第八章 交通流分配(Wardrop平衡原理)解析

合集下载

第八章_交通分配

第八章_交通分配

在交通分配理论中,以 Wardrop第一原理为基本 指导思想的分配方法比较多。国际上通常将交通 分配方法分为平衡分配和非平衡分配两大类。
对于完全满足Wardrop原理定义的平衡状态,则称 为平衡分配方法;
对于采用启发式方法或其他近似方法的分配模型 ,则称为非平衡分配方法。
【例题】
设OD之间交通量为q=2000辆,有两条径路a与b。径 路a行驶时间短,但是通过通行能力小,径路b行驶 时间长,但通行能力大。假设各自的行驶时间( min)与流量的关系:
ta t0[1 (Va / ca ) ]
零流阻抗
实际通行能力
2.节点处的阻抗
节点处的阻抗是指车辆在交通网络节点处主要指在交叉口处的 阻抗。交叉口阻抗与交叉口的形式、信号控制系统的配时、交 叉口的通过能力等因素有关。在城市交通网络的实际出行时间 中,除路段行驶时间外,交叉口延误占有较大的比重,特别是 在高峰期间,交叉口拥挤比较严重时,交叉口延误可能会超过 路段行驶时间。
1、交通小区划分 交通调查和规划前,需要先将规划区域划
分成若干交通小区。是进行现状OD调查和 未来OD预测的基础。 2、交通网络的组成 在城市交通规划中,主要对快速路、主干 道、次干转换
交通小区和网络确定后,需要将小区间OD量作用点转移到与该 小区质心比较靠近的交通网络节点上。
当饱和度较大 x>0.67 时,该公式不再适用
已有的城市道路交通分配理论一直忽略节 点阻抗这个问题,借用从城市间公路上获 得的行驶时间的BPR函数作为城市道路网上 的阻抗,只计算路段上的阻抗。
三、路径与最短径路
1.路段 交通网络上相邻两个节点之间的交通线路称作“路段”。
2.路径 交通网络上任意一OD点对之间,从发生点到吸引点一串连 通的路段的有序排列叫做这一OD点对之间的路径。一个OD 点对点之间可以有多条路径。

交通流分配

交通流分配
(Studies出版之后)
19586 Charnes & Cooper 1959 Charnes & Cooper
1963 Jorgensen
1965 1966
1968
Overgaard Jewell
Braess
除了 Studies之外的相关研究
Charnes and Cooper (1958) 按照总路段流的积分函 数形式,提出了固定需求下交通网络均衡配流模型。后 来,他们利用求解线性规划的方法,针对费用函数的分 段线性形式,给出求解小规模网络下的模型算法。
• 2005年9月, WorldCat List of Records 的研究表明,全 世界373个图书馆收藏了Studies ,13个图书馆拥有该书 的兰德版本。7个图书馆拥有该书的西班牙版本。
• 2005年10月通过Web of Science 搜索发现,321篇文章引 用了Studies
Studies出版之前有关 网络均衡的研究
Knight
1924
Duffin 1947
Nash Wardrop
Prager
1951 1952
1954
1956
相关研究
• Knight (1924) 描述了一个包含两条路径的路网中的均衡和有效性 条件,同时纠正了Pigou(1918)文中的一个错误。
• “Suppose that between two points there are two highways, one of which is broad enough to accommodate without crowding all the traffic which may care to use it, but is poorly graded and surfaced, while the other is a much better road, but narrow and quite limited in capacity. If a large number of trucks operate between the two termini and are free to choose either of the two routes, they will tend to distribute themselves between the roads in such proportions that the cost per unit of transportation, or effective returns per unit of investment, will be the same for every truck on both routes. As more trucks use the narrower and better road, congestion develops, until a certain point it becomes equally profitable to use the broader but poorer highway.”

第八讲交通流分配

第八讲交通流分配
得到P标号的点进行下一步新的标号(第K步);考虑所有与节点i相邻且没
有标上P标号的点{j},修改它们的T标号:
Tk(j)=min[T(j),P(i)+dij]
式中, dij——i到j的距离(路权);
T(j)——第K步标号前j点的T标号。
在所有的T标号(包括没有被修改的)中,比选出最小的T标号Tk(j0):
在所有T标号中,节点6为最小,给节点6标上P标号,即
P(6)= T6(6)=4。

步骤7:节点6刚得到P标号。节点9与6相邻,且为T标
号,修改9的T标号:
• T7(9)=min[T(9),P(6)+d69]=min[∞,4+2]=6

在所有T标号中,节点7为最小,给节点7标上P标号,
即P(7)= T4(7)=4。
T5(8)=min[T(8),P(5)+d58]=min[∞,3+2]=5
在所有T标号中,节点3为最小,给节点3标上P标号,即
P(3)= T3(3)=4。
步骤6:节点3刚得到P标号。节点6与3相邻,且为T标号,
修改6的T标号:
T6(6)=min[T(6),P(3)+d36]=min[4,4+2]=4
Tk(j0)=min[Tk(j),T(r)]
式中, j0——最小T标号所对应的节点;
T(γ)——与i点不相邻点r的T标号。
给点j0标上P标号:P(j0)= Tk(j0),第K步标号结束。
步骤3 当所有节点中已经没有T标号,算法结束,得到从起点1到其它各点
的最短路权;否则返回第二步。
例题8.1
用Dijkstra法计算图7-1所示路网从节点1到各
② 小的道路交叉点不作节点考虑,而在与之

第八章 交通流分配(Wardrop平衡原理)

第八章 交通流分配(Wardrop平衡原理)

思考习题

Braess悖论
1
qod=6
o 1 : t1 ( x1 ) 50 x1
o d
2 d : t2 ( x2 ) 50 x2 o 2 : t3 ( x3 ) 10 x3 1 d : t 4 ( x 4 ) 10 x 4
2
2 1 : t 5 ( x 5 ) 10 x 5
t 3 ( x3 ) 50 0.01x3
t 4 ( x 4 ) 0.1x 4
解:利用用户均衡分配法和系统均衡分配法得, 径路1(路段1+路段2) ,径路2(路段3+路段4) 的交通量:
h1 300 , h2 300 (辆)
径路1(路段1+路段2) ,径路2(路段3+路段4) 的旅行时间:
1
qod 6 o 1 : t1 ( x1 ) 50 x1 2 d : t2 ( x2 ) 50 x2
d
o
o 2 : t3 ( x3 ) 10 x3 1 d : t4 ( x4 ) 10 x4 co1d co2d 83
2
(1)求解用户均衡条件下的各路段流量及出行成本

反映内容不一样


一般情况下,平衡结果不一样
小结

Wardrop第一、第二平衡原理

考虑拥挤对路网的影响 能够解决一些实际分配问题 用户很难确切知道路网的交通状态 用户通过估计时间选择最短路径 某些用户在路径选择上存在偏好

Wardrop平衡原理也存在缺陷

思考习题

Braess悖论
堵——车辆选择最短、次短——Q继续增加——所有路径 都有被选择的可能。
交通平衡

交通流分配

交通流分配

对于公路行驶时间函数的研究,被广泛应用的是由美国 道路局(Bureau of Public Road,BPR)开发的函数,被称 为BPR函数,形式为: q β
t a = t 0 [1 + α (
a
ca
) ]
式中:ta:路段a上的阻抗; t0 :零流阻抗,即路段上为空静状态时车辆自由行驶所 需要的时间; qa :路段a上的交通量; ca :路段a的实际通过能力,即单位时间内路段实际可通 过的车辆数; a、b :阻滞系数,在美国公路局交通流分配程序中,a 、b 参数的取值分别为a=0.15、b=4。也可由实际数据用 回归分析求得。
【例题8-1】计算下图 8-2 所示路网从节点1到节 点9的最短径路。
1 2 4 2 1 2 2 2 5 1 2 2 2 2 6 3
7
2
8
2
9
从图上可以看出,从节点1到节点9的最短径路 为:1—4—5—6—9;最短路权为6。
四、交通平衡问题 (一)Wardrop平衡原理 如果两点之间有很多条道路而这两点之间的交通量 又很少的话,行驶车辆显然会沿着最短的道路行走。 随着交通量的增加,最短径路上的交通流量也会随之 增加。增加到一定程度之后,这条最短径路的行驶时 间会因为拥挤或堵塞而变长,最短径路发生变化,这 一部分行驶车辆将会选择新的行驶时间次短的道路。 随着两点之间的交通量继续增加。两点之间的所有道 路都有可能被利用。
二、交通阻抗 交通阻抗(或者称为路阻)是交通流分配中经常提 到的概念,也是一项重要指标,它直接影响到交通流 径路的选择和流量的分配。 道路阻抗在交通流分配中可以通过路阻函数来描述 ,所谓路阻函数是指路段行驶时间与路段交通负荷, 交叉口延误与交叉口负荷之间的关系。在具体分配过 程中,由路段行驶时间及交叉口延误共同组成出行交 通阻抗。

pA第8章交通量分配一

pA第8章交通量分配一
❖ 对于城市之间非拥挤公路网的规划设计过程 中的交通流分配是比较合适的,但对于既有 的城市内部拥挤的交通网络,该方法的结果 与网络实际情况出入甚大。
❖ 2、1952 年,著名交通问题专家 Wardrop 提 出了网络平衡分配的第一、第二定理,人们 开始采用系统分析方法和平衡分析方法来研 究交通拥挤时的交通流分配,带来了交通流 分配理论的一次大的飞跃。
❖ 例题
四 、交通平衡问题
❖ (一) Wardrop平衡原理 ❖ 如果所有的道路利用者(即驾驶员)都准确知道
各条道路所需的 行驶时间 行走时间 并选择 走行时间 行驶时间 最短的道路,最终两点之 间被利用的各条道路的 走行时间 行驶时间 会相等。没有被利用的道路的 走行时间 行驶 时间 更长。这种状态被称之为道路网的平衡 状态。
❖ 确定性分配能够较好的反映网络的拥挤性, 随机性分配能够较好地反映出行选择行为的 随机性,但是要真正地符合路网实际情况, 还有更重要更基本的交通需求的时变性需要 反映出来。
❖ 也就是说,需要一种交通流分配方法能够将 路网上交通流的拥挤性、路径选择的随机性、 交通需求的时变性综合集成地刻画反映出来, 这正是研究交通问题的人们一直积极探索的 领域。
❖ 首先,人们进行了确定性的分配研究,其前 提是假设出行者能够精确计算出每条 路 径 路 的阻抗,从而能作出完全正确的选择决定,
且每个出行者的计算能力和水平是相同的。 可见确定性分配反映了网络的拥挤特性,反 映了路阻随流量变化的实际,该方法是一次 理论的进步。
❖ 但是,进一步研究实际网络中出行者的出行 行为发现,现实中出行者对路段阻抗的掌握 只能是估计而得。因为出行者的计算能力和 水平是各异的,对同一路段不同出行者的估 计值不会完全相同。
(二)最短径路算法

交通规划 第八章分配交通量

交通规划 第八章分配交通量

5
一、基本概念

交通阻抗 阻抗:路段上或节点处的运行时间或广义费用 路阻函数:交通阻抗与交通量的关系 路段上:流量与行驶时间的关系 节点处:交叉口的负荷与延误的关系 路段阻抗: 轨道交通:阻抗与客流量无关 (flow independent) 道路:阻抗与交通量曲线关系 (flow dependent) Q-V特性 或 路阻函数

q1
0
t1 ( )d t2 ( )d min
0
q2
E
s. t. q1 q2 q, q1 0, q2 0
q1
q2
21
三、平衡分配方法

Beckmann交通平衡模型:
min Z ( x) t a ( )d
xa a 0
各路段阻抗函数积分和最小化 交通流守恒:
19
三、平衡分配方法
c1 min(c1 , c2 ) c1 min(c1 , c2 )

if f1 0 if f1 0
c2 min(c1 , c2 ) c2 min(c1 , c2 )
if f k 0 if f k 0
if f 2 0 if f 2 0
f 2 100 f1

解联立方程 c1 c2 5 0.1 f1 (10 0.025f 2 ) 5 0.1 f1 [10 0.025(100 f1 )] 0.125f1 7.5 因为 c1 c2 ,即 c1 c2 0 ,
c1 c2 11 所以 f1 60 ,f 2 40 ,
9
一、基本概念
最短路径算法:Dijkstra法 初始化:给起点标上P标号0,其他节点标上T标号∞。 重复以下步骤,直到全部节点都得到P标号 →从刚得到P标号的节点出发,计算P标号与相连路段阻 抗之和,作为相邻节点的T标号备选; →如果备选T标号小于节点原有的T标号,则以备选T标 (s,5) 号作为该节点的T标号; a →对T标号最小的节点,将其 (s,0) (d,10) T标号定为P标号。 (s,4) b →需辨识最短路径时,P标号 中应附带路径信息。 c 最短路径辨识:按P标号及其路 d (s,2) 径信息,从终点反推。 (b,6)

wardrop均衡原理

wardrop均衡原理

wardrop均衡原理朋友,今天咱们来唠唠这个Wardrop均衡原理。

你可能一听这名字,觉得特别高大上,有点晕乎乎的。

其实啊,这原理就像是交通世界里的一种小默契呢。

你想啊,在马路上,车来车往的。

每辆车的司机都有自己的小算盘,都想走最省时、最方便的路。

这就跟我们平常出门一样,要是有两条路能到同一个地方,一条堵得要死,一条比较顺畅,那咱肯定想走顺畅的呀。

Wardrop均衡原理说的就是这么个事儿,不过是从整体交通网络的角度来看的。

在这个原理里呢,有两种均衡情况。

一种叫用户均衡,就像是一群小伙伴去玩,每个人都按照自己觉得最舒服、最快捷的方式走。

比如说,早上大家都赶着去上班或者上学,那每个人都会选择自己觉得最不堵的路。

这时候呢,就会出现一种平衡状态,就是所有在路上的人都觉得,我换条路也不会更快啦,这就是用户均衡啦。

这就好像是大家在无形之中达成了一种默契,你走你的,我走我的,但是整体上就像被一只无形的手指挥着,达到了一种相对稳定的状态。

还有一种是系统最优均衡呢。

这就有点像有个超级聪明的交通指挥家在天上看着,他能看到整个交通网络的情况,然后让大家走的路,是能让整个交通系统最顺畅的。

这种情况下,可能有些车要牺牲一点自己的小利益,走一些相对不那么理想的路,但是这样能让整个交通网络的效率最高。

这就好比是大家为了集体的利益,稍微委屈一下自己。

你看啊,这Wardrop均衡原理在现实生活里可太常见了。

比如说在城市的交通高峰期,有的路突然车流量就大起来了,那就是因为很多司机都觉得这条路是个好选择,都往这儿挤。

这时候如果没有一些交通管制措施,就很容易乱套。

就像一群小蚂蚁都往一个小洞口挤,最后谁也走不了。

但是呢,这原理也不是完美的。

有时候它也会被一些突发情况打乱。

比如说路上突然出了个交通事故,那原本均衡的状态就被打破啦。

这时候那些按照均衡原理走的司机们就会开始重新找路,整个交通又会陷入一种混乱,然后再慢慢调整,重新寻找新的均衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


用户均衡(User Equilibrium, UE)

所有被使用的道路的行驶时间相等且等于最小行驶时间 其他未被使用的道路的行驶时间大于或等于最小行驶时间
Wardrop第一平衡原理
ta=10+0.02qa
o

tb=15+0.005qb
d
q=2000
设OD间交通量为q=2000辆,有2条路径a和b。径路a行驶时间短, 但是通行能力小,径路b行驶时间长,但通行能力大。假设各自的 行驶时间min与流量关系如图所示,根据 Wardrop第一平衡原理 求径路a与b上分配的交通量。
t 3 ( x3 ) 50 0.01x3
t 4 ( x 4 ) 0.1x 4
解:利用用户均衡分配法和系统均衡分配法得, 径路1(路段1+路段2) ,径路2(路段3+路段4) 的交通量:
h1 300 , h2 300 (辆)
径路1(路段1+路段2) ,径路2(路段3+路段4) 的旅行时间:
2
(2)求解用户均衡条件下的各路段流量及出行成本, 并与(1)的结果进行比较并试说明之。
2.Braess 奇论(Paradox)
奇论:为提高路网的服务水平而制定的交通政策,在用 户均衡状态下反而导致服务水平的下降。
2 1 2
1 3ቤተ መጻሕፍቲ ባይዱ4
3

OD交通量: t13 600 辆
路阻函数:
t1 ( x1 ) 50 0.01x1 (分) t 2 ( x2 ) 0.1x2 (分)
不等!?
Wardrop平衡原理

Wardrop第一、第二平衡原理比较

相同点:基于网络平衡 优化目标不一样


UE:用户自身出行成本最小 SO:路网总出行成本最小 UE:道路使用者路径选择准则 SO:道路规划者系统总体追求目标

反映内容不一样


一般情况下,平衡结果不一样
小结

Wardrop第一、第二平衡原理
c1 83, c 2 83 (分)
目标函数值: 用户均衡分配法 Z ue 399 (辆分) ,系统最优分配法
Z so 498
2 1 2 5 3 4
1
3

t 5 ( x5 ) 10 0.01x5
现在道路规划部门计划提高该地区道路的服务 水平(减少总行驶时间),计划新建一条道路(路 段5) 。假设路段3、路段5和路段2形成径路 3,这时,使用用户均衡分配法求出的径路交通 量和行驶时间分别为:

考虑拥挤对路网的影响 能够解决一些实际分配问题 用户很难确切知道路网的交通状态 用户通过估计时间选择最短路径 某些用户在路径选择上存在偏好

Wardrop平衡原理也存在缺陷

思考习题

Braess悖论
1
o d
qod 6 o 1 : t1 ( x1 ) 50 x1 2 d : t2 ( x2 ) 50 x2 o 2 : t3 ( x3 ) 10 x3 1 d : t4 ( x4 ) 10 x4 co1d co2d 83
Wardrop第一平衡原理

UE实例
ta=10+0.02qa
o
tb=15+0.005qb
d
q=2000
10 + 0.02qa = 15 + 0.005qb qa + qb = 2000 qa ,qb≥0 qb = 0.8q-200
qa = 600, qb = 1400; ta= tb=22
Wardrop第二平衡原理
2
(1)求解用户均衡条件下的各路段流量及出行成本
思考习题

Braess悖论
1
qod=6
o 1 : t1 ( x1 ) 50 x1
o d
2 d : t2 ( x2 ) 50 x2 o 2 : t3 ( x3 ) 10 x3 1 d : t 4 ( x 4 ) 10 x 4 2 1 : t 5 ( x 5 ) 10 x 5
第八章 交通流分配
Wardrop平衡原理
交通平衡
【思考】Q小——车辆沿最短路径——随着Q增加——拥
一、道路网平衡状态的定义
若所有道路使用者(驾驶员)都准确知道各条道路所 需的行驶时间,并选择行驶时间最短的道路,最终被利用 的各条道路的行驶时间会相等,没被利用的道路的行驶时 间更长。这种状态叫道路网平衡状态。
二、Wardrop平衡原理

SO实例
ta=10+0.02qa
o
tb=15+0.005qb
d
q=2000
min: C=ta· qa+tb· qb qa + qb = 2000 s.t. qa ,qb≥0 解得:qa =500, qb = 1500; ta=20,tb=22.5;C=43750
UE的结果:qa = 600, qb = 1400; ta= tb=22; C=44000
h1 200 , h2 200 , h3 200 (辆)
c1 92, c2 92, c3 92 (分)
目标函数值: 用户均衡分配法 Z ue 386 (辆分) ,系统最优分配 法 Z so 552 (辆分)
用户均衡分配法:在新路规划之前,目标函数值为 399,之后为 386。目标函数值向着最佳方向变动, 径路行驶时间在新路规划前 83 分, 之后变成了 92 分。 系统最优分配:目标函数值由新路规划前的 498 变成 552。

Wardrop第二平衡原理(System Optiminzation, SO)

在系统平衡条件下,拥挤的路网上交通流应该按照平均或总 的出行成本最小为依据来分配。 系统最优分配模型
min : Z ( X ) xa t a ( xa )
a

f krs qrs k s.t. rs fk 0 xa 路段a上的交通流量; t a 路段a的交通阻抗,也称行驶 时间; t a ( xa ) 路段a以流量为自变量的阻抗 函数,也称行驶时间函 数; f krs 出发地为r目的地为s的OD间的第k条径路上的流量;
堵——车辆选择最短、次短——Q继续增加——所有路径 都有被选择的可能。
交通平衡

交通分配中,实际路网一般有很多OD点对——各条路径 有多条路段组成——这些路段排列组合成无数条不同路 径——OD点对间多条路径。
Wardrop第一平衡原理

Wardrop第一平衡原理

如果道路使用者都确切知道网络的交通状态并试图选 择最短路径时,网络将会达到平衡状态。
相关文档
最新文档