n次独立重复试验中恰好发生k次的概率.【专题】计算题.【分析】本题是一个n次独立重复试验中恰好发生k次的概率,正面出现的次数比反面出现的次数多包括三种情况,正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,写出概率,得到结果.【解答】解:由题意知本题是一个n次独立重复试验中恰好发生k 次的概率,正面出现的次数比反面出现的次数多包括正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,∴正面出现的次数比反面出现的次数多的概率是++==故答案为:【点评】本题考查n次独立重复试验中恰好发生k次的概率,考查互斥事件的概率,是一个基础题,解题的关键是看清题目所给的条件符合什么规律,在按照规律解题.14.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为﹣.【考点】二倍角的余弦;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】由已知的等式变形后,记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据α为锐角,联立①②求出sinα和cosα的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.【解答】解:由sinα=+cosα,得到sinα﹣cosα=①,又sin2α+cos2α=1②,且α∈(0,),联立①②解得:sinα=,cosα=,∴cos2α=cos2α﹣sin2α=﹣,sin(α﹣)=(sinα﹣cosα)=,则==﹣.故答案为:﹣【点评】此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点(2,0).【考点】圆与圆锥曲线的综合.【专题】计算题;压轴题.【分析】先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.【解答】解:抛物线y2=8x的焦点F(2,0),准线方程为x+2=0,故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,所以F在圆上.故答案为:(2,0).【点评】主要考查知识点:抛物线,本小题主要考查圆与抛物线的综合、抛物线的定义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.三、解答题(共6小题,满分75分)16.(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.【专题】计算题.【分析】利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.【解答】解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;【点评】本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.17.(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【专题】计算题;压轴题.【分析】(I)本题是一个等可能事件的概率,试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C222,得到概率.4(II)由题意知变量ξ的可能取值是1,2,3,结合变量对应的事件和第一问的做法写出变量对应的概率,写出分布列,做出变量的期望值.【解答】解:(I)由题意知本题是一个等可能事件的概率试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C2224∴根据等可能事件的概率公式得到P==(II)由题意知ξ的可能取值是1,2,3P(ξ=1)=,P(ξ=2)=,P(ξ=3)=∴ξ的分布列是:ξ 1 2 3P∴Eξ=【点评】本题考查等可能事件的概率,考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.18.(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;综合题;转化思想.【分析】(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.【解答】解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣3【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及方程组的求解等有关问题,属于中档题.19.(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【专题】计算题;综合题;数形结合.【分析】(I)要求四面体ABCD的体积,必须确定它的高和底面,由已知,△ABC作为底面,高易作,根据线段的长度,即可求得四面体ABCD的体积;(Ⅱ)利用三垂线定理找出二面角C﹣AB﹣D的平面角,根据该角为60°,找到各边之间的关系,利用平移的方法找出异面直线AD 与BC所成角,解三角形,即可求得异面直线AD与BC所成角的余弦值.【解答】解:(I)设F为AC的中点,由于AD=CD,所以DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°=,在Rt△ABC中,因AC=2AF=2,AB=2BC,由勾股定理易知BC=,AB=.故四面体ABCD的体积V==.(II)设E为边AB的中点,则EF∥BC,由AB⊥BC,知EF⊥AB,又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB,所以∠DEF为二面角C﹣AB﹣D的平面角,由题设知∠DEF=60°.设AD=a,则DF=AD•sin∠CAD=,在Rt△DEF中,EF=DF•cotDEF==,取BD的中点M,连EM,FM,由中位线定理得,∠MEF为异面直线AD,BC所成的角或其补角,EM=FM=,由余弦定理得cos∠MEF===.【点评】此题是个中档题.考查棱锥的体积公式和异面直线所成角问题,求解方法一般是平移法,找二面角的平面角时注意三垂线定理及其逆定理的应用,体现了数形结合和转化的思想.20.(12分)(2011•重庆)如图,椭圆的中心为原点O ,离心率e=,一条准线的方程为x=2. (Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P 满足,其中M ,N 是椭圆上的点.直线OM 与ON 的斜率之积为﹣.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值.若存在,求F 1,F 2的坐标;若不存在,说明理由.【考点】椭圆的简单性质;椭圆的定义.【专题】计算题;压轴题.【分析】(Ⅰ)根据离心率和准线方程求得a 和c ,则b 可得,则椭圆的方程可得.(Ⅱ)设出P ,M ,N 的坐标,根据题设等式建立等式,把M ,N 代入椭圆方程,整理求得x 2+2y 220+4(x 1x 2+2y 1y 2),设出直线OM ,ON 的斜率,利用题意可求得x 1x 2+2y 1y 2=0,进而求得x 2+2y 2的值,利用椭圆的定义可推断出|PF 1|+|PF 2|为定值求得c ,则两焦点坐标可得.【解答】解:(Ⅰ)由e==,=2,求得a=2,c=∴b==∴椭圆的方程为:(Ⅱ)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由,得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x=x 1+2x 2,y=y 1+2y 2, ∵点M ,N 在椭圆上,所以,故x 2+2y 2=(x 12+4x 22+4x 1x 2)+2(y 12+4y 22+4y 1y 2)=20+4(x 1x 2+2y 1y 2) 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =﹣∴x 1x 2+2y 1y 2=0 ∴x 2+2y 2=20所以P 在椭圆上;设该椭圆的左,右焦点为F 1,F 2,由椭圆的定义可推断出|PF 1|+|PF 2|为定值,因为c=,则这两个焦点坐标是(﹣,0)(,0)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和解决问题的能力.21.(12分)(2011•重庆)设实数数列{a n }的前n 项和S n 满足S n+1=a n+1S n (n ∈N *).(Ⅰ)若a 1,S 2,﹣2a 2成等比数列,求S 2和a 3.(Ⅱ)求证:对k≥3有0≤a k ≤. 【考点】数列与不等式的综合;数列递推式.【专题】综合题;压轴题.【分析】(Ⅰ)由题意,得S 22=﹣2S 2,由S 2是等比中项知S 2=﹣2,由此能求出S 2和a 3.(Ⅱ)由题设条件知S n +a n+1=a n+1S n ,S n ≠1,a n+1≠1,且,,由此能够证明对k≥3有0≤a n ﹣1≤. 【解答】解:(Ⅰ)由题意,得S 22=﹣2S 2, 由S 2是等比中项知S 2≠0,∴S 2=﹣2.由S 2+a 3=a 3S 2,解得. (Ⅱ)证明:因为S n+1=a 1+a 2+a 3+…+a n +a n+1=a n+1+S n ,由题设条件知S n +a n+1=a n+1S n ,∴S n ≠1,a n+1≠1,且,从而对k≥3 有a k ===①因,且, 要证,由①,只要证即证,即,此式明显成立,因此.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.。

(完整版)2012年重庆市高考数学试卷(理科)答案与解析

2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的1.(5分)(2012•重庆)在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=()A.7B.15 C.20 D.25考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质,可得a2+a4=a1+a5=6,再利用等差数列的求和公式,即可得到结论.解答:解:∵等差数列{a n}中,a2=1,a4=5,∴a2+a4=a1+a5=6,∴S5=(a1+a5)=故选B.点评:本题考查等差数列的性质,考查等差数列的求和公式,熟练运用性质是关键.2.(5分)(2012•重庆)不等式≤0的解集为()A.B.C.D.考点:其他不等式的解法.专题:计算题.分析:由不等式可得,由此解得不等式的解集.解答:解:由不等式可得,解得﹣<x≤1,故不等式的解集为,故选A.点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.3.(5分)(2012•重庆)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.(5分)(2012•重庆)的展开式中常数项为()A.B.C.D.105考点:二项式定理的应用.专题:计算题.分析:在的展开式通项公式中,令x的幂指数等于零,求出r的值,即可求得展开式中常数项.解答:解:的展开式通项公式为T r+1==,令=0,r=4.故展开式中常数项为=,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1D.3考点:两角和与差的正切函数;根与系数的关系.专题:计算题.分析:由tanα,tanβ是方程x2﹣3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.解答:解:∵tanα,tanβ是方程x2﹣3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===﹣3.故选A点评:此题考查了两角和与差的正切函数公式,以及根与系数的关系,利用了整体代入的思想,熟练掌握公式是解本题的关键.6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.10考点:数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.专题:计算题.分析:由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.解答:解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.点评:本题主要考查两个向量共线的性质,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件考点:必要条件、充分条件与充要条件的判断;奇偶性与单调性的综合.专题:函数的性质及应用;简易逻辑.分析:由题意,可由函数的性质得出f(x)为[﹣1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项解答:解:∵f(x)是定义在R上的偶函数,∴若f(x)为[0,1]上的增函数,则f(x)为[﹣1,0]上是减函数,又∵f(x)是定义在R上的以2为周期的函数,且[3,4]与[﹣1,0]相差两个周期,∴两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立.若f(x)为[3,4]上的减函数,同样由函数周期性可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立.综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.故选D.点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)考点:函数在某点取得极值的条件;函数的图象.专题:计算题.分析:利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.解答:解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选D.点评:本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)考点:异面直线的判定;棱锥的结构特征.专题:计算题;压轴题.分析:先在三角形BCD中求出a的范围,再在三角形AED中求出a的范围,二者相结合即可得到答案.解答:解:设四面体的底面是BCD,BC=a,BD=CD=1,顶点为A,AD=在三角形BCD中,因为两边之和大于第三边可得:0<a<2 (1)取BC中点E,∵E是中点,直角三角形ACE全等于直角DCE,所以在三角形AED中,AE=ED=∵两边之和大于第三边∴<2得0<a<(负值0值舍)(2)由(1)(2)得0<a<.故选:A.点评:本题主要考察三角形三边关系以及异面直线的位置.解决本题的关键在于利用三角形两边之和大于第三边这一结论.10.(5分)(2012•重庆)设平面点集,则A∩B所表示的平面图形的面积为()A.B.C.D.考点:二元一次不等式(组)与平面区域;交集及其运算.专题:计算题;压轴题.分析:先分别画出集合A与集合B表示的平面区域,再画出它们的公共部分,最后利用圆的面积公式及图形的对称性,计算所求面积即可解答:解:∵⇔或其表示的平面区域如图,(x﹣1)2+(y﹣1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π∴A∩B所表示的平面图形为上述两区域的公共部分,如图阴影区域,由于圆和y=均关于y=x对称,故阴影部分面积为圆的面积的一半,即故选:D.点评:本题主要考查了二元不等式表示平面区域的知识和延伸,准确的画出两集合表示的平面区域是解决本题的关键,属基础题二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:由条件可得a+bi=1+3i,根据两个复数相等的充要条件求出a和b的值,即可求得a+b 的值.解答:解:∵(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,∴a+bi=1+3i,∴a=1,b=3,∴a+b=1+3=4,故答案为4.点评:本题主要考查两个复数代数形式的乘除法,两个复数相等的充要条件,属于基础题.12.(5分)(2012•重庆)=.考点:极限及其运算.专题:计算题.分析:把要求的式子化为,即,再利用极限及其运算法则求得所求式子的值.解答:解:由于====,故答案为:.点评:本题主要考查极限及其运算法则的应用,把要求的式子化为,是解题的关键,属于基础题.13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.考点:余弦定理;正弦定理.专题:计算题.分析:由A和B都为三角形的内角,且根据cosA及cosB的值,利用同角三角函数间的基本关系分别求出sinA和sinB的值,将sinC中的角C利用三角形的内角和定理变形后,将各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c 的值.解答:解:∵A和B都为三角形的内角,且cosA=,cosB=,∴sinA==,sinB==,∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,又b=3,∴由正弦定理=得:c===.故答案为:点评:此题考查了同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及正弦定理,熟练掌握定理及公式是解本题的关键.14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设出点的坐标与直线的方程,利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题,即可得到答案.解答:解:由题意可得:F(,0),设A(x1,y1),B(x2,y2).因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点,所以|AF|=+x1,|BF|=+x2.因为,所以x1+x2=设直线l的方程为y=k(x﹣),联立直线与抛物线的方程可得:k2x2﹣(k2+2)x+=0,所以x1+x2=.∴∴k2=24∴24x2﹣26x+6=0,∴,∴|AF|=+x1=故答案为:点评:解决此类问题的关键是熟练掌握抛物线的定义,以及掌握直线与抛物线位置关系,并且结合准确的运算也是解决此类问题的一个重要方面15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).考点:等可能事件的概率.专题:概率与统计.分析:三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为,若两个空中只插入1节艺术课,则排法种数为•(•)•=216,三门文化课中相邻排列,则排法种数为=144,而所有的排法共有=720种,由此求得所求事件的概率.解答:解:把语文、数学、外语三门文化课排列,有种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为=72,②若两个空中只插入1节艺术课,则排法种数为•(•)•=216,③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为为一个整体,然后和三门艺术课进行排列,则排法种数为=144,而所有的排法共有=720种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为=,故答案为.点评:本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:综合题.分析:(Ⅰ)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(Ⅱ)由(Ⅰ)知,(x>0),=,确定函数的单调性,即可求得函数f(x)的极值.解答:解:(Ⅰ)求导函数可得∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.∴f′(1)=0,∴,∴a=﹣1;(Ⅱ)由(Ⅰ)知,(x>0)=令f′(x)=0,可得x=1或x=(舍去)∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增∴x=1时,函数f(x)取得极小值为3.点评:本题考查导数知识的运用,考查导数的几何意义,函数的单调性与极值,正确求导是关键.17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P(),利用互斥事件的概率公式即可求解;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3,求出相应的概率,即可得到ξ的分布列与期望.解答:解:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=×+=;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3P(ξ=1)=P(A1)+P()=P(ξ=2)=P()+P()== P((ξ=3)=P()==ξ的分布列为ξ 1 2 3P期望Eξ=1×+2×+3×=.点评:本题考查互斥事件概率的求解,考查离散型随机变量的分布列与期望,解题的关键是确定变量的取值,理解变量取值的含义,属于中档题.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的定义域和值域;正弦函数的单调性.专题:计算题;转化思想.分析:(I)由题意,可由三角函数的恒等变换公式对函数的解析式进行化简得到f(x)=sin2ωx+1,由此易求得函数的值域;(II)f(x)在区间上为增函数,此区间必为函数某一个单调区间的子集,由此可根据复合三角函数的单调性求出用参数表示的三角函数的单调递增区间,由集合的包含关系比较两个区间的端点即可得到参数ω所满足的不等式,由此不等式解出它的取值范围,即可得到它的最大值.解答:解:f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π)=4(cosωx+sinωx)sinωx+cos2ωx=2cosωxsinωx+2sin2ωx+cos2ωx﹣sin2ωx=sin2ωx+1,∵﹣1≤sin2ωx≤1,所以函数y=f(x)的值域是[](II)因y=sinx在每个区间[],k∈z上为增函数,令,又ω>0,所以,解不等式得≤x≤,即f(x)=sin2ωx+1,(ω>0)在每个闭区间[,],k∈z上是增函数又有题设f(x)在区间上为增函数所以⊆[,],对某个k∈z成立,于是有.解得ω≤,故ω的最大值是.点评:本题考查三角恒等变换的运用及三角函数值域的求法,解题的关键是对所给的函数式进行化简,熟练掌握复合三角函数单调性的求法,本题考查了转化的思想,计算能力,属于中等难度的题19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题;点、线、面间的距离计算.专题:综合题;转化思想.分析:(I)由题意,由于可证得CD⊥平面A1ABB1.故点C到平面的距离即为CD的长度,易求;(II)解法一:由题意结合图象,可通过作辅助线先作出二面角的平面角∠A1DD1,然后在直角三角形A1D1D中求出二面角的余弦;解法二:根据几何体的形状,可过D作DD1∥AA1交A1B1于D1,在直三棱柱中,可得DB,DC,DD1两两垂直,则以D为原点,射线DB,DC,DD1分别为X轴、Y 轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.给出各点的坐标,分别求出两平面的法向量,求出两向量的夹角即为两平面的夹角.解答:解:(I)由AC=BC,D为AB的中点,得CD⊥AB.又CD⊥AA1.故CD⊥平面A1ABB1.所以点C到平面A1ABB1的距离为CD==(II)解法一:如图1,取D1为A1B1的中点,连接DD1,则DD1∥AA1∥CC1.又由(I)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1为所求的二面角A1﹣CD﹣C1的平面角.因A1D为A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂线定理的逆定理得AB1⊥A1D.从而∠A1AB1、∠A1DA都与∠B1AB 互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=AD•A1B1=8,得AA1=2,从而A1D==2.所以Rt△A1D1D中,cos∠A1DD1===解法二:如图2,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.设直三棱柱的高为h,则A(﹣2,0,0),A1(﹣2,0,h),B1(2,0,h),C(0,,0),C1(0,,h),从而=(4,0,h),=(2,,﹣h)由AB1⊥A1C,可得8﹣h2=0,h=2,故=(﹣2,0,2),=(0,0,2),=(0,,0)设平面A1CD的法向量为=(x1,y1,z1),则有⊥,⊥∴•=0且•=0,即,取z1=1,则=(,0,1)设平面C1CD的法向量为=(x2,y2,z2),则⊥,⊥,即且=0,取x 2=1,得=(1,0,0),所以cos<,>===,所以二面角A1﹣CD﹣C1的平面角的余弦值点评:本题考查二面角的求法及点到面距离的求法,点到面的求法一般是作垂线,垂线段的长度即所求,二面角的余弦值的求法有两种,一种是几何法,找到二面角平面角所在的三角形,解三角形求出角的余弦值,第二种方法是现在比较常用的方法向量法,其特征是思维量小,计算量大,作题时对这两种方法要根据题设灵活选用20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求直线l的方程.解答:解:(Ⅰ)设椭圆的方程为,F2(c,0)∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=∵S=4,∴b2=4,∴a2=5b2=20∴椭圆标准方程为;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16=0①设P(x1,y1),Q(x2,y2),∴,∵,∴=∵PB2⊥QB2,∴∴,∴m=±2所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查三角形的面积计算,综合性强.21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.考点:数列与不等式的综合;等比数列的前n项和;等比关系的确定;数列与函数的综合.专题:综合题;压轴题.分析:(Ⅰ)根据S n+1=a2S n+a1,再写一式,两式相减,即可证得{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立,设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为(n≥3),即证(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论.解答:证明:(Ⅰ)∵S n+1=a2S n+a1,①∴S n+2=a2S n+1+a1,②②﹣①可得:a n+2=a2a n+1∵a2≠0,∴∵S n+1=a2S n+a1,∴S2=a2S1+a1,∴a2=a2a1∵a2≠0,∴a1=1∴{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立设n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1,,所以要证的不等式可化为(n≥3)即证(n≥2)a2=1时,等号成立当﹣1<a2<1时,与同为负;当a2>1时,与同为正;∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1.点评:本题考查等比数列的证明,考查不等式的证明,考查叠加法的运用,需要一定的基本功,属于中档题.。

2009年浙江高考理科数学卷(含详细答案解析)

绝密★考试结束前2009年普通高等学校招生全国统一考试(浙江卷)数 学(理科) 本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件,A B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 棱台的体积公式球的表面积公式 )(312211S S S S h V ++= 24S R π= 其中S 1、S 2分别表示棱台的上、下底面积,球的体积公式 h 表示棱台的高334R V π=其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,{|0}A x x =>,{|1}B x x =>,则UAB =( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >答案:B【解析】 对于{}1U C B x x =≤,因此UAB ={|01}x x <≤.2.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:C【解析】对于“0a >且0b >”可以推出“0a b +>且0ab >”,反之也是成立的 3.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +答案:D 【解析】对于2222(1)1211z i i i i z i+=++=-+=++ 4.在二项式251()x x-的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5答案:B【解析】对于()251031551()()1rrrr r r r T C x C x x--+=-=-,对于1034,2r r -=∴=,则4x 的项的系数是225(1)10C -=5.在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30 B .45 C .60 D .90答案:C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,AE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则32AE a =,2a DE =,即有0tan 3,60ADE ADE ∠=∴∠=.6.某程序框图如图所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7答案:A【解析】对于0,1,1k s k ==∴=,而对于1,3,2k s k ==∴=,则2,38,3k s k ==+∴=,后面是113,382,4k s k ==++∴=,不符合条件时输出的4k =.7.设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) A .3 B .4 C .5 D .6 答案:C【解析】对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现. 8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )答案:D【解析】对于振幅大于1时,三角函数的周期为2,1,2T a T aππ=>∴<,而D 不符合要求,它的振幅大于1,但周期反而大于了2π.9.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A 2 B 3 C 5 D 10答案:C【解析】对于(),0A a ,则直线方程为0x y a +-=,直线与两渐近线的交点为B ,C ,22,,(,)a ab a ab B C a b a b a b a b ⎛⎫- ⎪++--⎝⎭,则有22222222(,),,a b a b ab ab BC AB a b a b a b a b ⎛⎫=-=- ⎪--++⎝⎭,因222,4,5AB BC a b e =∴=∴=. 10.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈ 答案:C【解析】对于212121()()()()x x f x f x x x αα--<-<-,即有2121()()f x f x x x αα--<<-,令2121()()f x f x k x x -=-,有k αα-<<,不妨设1()f x M α∈,2()g x M α∈,即有11,f k αα-<<22g k αα-<<,因此有1212f g k k αααα--<+<+,因此有12()()f x g x M αα++∈.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2009年四川高考数学(理科卷)

个 根 处 取 得 极 大 值 ;若 左 负 右 正 , 那
左极 限和 右 极 限都存 在 且 相 等 ” 建 .
立 方 程1l )l fx _() 解 即 i r =i ()f 求 m -

( ) 函数厂 ) I求 ( 的定义域 , 并判 断 ) 的单调性.
( 若n∈ , l Ⅱ) N 求 i m .
‘ 数与 不等式
第2 题 已 知 函 数 I )= 厂(
f+o z, a lgx ≥2 ,
( ≠0 且 ≠一 ) 有 ± : 1都
+l
f )0 贝厂 ) < ,l 单调递减. J (

( 高 中数 学 中 求极 限的 问题 Ⅱ)

{2 .2 点= 连 ,常 x 在 处 续则 2 < - 4 2 【x -


的化 简不 到位 . 同学们 最容 易失分 是

B.3 C.4 D.5
Jl) 后根l)偶 - 1 然 ,据 g . 厂是 (
的原 因. 于 函数厂 ) ≠ 。的极 限 对 ( ) 问题 , 般 通  ̄l fx=i ( ) 一 i () l m mf x =


l i
— —
) 可确定. 即
’ :
( ) 们 要 掌握 利 用导 函 数 求 Ⅲ 我
的充要 条件 .
函数极值 的方 法 : 第一步 求导 数厂 ) . 第二 步 求方 rf () 0 根.第 三 步 { : 的 _ E
应 对 策略 : 据 函数y 根
20年 1 1 0 9  ̄) 高考理科 数学试卷 的设置 , 1 既注重 考查 中学 数学 的基 础知识 、 基本方法 , 又注 重 考查重 要的数 学思想和 同学们进 入高校 继续学 习的潜能 。 下面笔 者针 对试卷 中 的几个 重 点、 热点 问题 的考查情况 , 在解 题过程 中的失分原 因及解题对 策作简要分析 .

2008年高考重庆理科数学试题及答案(精校版)

2008年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•重庆)复数=()A.1+2i B.1﹣2i C.﹣1 D.32.(5分)(2008•重庆)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)(2008•重庆)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切4.(5分)(2008•重庆)已知函数的最大值为M,最小值为m,则的值为()A.B.C.D.5.(5分)(2008•重庆)已知随机变量ζ服从正态分布N(3,σ2),则P(ζ<3)=()A.B.C.D.6.(5分)(2008•重庆)若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数7.(5分)(2008•重庆)若过两点P1(﹣1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段所成的比λ的值为()A.﹣B.﹣C.D.8.(5分)(2008•重庆)已知双曲线的一条渐近线为y=kx(k>0),离心率,则双曲线方程为()A.﹣=1B.C.D.9.(5分)(2008•重庆)如图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是()A.B.C.V1>V2D.V1<V210.(5分)(2008•重庆)函数的值域是()B.[﹣1,0]C.[﹣]D.[﹣]A.[﹣]二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2008•重庆)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=_________.12.(4分)(2008•重庆)已知函数f(x)=,点在x=0处连续,则=_________.13.(4分)(2008•重庆)已知(a>0),则=_________.14.(4分)(2008•重庆)设S n是等差数列{a n}的前n项和,a12=﹣8,S9=﹣9,则S16=_________.15.(4分)(2008•重庆)直线l与圆x2+y2+2x﹣4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为_________.16.(4分)(2008•重庆)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有_________种(用数字作答).三、解答题(共6小题,满分76分)17.(13分)(2008•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值;(Ⅱ)cotB+cot C的值.18.(13分)(2008•重庆)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.19.(13分)(2008•重庆)如图,在△ABC中,B=90°,AC=,D、E两点分别在AB、AC上.使,DE=3.现将△ABC沿DE折成直二角角,求(Ⅰ)异面直线AD与BC的距离;(Ⅱ)二面角A﹣EC﹣B的大小(用反三角函数表示).20.(13分)(2008•重庆)设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(﹣1,f(﹣1))处的切线垂直于y轴.(Ⅰ)用a分别表示b和c;(Ⅱ)当bc取得最小值时,求函数g(x)=﹣f(x)e﹣x的单调区间.21.(12分)(2008•重庆)如图,M(﹣2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|=6.(Ⅰ)求点P的轨迹方程;(Ⅱ)若,求点P的坐标.22.(12分)(2008•重庆)设各项均为正数的数列{a n}满足a1=2,a n=a n+2(n∈N*).(Ⅰ)若a2=,求a3,a4,并猜想a2008的值(不需证明);(Ⅱ)记b n=a1a2…a n(n∈N*),若b n≥2对n≥2恒成立,求a2的值及数列{b n}的通项公式.2008年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•重庆)复数=()A.1+2i B.1﹣2i C.﹣1 D.3考点:复数代数形式的混合运算.分析:利用复数i的幂的运算,化简复数的分母,即可.解答:解:故选A.点评:本题考查复数代数形式的运算,复数的幂的运算,是基础题.2.(5分)(2008•重庆)设m,n是整数,则“m,n均为偶数”是“m+n是偶数”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.解答:解:m,n均为偶数,则m+n为偶数,即m,n均为偶数”⇒“m+n是偶数”为真命题但m+n为偶数推不出m,n为偶数,如m=1,n=1.“m,n均为偶数”是“m+n是偶数”的充分而不必要条件故选A点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.3.(5分)(2008•重庆)圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交C.外切D.内切考点:圆与圆的位置关系及其判定.专题:计算题.分析:求出半径,求出圆心,看两个圆的圆心距与半径的关系即可.解答:解:圆O1:x2+y2﹣2x=0,即(x﹣1)2+y2=1,圆心是O1(1,0),半径是r1=1圆O2:x2+y2﹣4y=0,即x2+(y﹣2)2=4,圆心是O2(0,2),半径是r2=2∵|O1O2|=,故|r1﹣r2|<|O1O2|<|r1+r2|∴两圆的位置关系是相交.故选B点评:本题考查圆与圆的位置关系,是基础题.4.(5分)(2008•重庆)已知函数的最大值为M,最小值为m,则的值为()A.B.C.D.考点:函数的值域.专题:计算题.分析:函数问题定义域优先,本题要先确定好自变量的取值范围;然后通过函数的单调性分别确定出m与n即可.解答:解:根据题意,对于函数,有,所以当x=﹣1时,y取最大值,当x=﹣3或1时y取最小值m=2∴故选C.点评:任何背景下,函数问题定义域优先,建函数模型是求解函数最值问题有效手段之一.5.(5分)(2008•重庆)已知随机变量ζ服从正态分布N(3,σ2),则P(ζ<3)=()A.B.C.D.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:由正态分布的图象规律知,其在x=μ左侧一半的概率为,故得P(ζ<3)的值.解答:解:ζ服从正态分布N(3,σ2),曲线关于x=3对称,,故选D.点评:本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.6.(5分)(2008•重庆)若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数考点:函数奇偶性的判断.专题:计算题.分析:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,考察四个选项,本题要研究函数的奇偶性,故对所给的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1进行赋值研究即可解答:解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C点评:本题考查函数的性质和应用,解题时要认真审题,仔细解答.7.(5分)(2008•重庆)若过两点P1(﹣1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段所成的比λ的值为()A.﹣B.﹣C.D.考点:线段的定比分点.专题:计算题.分析:本题考查的知识点是线段的定比分点,处理的方法一般是,由定比分点坐标公式转化为λ==,将已知的点的坐标代入,易得一个方程组,解方程组,即可求解.解答:解:由定比分点坐标公式得λ==不妨设点P(x,0),则,故答案选A点评:由定比分点坐标公式转化可得:λ==,将已知的点的坐标代入,易得一个方程组,解方程组,即可求解.8.(5分)(2008•重庆)已知双曲线的一条渐近线为y=kx(k>0),离心率,则双曲线方程为()B.A.﹣=1C.D.考点:双曲线的标准方程.分析:首先由焦点在x轴上的双曲线的渐近线方程为y=±x,可得=k;然后根据双曲线的离心率e==k,可消去k得a、b、c的关系式;再结合双曲线的性质a2+b2=c2,即可整理出答案.解答:解:因为双曲线的一条渐近线为y=kx(k>0),所以=k,又,所以c=b,且有a2+b2=c2,所以a2=4b2,所以双曲线的方程为.故选C.点评:本题考查双曲线的标准方程与性质.9.(5分)(2008•重庆)如图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是()A.B.C.V1>V2D.V1<V2考点:组合几何体的面积、体积问题.专题:计算题;压轴题;探究型.分析:根据题意推知小球半径是大球的一半,建立大球体积小球体积和阴影部分的体积的关系,可推知选项.解答:解:设大球的半径为R,则小球的半径为:,由题意可得:V==所以>0即:V2>V1故选D.点评:本题考查组合体的体积,空间想象能力,逻辑推理能力,是难题.10.(5分)(2008•重庆)函数的值域是()B.[﹣1,0]C.[﹣]D.[﹣]A.[﹣]考点:同角三角函数间的基本关系;函数的值域.专题:压轴题.分析:根据特殊值代入法进行逐一排除.解答:解:特殊值法,sinx=0,cosx=1则f(x)=淘汰A,令得当时sinx=﹣1时所以矛盾f(x)≠淘汰C,同理,令得cosx=,当sinx=1时,cosx=,不满足条件,淘汰D,故选B.点评:主要考查对任意角x满足sin2x+cos2x=1.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2008•重庆)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)={2,5}.考点:交、并、补集的混合运算.专题:计算题.分析:先求出(A∪B)和(C U C),再求它们的交集即可.解答:解:∵A∪B={2,3,4,5),又∁U C={1,2,5}∴(A∪B)∩(∁U C)={2,5}故填{2,5}.点评:本题考查了交集、并集、补集的运算,属于基础题.12.(4分)(2008•重庆)已知函数f(x)=,点在x=0处连续,则=.考点:极限及其运算.专题:计算题.分析:由函数f(x)=在点x=0处连续,可得,解可得a=3.由此能求出的值.解答:解:(2x+3)==3,f(0)=a点在x=0处连续,所以,即a=3,故.故答案为:.点评:本题考查函数的极限和运算,解题时要认真审题,仔细解答.13.(4分)(2008•重庆)已知(a>0),则=3.考点:指数式与对数式的互化;换底公式的应用.专题:计算题.分析:将已知的等式两边同时进行次乘方,得到a的值,再把a的值代入要求的式子,利用对数的运算性质计算结果.解答:解:已知(a>0),∴,故答案为3.点评:本题考查根指数的转化运算,以及利用对数的运算性质求对数式的值,体现了代入得思想.14.(4分)(2008•重庆)设S n是等差数列{a n}的前n项和,a12=﹣8,S9=﹣9,则S16=﹣72.考点:等差数列的前n项和.专题:计算题.分析:根据等差数列的性质,a1+a9=2a5,结合题意,由S9可得a5的值,而由等差数列的性质有a1+a16=a5+a12,将S16=(a1+a16)×16中的(a1+a16)用(a5+a12)代换并计算可得答案.解答:解:S9=(a1+a9)×9=﹣9,又有a1+a9=2a5,可得,a5=﹣1,由等差数列的性质可得,a1+a16=a5+a12,则S16=(a1+a16)×16=(a5+a12)×16=﹣72.点评:本题考查等差数列的前n项和,注意解题时,结合等差数列的有关性质来分析,寻找切入点.15.(4分)(2008•重庆)直线l与圆x2+y2+2x﹣4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为x﹣y+1=0.考点:直线的一般式方程;直线与圆相交的性质.专题:计算题;压轴题.分析:求出圆心的坐标,再求出弦中点与圆心连线的斜率,然后再求出弦所在直线的斜率,由点斜式写出其方程,化为一般式.解答:解:由已知,圆心O(﹣1,2),设直线l的斜率为k,弦AB的中点为P(0,1),PO的斜率为k op,则=﹣1∵l⊥PO,∴k•k op=k•(﹣1)=﹣1∴k=1由点斜式得直线AB的方程为:y=x+1故答案为:x﹣y+1=0点评:考查求直线的方程,本题已知弦中点的坐标,再根据弦与弦心距对应直线垂直求斜率k.16.(4分)(2008•重庆)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有216种(用数字作答).考点:分步乘法计数原理.专题:压轴题.分析:由题意知分3步进行,为A、B、C三点选三种颜色灯泡共有A43种选法;在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;若B1与C同色,则C1有A、B处两种颜色可选.故为B1、C1选灯泡共有3种选法,即剩下的两个灯有3种情况,根据计数原理得到结果.解答:解:每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分3步进行,第一步,A、B、C三点选三种颜色灯泡共有A43种选法;第二步,在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;第三步,为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;若B1与C同色,则C1有A、B处两种颜色可选.故为B1、C1选灯泡共有3种选法,得到剩下的两个灯有3种情况,则共有A43×3×3=216种方法.故答案为:216点评:本题用到两个计数原理,用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析要完成的“一件事”是什么,可以“分类”还是需要“分步”.三、解答题(共6小题,满分76分)17.(13分)(2008•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值;(Ⅱ)cotB+cot C的值.考点:正弦定理;余弦定理.专题:计算题.分析:(Ⅰ)先根据余弦定理求得a,b和c的关系式,再利用c=3b消去b,进而可得答案.(Ⅱ)对原式进行化简整理得由正弦定理和(Ⅰ)的结论求得结果.解答:解:(Ⅰ)由余弦定理得.∴.(Ⅱ),由正弦定理和(Ⅰ)的结论得.故.点评: 本题主要考查了正弦定理和余弦定理的应用.正弦定理和余弦定理是解三角形问题中常使用的方法,应熟练掌握.18.(13分)(2008•重庆)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.考点:离散型随机变量及其分布列;相互独立事件的概率乘法公式;离散型随机变量的期望与方差. 专题:计算题. 分析: (1)打满3局比赛还未停止即在三局比赛中没有人连胜两局,分析其可能情况,每局比赛的结果相互独立且互斥,利(2)ξ的所有可能值为2,3,4,5,6,分别求出ξ取每一个值的概率,列出分布列即可. 解答: 解:令A k ,B k ,C k 分别表示甲、乙、丙在第k 局中获胜. (Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为.(Ⅱ)ξ的所有可能值为2,3,4,5,6,且,.,故有分布列ξ 2 3 4 5 6 P从而(局).点评:本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力.19.(13分)(2008•重庆)如图,在△ABC中,B=90°,AC=,D、E两点分别在AB、AC上.使,DE=3.现将△ABC沿DE折成直二角角,求(Ⅰ)异面直线AD与BC的距离;(Ⅱ)二面角A﹣EC﹣B的大小(用反三角函数表示).考点:点、线、面间的距离计算;与二面角有关的立体几何综合题.专题:计算题.分析:(1)先依据公垂线的定义,证明DB为异面直线AD与BC的公垂线,再求DB之长,注意到它是AB长的倍,故先求出AB的长即可;(2)过D作DF⊥CE,交CE的延长线于F,先证得∠AFD为二面角A﹣BC﹣B的平面角,再利用直角三角形中的边角关系求出其正切值即得.解答:解:(Ⅰ)在图1中,因,故BE∥BC.又因B=90°,从而AD⊥DE.在图2中,因A﹣DE﹣B是直二面角,AD⊥DE,故AD⊥底面DBCE,从而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.下求DB之长.在图1中,由,得又已知DE=3,从而..因.(Ⅱ)在第图2中,过D作DF⊥CE,交CE的延长线于F,连接AF.由(1)知,AD⊥底面DBCE,由三垂线定理知AF⊥FC,故∠AFD为二面角A﹣BC﹣B的平面角.在底面DBCE中,∠DEF=∠BCE,,因此.从而在Rt△DFE中,DE=3,.在.因此所求二面角A﹣EC﹣B的大小为arctan.点评:本小题主要考查直线与平面平行、二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.20.(13分)(2008•重庆)设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(﹣1,f(﹣1))处的切线垂直于y轴.(Ⅰ)用a分别表示b和c;(Ⅱ)当bc取得最小值时,求函数g(x)=﹣f(x)e﹣x的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:综合题.分析:(Ⅰ)把(0,2a+3)代入到f(x)的解析式中得到c与a的解析式,解出c;求出f'(x),因为在点(﹣1,f(﹣1))处的切线垂直于y轴,得到切线的斜率为0,即f′(﹣1)=0,代入导函数得到b与a的关系式,解出b即可.(Ⅱ)把第一问中的b与c代入bc中化简可得bc是关于a的二次函数,根据二次函数求最值的方法求出bc的最小值并求出此时的a、b和c的值,代入f(x)中得到函数的解析式,根据求导法则求出g(x)的导函数,将f′(x)和f(x)代入即可得到g′(x),然后令g′(x)=0求出x的值,利用x的值分区间讨论g′(x)的正负即可得到g(x)的增减区间.解答:解:(Ⅰ)由f(x)=ax2+bx+c得到f'(x)=2ax+b.因为曲线y=f(x)通过点(0,2a+3),故f(0)=c=2a+3,又曲线y=f(x)在(﹣1,f(﹣1))处的切线垂直于y轴,故f'(﹣1)=0,即﹣2a+b=0,因此b=2a.(Ⅱ)由(Ⅰ)得,故当时,bc取得最小值﹣.此时有.从而,g(x)=﹣f(x)e﹣x=(x2+x﹣)e﹣x,所以令g'(x)=0,解得x1=﹣2,x2=2.当x∈(﹣∞,﹣2)时,g'(x)<0,故g(x)在x∈(﹣∞,﹣2)上为减函数;当x∈(﹣2,2)时,g'(x)>0,故g(x)在x∈(2,+∞)上为减函数.当x∈(2,+∞)时,g'(x)<0,故g(x)在x∈(2,+∞)上为减函数.由此可见,函数g(x)的单调递减区间为(﹣∞,﹣2)和(2,+∞);单调递增区间为(﹣2,2).点评:本题是一道综合题,要求学生会利用导数研究函数的单调性,会利用导数研究曲线上某点的切线方程.做题时注意复合函数的求导法则.21.(12分)(2008•重庆)如图,M(﹣2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|=6.(Ⅰ)求点P的轨迹方程;(Ⅱ)若,求点P的坐标.考点:椭圆的标准方程;轨迹方程;椭圆的应用.专题:综合题;压轴题.分析:(1)先根据题意求出a,b,c的值,再代入到椭圆方程的标准形式中,可得到答案.(2)先将转化为|PM|•|PN|cosMPN=|PM|•|PN|﹣2的形式,再由余弦定理得到|MN|2=|PM|2+|PN|2﹣2|PM|•|PN|cosMPN,二者联立后再由点P在椭圆方程上可得到最后答案.解答:解:(Ⅰ)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.因此半焦距c=2,长半轴a=3,从而短半轴b=,所以椭圆的方程为(Ⅱ)由,得|PM|•|PN|cosMPN=|PM|•|PN|﹣2.①因为cosMPN≠1,P不为椭圆长轴顶点,故P、M、N构成三角形.在△PMN中,|MN|=4,由余弦定理有|MN|2=|PM|2+|PN|2﹣2|PM|•|PN|cosMPN.②将①代入②,得42=|PM|2+|PN|2﹣2(|PM|•|PN|﹣2).故点P在以M、N为焦点,实轴长为的双曲线上.由(Ⅰ)知,点P的坐标又满足,所以由方程组解得即P点坐标为或点评:本题主要考查椭圆的标准方程.椭圆的标准方程、离心率、第二定义、准线方程、a,b,c的基本关系等都是高考的考点,要熟练掌握.22.(12分)(2008•重庆)设各项均为正数的数列{a n}满足a1=2,a n=a n+2(n∈N*).(Ⅰ)若a2=,求a3,a4,并猜想a2008的值(不需证明);(Ⅱ)记b n=a1a2…a n(n∈N*),若b n≥2对n≥2恒成立,求a2的值及数列{b n}的通项公式.考数列的应用.点:压轴题;归纳猜想型.专题:分(Ⅰ)由题意可知,由此可猜想|a n|的通项为a n=2(﹣2)n﹣1(n∈N*).析:(Ⅱ)令x n=log2a n,S n表示x n的前n项和,则b n=2Sn.由题设知x1=1且;.由此入手能够求出a2的值及数列{b n}的通项公式.解解:(Ⅰ)因a1=2,a2=2﹣2,故,答:由此有a1=2(﹣2)0,a2=2(﹣2)2,a3=2(﹣2)2,a4=2(﹣2)3,、故猜想|a n|的通项为a n=2(﹣2)n﹣1(n∈N*).(Ⅱ)令x n=log2a n,S n表示x n的前n项和,则b n=2Sn.由题设知x1=1且;①.②因②式对n=2成立,有.③下用反证法证明:.由①得.因此数列|x n+1+2x n|是首项为x2+2,公比为的等比数列.故.④又由①知,因此是是首项为,公比为﹣2的等比数列,所以.⑤由④﹣⑤得.⑥对n求和得.⑦由题设知..即不等式22k+1<对k∈N*恒成立.但这是不可能的,矛盾.因此x2≤,结合③式知x2=,因此a2=2*2=.将x2=代入⑦式得S n=2﹣(n∈N*),所以b n==(n∈N*)本题考查数列性质的综合运用,解题时要认真审题.仔细解答,避免出错.点评:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离2.(5分)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.(5分)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.1604.(5分)已知||=1,||=6,•(﹣)=2,则向量与向量的夹角是()A.B.C.D.5.(5分)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)6.(5分)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.7.(5分)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C. D.8.(5分)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.69.(5分)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或210.(5分)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π二、填空题(共5小题,每小题5分,满分25分)11.(5分)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B=.12.(5分)若f(x)=a+是奇函数,则a=.13.(5分)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).14.(5分)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=.15.(5分)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是.三、解答题(共6小题,满分75分)16.(13分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.17.(13分)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.18.(13分)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.19.(12分)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.20.(12分)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M 在x轴上的射影,点Q满足条件:,、求线段QB的中点P 的轨迹方程.21.(12分)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.2009年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•重庆)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【分析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案.【解答】解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心.所以直线与圆的位置关系是相交但直线不过圆心.故选B2.(5分)(2009•重庆)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【分析】由题意求出复数z,代入,复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,可得选项.【解答】解:因为由条件知z=﹣1+2i,则=,故选A.3.(5分)(2009•重庆)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.160【分析】利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.【解答】解:设含x3的为第r+1,则Tr+1=C6r x6﹣r•2r,令6﹣r=3,得r=3,故展开式中x3的系数为C63•23=160.故选D.4.(5分)(2009•重庆)已知||=1,||=6,•(﹣)=2,则向量与向量的夹角是()A.B.C.D.【分析】利用向量的运算法则及向量模的平方即是向量的平方求出,再利用向量的数量积公式求出向量的夹角余弦,求出向量夹角.【解答】解:∵==2.又,∴=3.即cos<a,b>=3=1×6cos<a,b>,得cos<a,b>=,∴a与b的夹角为,故选项为C.5.(5分)(2009•重庆)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)【分析】利用绝对值的几何意义,求出|x+3|﹣|x﹣1|的最大值不大于a2﹣3a,求出a的范围.【解答】解:因为|x+3|﹣|x﹣1|≤4对|x+3|﹣|x﹣1|≤a2﹣3a对任意x恒成立,所以a2﹣3a≥4即a2﹣3a﹣4≥0,解得a≥4或a≤﹣1.故选A.6.(5分)(2009•重庆)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.【分析】本题考查的知识点是古典概型,我们计算出总的滔法种类,再计算满足条件“从中任意舀取4个汤圆,则每种汤圆都至少取到1个”所包含的基本事件个数,然后代入古典概型公式计算,即可得到答案.【解答】解:因为总的滔法C154,而所求事件的取法分为三类,即芝麻馅汤圆、花生馅汤圆、豆沙馅汤圆,取得个数分别按1,1,2;1,2,1;2,1,1三类,故所求概率P==.故选C.7.(5分)(2009•重庆)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C. D.【分析】利用向量的坐标表示可求=1+cos(A+B),结合条件C=π﹣(A+B)可得sin(C+=,由0<C<π可求C【解答】解:因为=又因为所以又C=π﹣(B+A)所以因为0<C<π,所以故选C.8.(5分)(2009•重庆)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.6【分析】先通分得,然后由极限的性质知,由此可以求出a﹣b的值.【解答】解:∵已知==2,∴,∴a=2,b=﹣4;∴a﹣b=6.故选D.9.(5分)(2009•重庆)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或2【分析】三个互不重合的平面把空间分成六个部份有两种情形:一是其中两个平面平行,第三个平面都与它们相交;二是三个平面交于一条直线,考虑到两类即可解决.【解答】解:分两类:①当两个平面平行,第三个平面与它们相交时,有两条交线;②当三个平面交于一条直线时,有一条交线,故选D10.(5分)(2009•重庆)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π【分析】首先由题目中已知三角函数f(x)=sin2x﹣cos2x求周期,需要把函数化为标准型,然后根据周期公式求解即可得到答案.【解答】解:因为f(x)=sin2x﹣cos2x=,所以函数的周期T=,故答案选择B.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•重庆)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B={x|0<x<3} .【分析】要求A与B的交集,先要求出两个集合的区间,解出绝对值不等式得到集合A,根据指数函数的增减性得到集合B,然后取两集合的公共部分即可得到交集.【解答】解:由|x|<3解得﹣3<x<3;由2x>1=20,根据指数函数y=2x为增函数得到x>0∴A={x|﹣3<x<3},B={x|x>0},则A∩B={x|0<x<3}.故答案为:{x|0<x<3}12.(5分)(2009•重庆)若f(x)=a+是奇函数,则a=﹣.【分析】充分不必要条件:若奇函数定义域为R(即x=0有意义),则f(0)=0.或用定义:f(﹣x)=﹣f(x)直接求a.【解答】解:函数的定义域为R,且为奇函数,则f(0)=a+=0,得a+=0,得a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.13.(5分)(2009•重庆)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有36种(用数字作答).【分析】由题意知将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,需要先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果.【解答】解:∵将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,∴先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,共有C24A33=36.故答案为:3614.(5分)(2009•重庆)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=2n+1.【分析】由题设条件得b n====2b n,由此能+1够导出数列{b n}的通项公式b n.【解答】解:由条件得:b n====2b n+1且b1=4所以数列{b n}是首项为4,公比为2的等比数列,则b n=4•2n﹣1=2n+1.故答案为:2n+1.15.(5分)(2009•重庆)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是(1,).【分析】不防设点P(x o,y o)在右支曲线上并注意到x o>a.利用正弦定理求得,进而根据双曲线定义表示出|PF1|和|PF2|代入求得e 的范围.【解答】解:不防设点P(x o,y o)在右支曲线上并注意到x o>a.由正弦定理有,由双曲线第二定义得:|PF1|=a+ex o,|PF2|=ex o﹣a,则有=,得x o=>a,分子分母同时除以a2,易得:>1,解得1<e<+1故答案为(1,)三、解答题(共6小题,满分75分)16.(13分)(2009•重庆)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.【分析】(1)利用两角差的正弦公式及二倍角公式及化简三角函数;再利用三角函数的周期公式求出周期.(2)在y=g(x)上任取一点,据对称行求出其对称点,利用对称点在y=f(x)上,求出g(x)的解析式,求出整体角的范围,据三角函数的有界性求出最值.【解答】解:(1)f(x)===故f(x)的最小正周期为T==8(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)).由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而==当时,时,因此y=g(x)在区间上的最大值为17.(13分)(2009•重庆)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.【分析】(1)甲两株中活一株符合独立重复试验,概率为,同理可算乙两株中活一株的概率,两值相乘即可.(2)ξ的所有可能值为0,1,2,3,4,分别求其概率,列出分布列,再求期望即可.【解答】解:设A k表示甲种大树成活k株,k=0,1,2B l表示乙种大树成活1株,1=0,1,2则A k,B l独立.由独立重复试验中事件发生的概率公式有P(A k)=C2k()k()2﹣k,P(B l)=C21()l()2﹣l.据此算得P(A0)=,P(A1)=,P(A2)=.P(B0)=,P(B1)=,P(B2)=.(1)所求概率为P(A1•B1)=P(A1)•P(B1)=×=.(2)解法一:ξ的所有可能值为0,1,2,3,4,且P(ξ=0)=P(A0•B0)=P(A0)•P(B0)=×=,P(ξ=1)=P(A0•B1)+P(A1•B0)=×+×=,P(ξ=2)=P(A0•B2)+P(A1•B1)+P(A2•B0)=×+×+×=,P(ξ=3)=P(A1•B2)+P(A2•B1)=×+×=.P(ξ=4)=P(A2•B2)=×=.综上知ξ有分布列ξ01234P从而,ξ的期望为Eξ=0×+1×+2×+3×+4×=(株).解法二:分布列的求法同上,令ξ1,ξ2分别表示甲乙两种树成活的株数,则ξ1:B(2,),ξ2:B(2,)故有Eξ1=2×=,Eξ2=2×=1从而知Eξ=Eξ1+Eξ2=.18.(13分)(2009•重庆)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.【分析】(Ⅰ)因为”函数在x=0处取得极值“,则有f'(0)=0,再由“曲线y=f(x)在(1,f(1))处的切线与直线x﹣2y+1=0相互垂直”,则有f'(1)=2,从而求解.(Ⅱ)由(Ⅰ)可得到:,令g'(x)=0,有x2﹣2x+k=0,因为还有参数k,由一元二次方程,分三种情况讨论,(1)当△=4﹣4k<0,函数g (x)在R上为增函数,(2)当△=4﹣4k=0,g(x)在R上为增函数(3)△=4﹣4k>0,方程x2﹣2x+k=0有两个不相等实根,则由其两根来构建单调区间.【解答】解:(Ⅰ)因f(x)=ax2+bx+k(k>0),故f'(x)=2ax+b又f(x)在x=0处取得极值,故f'(x)=0,从而b=0,由曲线y=f(x)在(1,f(1))处的切线与直线x+2y+1=0相互垂直可知该切线斜率为2,即f'(1)=2,有2a=2,从而a=1(6分)(Ⅱ)由(Ⅰ)知:、令g'(x)=0,有x2﹣2x+k=0(8分)(1)当△=4﹣4k<0,即当k>1时,g'(x)>0在R上恒成立,故函数g(x)在R上为增函数(10分)(2)当△=4﹣4k=0,即当k=1时,,K=1时,g(x)在R上为增函数(12分)(3)△=4﹣4k>0,即当0<k<1时,方程x2﹣2x+k=0有两个不相等实根当是g'(x)>0,故g(x)在上为增函数当时,g'(x)<0,故g(x)在上为减函数当时,g'(x)>0,故g(x)在上为增函数(14分)19.(12分)(2009•重庆)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.【分析】(Ⅰ)根据线面平行的判定定理可知AD∥平面BCS,则从而A点到平面BCS的距离等于D点到平面BCS的距离,从而DS为点A到平面BCS的距离,在Rt△ADS中求出DS即可;(Ⅱ)过E点作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,根据二面角平面角的定义可知∠EGH为二面角E﹣CD﹣A的平面角,过E点作EF ∥BC,交CS于点F,连接GF,在Rt△FEG中,求出此角即可.【解答】解:(Ⅰ)因为AD∥BC,且BC⊂平面BCS,所以AD∥平面BCS,从而A点到平面BCS的距离等于D点到平面BCS的距离.因为平面CSD⊥平面ABCD,AD⊥CD,故AD⊥平面CSD,从而AD⊥SD,由AD∥BC,得BC⊥DS,又由CS⊥DS知DS⊥平面BCS,从而DS为点A到平面BCS的距离,因此在Rt△ADS中(Ⅱ)如图,过E电作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,故∠EGH为二面角E﹣CD﹣A的平面角,记为θ,过E点作EF∥BC,交CS于点F,连接GF,因平面ABCD⊥平面CSD,GH⊥CD,易知GH⊥GF,故.由于E为BS边中点,故,在Rt△CFE中,,因EF⊥平面CSD,又EG⊥CD故由三垂线定理的逆定理得FG⊥CD,从而又可得△CGF~△CSD,因此而在Rt△CSD中,,在Rt△FEG中,可得,故所求二面角的大小为20.(12分)(2009•重庆)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M 在x轴上的射影,点Q满足条件:,、求线段QB的中点P 的轨迹方程.【分析】(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b >0).设,由准线方程.由此能够求出椭圆方程.从而得到点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(Ⅱ)设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+y y=4.因为,(1﹣x Q﹣y Q)•(1﹣x N﹣y n)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.由此可导出动点P的轨迹方程为.【解答】解:(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b>0).设,由准线方程得.由得,解得a=2,c=,从而b=1,椭圆方程为.又易知C,D两点是椭圆的焦点,所以,|MC|+|MD|=2a=4从而|MC|•|MD|,当且仅当|MC|=|MD|,即点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(II)如图(20)图,设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+(y M)2=4 ①因为,(1﹣x Q,﹣y Q)•(1﹣x N,﹣y N)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.②记P点的坐标为(x P,y P),因为P是BQ的中点所以2x P=x Q+x B,2y P=y Q+y B由因为x N2+y N2=1,结合①,②得===故动点P的轨迹方程为21.(12分)(2009•重庆)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.【分析】(1)利用等比数列的性质,用a1、d表示出a2009、a2008,结合已知,列方程即可解出a1、d,进而求出a n.(2)通过探求数列的周期性或利用反证法求解.【解答】解:(I)因a1,a2009,a2008,a1006是公比为d的等比数列,从而a2009=a1d,a2008=a1d2,由S2009=S2007+12a1得a2008+a2009=12a1,解得d=3或d=﹣4(舍去).∴d=3,又S3=3a1+3d=15.解得a1=2从而当n≤1005时,a n=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1当1006≤n≤2009时,由a1,a2009,a2008,a1006是公比为d的等比数列得a n=a1d2009﹣(n﹣1)=a1d2010﹣n(1006≤n≤2009)因此(II)由题意a n2=a n﹣12a n+12(1<n<m),a m2=a m﹣12a12,a12=a m2a22得有①得④由①,②,③得a1a2a n=(a1a2a n)2,故a1a2a n=1.⑤又,故有.⑥下面反证法证明:m=6k若不然,设m=6k+p,其中1≤p≤5若取p=1即m=6k+1,则由⑥得a m=a6k+1=a1,而由③得,得a2=1,由②得,而④及⑥可推得a n=1(1≤n≤m)与题设矛盾同理若P=2,3,4,5均可得a n=1(1≤n≤m)与题设矛盾,因此m=6k为6的倍数由均值不等式得由上面三组数内必有一组不相等(否则a1=a2=a3=1,从而a4=a5═a m=1与题设矛盾),故等号不成立,从而a1+a2+a3++a6>6又m=6k,由④和⑥得a72++a m2=(a72++a122)++(a6k﹣52++a6k2)=(k﹣1)(a12++a62)=因此由⑤得a1+a2+a3++a6+a72++a m2>6+6(k﹣1)=6k=m=ma1a2a3a m。

相关文档
最新文档