2021年中考数学模拟试题解析版

合集下载

2021年上海市黄浦区中考数学模拟试卷解析版

2021年上海市黄浦区中考数学模拟试卷解析版

2021年上海市黄浦区中考数学模拟试卷解析版一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.(4分)已知线段a =2,b =4,如果线段b 是线段a 和c 的比例中项,那么线段c 的长度是( ) A .8B .6C .2√2D .2【解答】解:若b 是a 、c 的比例中项, 即b 2=ac . 42=2c , 解得c =8, 故选:A .2.(4分)在Rt △ABC 中,∠C =90°,如果AB =m ,∠A =α,那么AC 的长为( ) A .m •sin αB .m •cos αC .m •tan αD .m •cot α【解答】解:由题意,得 cos A =ACAB, AC =AB •cos A =m •cos α, 故选:B .3.(4分)已知一个单位向量e →,设a →、b →是非零向量,那么下列等式中正确的是( ) A .1|a →|a →=e →B .|e →|a →=a →C .|b →|e →=b →D .1|a →|a →=1|b →|b →【解答】解:A 、1|a →|•a →与e →的模相等,方向不一定相同.故错误.B 、正确.C 、|b|→e →与b →的模相等,方向不一定相同,故错误. D 、1|a →|•a →与1|b →|•b →的模相等,方向不一定相同,故错误.故选:B .4.(4分)已知二次函数y =x 2,如果将它的图象向左平移1个单位,再向下平移2个单位,那么所得图象的表达式是( ) A .y =(x +1)2+2B .y =(x +1)2﹣2C .y =(x ﹣1)2+2D .y =(x ﹣1)2﹣2【解答】解:二次函数y =x 2,将它的图象向左平移1个单位,再向下平移2个单位后得到的解析式为y =(x +1)2﹣2. 故选:B .5.(4分)在△ABC 与△DEF 中,∠A =∠D =60°,AB DF=AC DE,如果∠B =50°,那么∠E的度数是( ) A .50°B .60°C .70°D .80°【解答】解:∵∠A =∠D =60°,AB DF=AC DE,∴△ABC ∽△DFE ,∴∠B =∠F =50°,∠C =∠E =180°﹣60°﹣50°=70° 故选:C .6.(4分)如图,点D 、E 分别在△ABC 的两边BA 、CA 的延长线上,下列条件能判定ED ∥BC 的是( )A .AD AB=DE BCB .AD AC=AE ABC .AD •AB =DE •BCD .AD •AC =AB •AE【解答】解:∵∠EAD =∠CAB , ∴当AE AC=AD AB,即AD •AC =AB •AE , ∴ED ∥BC , 故选:D .二、填空题:(本大题共12题,每题4分,满分48分) 7.(4分)计算:2(3b →−2a →)+(a →−2b →)= ﹣3a →+4b →.【解答】解:2(3b →−2a →)+(a →−2b →)=6b →−4a →+a →−2b →=−3a →+4b →, 故答案为﹣3a →+4b →.8.(4分)如图,在△ABC 中,点D 、E 分别在△ABC 的两边AB 、AC 上,且DE ∥BC ,如果AE =5,EC =3,DE =4,那么线段BC 的长是325.【解答】解:∵DE ∥BC , ∴△ADE ∽△ABC , ∴DE BC =AE AC ,∴4BC=58,∴BC =325, 故答案为325.9.(4分)如图,已知AD ∥BE ∥CF ,它们依次交直线l 1、l 2于点A 、B 、C 和点D 、E 、F .如果AB BC=23,DF =15,那么线段DE 的长是 6 .【解答】解:∵AD ∥BE ∥CF , ∴AB BC=DE EF=23,∵DF =15, ∴DE EF=DE DF−DE=DE 15−DE=23,解得:DE =6, 故答案为:610.(4分)如果点P 是线段AB 的黄金分割点(AP >BP ),那么BPAP 的值是 √5−12.【解答】解:∵点P 是线段AB 的黄金分割点(AP >BP ),∴BP AP=AP AB=√5−12. 故答案为√5−12. 11.(4分)写出一个对称轴是直线x =1,且经过原点的抛物线的表达式 答案不唯一(如 y =x 2﹣2x ) .【解答】解:符合的表达式是 y =x 2﹣2x , 故答案为 y =x 2﹣2x .12.(4分)如图,在Rt △ABC 中,∠ABC =90°,BD ⊥AC ,垂足为点D ,如果BC =4,sin ∠DBC =23,那么线段AB 的长是 2√5 .【解答】解:在Rt △BDC 中, ∵BC =4,sin ∠DBC =23,∴CD =BC ×sin ∠DBC =4×23=83, ∴BD =√BC 2−CD 2=4√53, ∵∠ABC =90°,BD ⊥AC , ∴∠A =∠DBC , 在Rt △ABD 中, ∴AB =BD sin∠A =4√53×32=2√5, 故答案为:2√5.13.(4分)如果等腰△ABC 中,AB =AC =3,cos ∠B =13,那么cos ∠A =79.【解答】解:过点A 作AD ⊥BC ,垂足为D ,过点C 作CE ⊥AB ,垂足为E , ∴∠ADB =90°∴在△ADC 中,cos ∠B =BD AB =13, ∴BD =13AB =1.∵AB =AC ,AD ⊥BC ∴BD =DC , ∴BC =2,∴AD =√AB 2−BD 2=√32−12=2√2 ∵12AB •CE =12BC ⋅AD ,∴CE =BC⋅AD AB=2×2√23=4√23, ∴AE =√AC 2−CE 2=73∴cos ∠A =AE AC =733=79,故答案为79.14.(4分)如图,在△ABC 中,BC =12,BC 上的高AH =8,矩形DEFG 的边EF 在边BC 上,顶点D 、G 分别在边AB 、AC 上.设DE =x ,矩形DEFG 的面积为y ,那么y 关于x 的函数关系式是 y =−32x 2+12x .(不需写出x 的取值范围).【解答】解:∵四边形DEFG 是矩形,BC =12,BC 上的高AH =8,DE =x ,矩形DEFG 的面积为y , ∴DG ∥EF , ∴△ADG ∽△ABC , ∴8−x 8=DG 12,得DG =3(8−x)2,∴y =x ⋅3(8−x)2=−32x 2+12x , 故答案为:y =−32x 2+12x .15.(4分)如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC =6厘米,长CD =16厘米的矩形.当水面触到杯口边缘时,边CD 恰有一半露出水面,那么此时水面高度是 9.6 厘米.【解答】解:如图所示:作BE ⊥AE 于点E , 由题意可得,BC =6cm ,CF =12DC =8cm , 故BF =√FC 2+BC 2=√62+82=10(cm ), 可得:∠CFB =∠BAE ,∠C =∠AEB , 故△BFC ∽△BAE , ∴BC EB =FB AB ,∴6BE=1016,解得:BE =9.6. 故答案为:9.6.16.(4分)在△ABC 中,AB =12,AC =9,点D 、E 分别在边AB 、AC 上,且△ADE 与△ABC 相似,如果AE =6,那么线段AD 的长是 8或92 .【解答】解:如图 ∵∠DAE =∠BAC ,∴当△ADE ∽△ABC , ∴AB AC =AD AE ,即129=AD 6,解得:AD =8, ∴当△AED ∽△ABC , ∴AB AC =AE AD ,即129=6AD,解得:AD =92, 故答案为:8或9217.(4分)如图,在△ABC 中,中线BF 、CE 交于点G ,且CE ⊥BF ,如果AG =5,BF =6,那么线段CE 的长是92.【解答】解:如图,延长AG 交BC 于K .∵点G 是△ABC 的重心,∴AG =2GK ,BG =2GF ,CG =2EG ,∵AG =5,BF =6, ∴GK =52,BG =4, ∵CE ⊥BF , ∴∠BGC =90°,∴BC =2GK =5,CG =√BC 2−BG 2=√52−42=3, ∴EG =12CG =32, ∴EC =3+32=92. 故答案为92.18.(4分)如图,在△ABC 中,AB =AC ,点D 、E 在边BC 上,∠DAE =∠B =30°,且AD AE=32,那么DE BC的值是13√318−1 .【解答】解:∵AB =AC , ∴∠C =∠B =30°, ∵∠DAE =∠B =30°, ∴∠DAE =∠B =∠C , ∵∠AED =∠BEA , ∴△ADE ∽△BAE , ∴AD AB=AE BE=DE AE,∴AE 2=DE ×BE , 同理:△ADE ∽△CDA , ∴AD CD=DE AD,∴AD 2=DE ×CD , ∴AD 2AE =CD BE=(32)2=94,设CD =9x ,则BE =4x ,∵AD AB=AE BE,∴AB =AD AE ×BE =32×4x =6x , 作AM ⊥BC 于M ,如图所示: ∵AB =AC , ∴BM =CM =12BC , ∵∠B =30°,∴AM =12AB =3x ,BM =√3AM =3√3x , ∴BC =2BM =6√3x ,∴DE =BE +CD ﹣BC =13x ﹣6√3x , ∴DE BC=√3x 6√3x =13√318−1;故答案为:13√318−1.三、解答题:(本大题共7题,满分78分) 19.(10分)计算:cos30°tan60°−sin60°−cot45°.【解答】解:原式=√32√3−√321=0.20.(10分)已知,如图,点E 在平行四边形ABCD 的边CD 上,且DE CE=12,设AB →=a →,AD →=b →.(1)用a →、b →表示AE →;(直接写出答案)(2)设AE →=c →,在答题卷中所给的图上画出a →−3c →的结果.【解答】解:(1)∵DE CE=12,即DE =12CE ,DE =13DC ,AE →=13a →+b →(2)如图所示:延长AE 、BC 交于G ,则即为a →−3c →的结果.∵四边形ABCD 是平行四边形 ∴AD ∥BC ∴DE CE=AE EG=12∴AG =3AE 又∵AE →=c →∴=3 ∴=a →−3c →.21.(10分)某数学小组在郊外的水平空地上对无人机进行测高实验.如图,两台测角仪分别放在A 、B 位置,且离地面高均为1米(即AD =BE =1米),两台测角仪相距50米(即AB =50米).在某一时刻无人机位于点C (点C 与点A 、B 在同一平面内),A 处测得其仰角为30°,B 处测得其仰角为45°.(参考数据:√2≈1.41,√3≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F (点F 与点A 、B 、C 在同一平面内),此时于A 处测得无人机的仰角为40°,求无人机水平飞行的平均速度.(单位:米/秒,结果保留整数)【解答】解:(1)如图,过点C 作CH ⊥AB ,垂足为点H ,∵∠CBA =45°,∴BH =CH ,设CH =x ,则BH =x .∵在Rt △ACH 中,∠CAB =30°,∴AH =√3CH =√3x .∴x +√3x =50.解得:x =3+1≈18, ∴18+1=19.答:计算得到的无人机的高约为19m ;(2)过点F 作FG ⊥AB ,垂足为点G ,在Rt △AGF 中,tan∠FAG =FG AG ,∴AG =FG tan40°≈180.84≈21.4,又AH =√3CH ≈31.14.∴31.14−21.42≈5,或31.14+21.42≈26答:计算得到的无人机的平均速度约为5米/秒或26米/秒.22.(10分)在平面直角坐标系xOy 中,已知抛物线y =−14x 2−x +2,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)直线BC 平行于x 轴,交这条抛物线于B 、C 两点(点B 在点C 左侧),且cot ∠ABC=2,求点B坐标.【解答】解:(1)抛物线y=−14x2−x+2=−14(x+2)2+3的开口方向向下,顶点A的坐标是(﹣2,3),抛物线的变化情况是:在对称轴直线x=﹣2左侧部分是上升的,右侧部分是下降的;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD.设线段AD的长为m,则BD=AD•cot∠ABC=2m,∴点B的坐标可表示为(﹣2m﹣2,3﹣m),代入y=−14x2−x+2,得3−m=−14(−2m−2)2−(−2m−2)+2.解得m1=0(舍),m2=1,∴点B的坐标为(﹣4,2).23.(12分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F.(1)求证:AD•DE=AB•BF;(2)联结AC,如果CFDE =ACCD,求证:AC2BC2=AFBF.【解答】解:(1)∵四边形ABCD 是平行四边形,∴CD ∥AB ,AD ∥BC ,∴∠CDE =∠DAB ,∠CBF =∠DAB ,∴∠CDE =∠CBF ,∵CE ⊥AE ,CF ⊥AF ,∴∠CED =∠CFB =90°,∴△CDE ∽△CBF ,∴BC BF =CD DE ,∵四边形ABCD 是平行四边形,∴BC =AD ,CD =AB ,∴AD BF =AB DE ,∴AD •DE =AB •BF .(2)∵CF DE =AC CD ,∠CED =∠CFB =90°,∴△ACF ∽△CDE ,又∵△CDE ∽△CBF ,∴△ACF ∽△CBF ,∴S △ACFS △CBF=AC 2BC , ∵△ACF 与△CBF 等高, ∴S △ACFS △CBF=AF BF , ∴AC 2BC =AF BF .24.(12分)在平面直角坐标系xOy 中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y 轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是y =x 2﹣2x +5,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是y =﹣x 2+5,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y 轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y 轴对称.”你认为这个结论成立吗?请说明理由.【解答】解:(1)∵原抛物线表达式是y =x 2﹣2x +5=(x ﹣1)2+4∴原抛物线顶点是(1,4),设影子抛物线表达式是y =x 2+n ,将(1,4)代入y =x 2+n ,解得n =3,所以“影子抛物线”的表达式是y =x 2+3;(2)设原抛物线表达式是y =﹣(x +m )2+k ,则原抛物线顶点是(﹣m ,k ),将(﹣m ,k )代入y =﹣x 2+5,得﹣(﹣m )2+5=k ①,将(1,0)代入y =﹣(x +m )2+k ,0=﹣(1+m )2+k ②,由①、②解得 {m 1=1k 1=4,{m 2=−2k 2=1. 所以,原抛物线表达式是y =﹣(x +1)2+4或y =﹣(x ﹣2)2+1;(3)结论成立.设影子抛物线表达式是y =ax 2+n .原抛物线于y 轴交点坐标为(0,c )则两条原抛物线可表示为y1=ax2+b1x+c与抛物线y2=ax2+b2x+c(其中a、b1、b2、c是常数,且a≠0,b1≠b2)由题意,可知两个抛物线的顶点分别是P1(−b12a,4ac−b124a)、P2(−b22a,4ac−b224a)将P1、P2分别代入y=ax2+n,得{a(−b12a)2+n=4ac−b124a a(−b22a)2+n=4ac−b224a消去n得b12=b22,∵b1≠b2,∴b1=﹣b2∴P1(b22a,4ac−b224a),P2(−b22a,4ac−b224a),∴P1、P2关于y轴对称.25.(14分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,联结BD、CD,BD交直线AC于点E.(1)当∠CAD=90°时,求线段AE的长.(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,①当∠CAD<120°时,设AE=x,y=S△BCES△AEF(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;②当S△BCES△AEF=7时,请直接写出线段AE的长.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC﹣AC=2,∠BAC=∠ABC=∠ACB=60°.∵AD=AC,∴AD=AB,∴∠ABD=∠ADB,∵∠ABD+∠ADB+∠BAC+∠CAD=180°,∠CAD=90°,∠ABD=15°,∴∠EBC=45°.过点E作EG⊥BC,垂足为点G.设AE=x,则EC=2﹣x.在Rt△CGE中,∠ACB=60°,∴EG=EC⋅sin∠ACB=√32(2−x),CG=EC⋅cos∠ACB=1−12x,∴BG=2﹣CG=1+12x,在Rt△BGE中,∠EBC=45°,∴1+12x=√32(2−x),解得x=4−2√3.所以线段AE的长是4−2√3.(2)①设∠ABD=α,则∠BDA=α,∠DAC=∠BAD﹣∠BAC=120°﹣2α.∵AD=AC,AH⊥CD,∴∠CAF=12∠DAC=60°−α,又∵∠AEF=60°+α,∴∠AFE=60°,∴∠AFE=∠ACB,又∵∠AEF=∠BEC,∴△AEF∽△BEC,∴S△BCES△AEF =BE2AE,由(1)得在Rt△CGE中,BG=1+12x,EG=√32(2−x),∴BE2=BG2+EG2=x2﹣2x+4,∴y=x2−2x+42(0<x<2).②当∠CAD<120°时,y=7,则有7=x2−2x+42,整理得3x2+x﹣2=0,解得x=23或﹣1(舍弃),AE=23.当120°<∠CAD<180°时,同法可得y=x2+2x+4x2当y=7时,7=x2+2x+4x2,整理得3x2﹣x﹣2=0,解得x=−23(舍弃)或1,∴AE=1.。

2021年中考数学模拟试题(44)(解析版)

2021年中考数学模拟试题(44)(解析版)

2021年中考数学模拟试题一、选择题1. 若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式a 2017+2016b+c 2018的值为( )A. 2018B. 2016C. 2017D. 0【答案】D【解析】【分析】根据已知求出a=-1,b=0,c=1,代入求出即可.【详解】根据题意知a=-1、b=0、c=1,则原式=(-1)2017+2016×0+12018 =-1+0+1=0,故选D .【点睛】考查了绝对值、倒数、负数和求代数式的值等知识点,能根据题意求出a 、b 、c 的值是解此题的关键.2. 16的算术平方根是( )A. 4±B. 4-C. 2D. 4 【答案】D【解析】【分析】根据算术平方根的定义求解即可,如果一个正数x 的平方等于a ,即x 2=a ,那么x 叫做a 的算术平方根.【详解】16的算术平方根是.故选D .【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3. 如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A. B. C. D.【答案】D【解析】【分析】正面看到的平面图形即为主视图.【详解】立体图形的主视图为:D ;左视图为:C ;俯视图为:B故选:D .【点睛】本题考查三视图,考查的是空间想象能力,解题关键是在脑海中构建出立体图形.4. 对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A. M =1,N =3B. M =﹣1,N =3C. M =2,N =4D. M =1,N =4 【答案】B【解析】【分析】先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得.【详解】解:21M Nx x ++- =()()()()1221M x N x x x -+++- =()()222M N x M N x x ++-++-∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.5. 如图,点A ,B ,C 在⊙O 上,∠A =50°,则∠BOC 的度数为( )A. 40°B. 50°C. 80°D. 100°【答案】D【解析】【分析】 由题意直接根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D .【点睛】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.6. 如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再把△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1,则点A 的对应点A 2的坐标是( )A. (5,2)B. (1,0)C. (3,﹣1)D. (5,﹣2)【答案】A【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A2B2C1即所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.二、填空题7. 将201800000用科学记数法表示为_____.【答案】2.018×108.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将201800000用科学记数法表示为2.018×108. 故答案为2.018×108. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8. x 的取值范围是_____.【答案】x >2019【解析】【分析】根据二次根式的定义进行解答.x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.9. 因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10. 如果2(2a +=+,b 为有理数),则a =_____,b =_____.【答案】 (1). 6 (2). 4【解析】【分析】先计算出()2,再根据)2=可得答案.【详解】解:∵(2=+2=,∴a =6、b =4.故答案为6、4.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.11. 若 m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则 m 2n+mn 2﹣mn=_________.【答案】2019【解析】【分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【详解】解:∵m 、n 是方程 x 2+2018x ﹣1=0 的两个根,20181m n mn +=-=-,,则原式=mn (m+n ﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣2019)=2019,故答案为2019.【点睛】本题考查了根与系数的关系,如果一元二次方程 ax 2+bx+c=0 的两根分别为1 x 与2 x ,则1212 b c x x x x a a,.+=-⋅=解题时要注意这两个关 系的合理应用.12. 小强在最近的5场篮球赛中,得分分别为10、13、9、8、10分.若小强下一场球赛得分是16分,则小强得分的平均数、中位数和众数中,发生改变的是____【答案】平均数【解析】试题分析:根据众数、中位数、平均数的定义求解可得.解: 原数据8、9、10、10、13的平均数为15(8+9+10+10+13)=10,众数为10、中位数为10, 新数据8、9、10、10、13、16的平均数为16(8+9+10+10+13+16)=11,众数为10、中位数为10, ∴发生改变的是平均数.故答案为平均数.13. 如图,点M 、N 分别是正五边形ABCDE 的两边AB 、BC 上的点.且AM=BN ,点O 是正五边形的中心,则∠MON 的度数是_____度.【答案】72【解析】【分析】连接OA 、OB 、OC ,根据正多边形的中心角的计算公式求出∠AOB ,证明△AOM ≌△BON ,根据全等三角形的性质得到∠BON=∠AOM ,得到答案.【详解】如图,连接OA 、OB 、OC ,∠AOB=3605︒=72°, ∵∠AOB=∠BOC ,OA=OB ,OB=OC ,∴∠OAB=∠OBC ,在△AOM 和△BON 中, OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON=∠AOM ,∴∠MON=∠AOB=72°, 故答案为72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 已知G 是直角三角形ABC 的内心,∠C =90°,AC =6,BC =8,则线段CG 的长为______.【答案】2【解析】试题分析: 作GD ⊥AC 于点D ,作GE ⊥BC 于E ,作GM ⊥AB 于M ,连接GA 、GB 、GC ,根据勾股定理求出AB ,根据三角形的面积公式得出S △ACB =S △GAC +S △GBC +S △GAB ,代入求出GE =2,由等腰直角三角形的性质和勾股定理即可得出CG 的长.解:作GD ⊥AC 于点D ,作GE ⊥BC 于点E ,作GM ⊥AB 于M ,连接GA 、GB 、GC .如图所示:设GM =r ,则GM =GD =GE =r ,∵AC =6,BC =8,∠C =90∘,由勾股定理得:AB =10,根据三角形的面积公式得:S △ACB =S △GAC +S △GBC +S △GAB , ∴12AC ×BC =12AC ×r +12BC ×r +12AB ×r , 即:12×6×8=12×6r +12×8r +12×10r , 解得:r =2.则GE =2,∵G 是直角三角形ABC 的内心,∴∠GCE =12∠C =45∘, ∴CG 2GE 2. 故答案为2.15. 如果抛物线221y x x m =++-经过原点,那么m 的值等于________.【答案】1【解析】【分析】将点(0,0)代入抛物线方程,列出关于m 的方程,然后解方程即可.【详解】解:根据题意,知点(0,0)在抛物线221y x x m -=++上,∴0=m -1,解得,m=1;故答案是:1.【点睛】本题考查了待定系数法求二次函数的解析式.解答该题需知:二次函数图象上的点的坐标,都满足该二次函数的解析式.16. 如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O顺时针旋转α (0°<α<360°),使点A仍在双曲线上,则α=_____.【答案】30°、180°、210°【解析】【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴α=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时α=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时α=210°;故答案为30°、180°、210°.【点睛】本题考查了反比例函数的综合运用,旋转的性质,等边三角形的性质.关键是通过旋转及双曲线的对称性得出结论.三、解答题17. 计算:-10 12sin452) 2π⎛⎫-︒⎪⎝⎭.【答案】3【解析】【分析】按顺序先分别进行负指数幂的计算、特殊角的三角函数值、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可. 【详解】-1012sin45+2+(2018-)2π⎛⎫-︒ ⎪⎝⎭=2-222⨯++1 =3.【点睛】本题考查了实数的混合运算,熟练掌握负指数幂的运算法则、特殊角的三角函数值、0次幂的运算法则是解本题的关键.18. 解方程:x 21x 1x-=-. 【答案】2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19. 我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?【答案】(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.20. 甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是 ;(2)任选两名同学打第一场,求恰好选中甲、乙两位同学的概率.【答案】(1)13(2)16【解析】【分析】(1) 直接利用概率公式求解;(2)共有乙、丙、丁三位同学,恰好选中甲、乙两位同学有12种情况.【详解】(1)(1)∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=13;(2)随机选两位同学打第一场比赛,可能出现的结果有12种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙),(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙),(丁,丙)、并且它们出现的可能性相等.恰好选中甲、乙两位同学(记为事件A)的结果有2种,即(甲,乙)、(乙,甲),所以P(A)=16.【点睛】本题考查列表法和树状图法,解题关键在于作出正确的判断.21. 已知2x﹣y=1,且﹣1<x<2,求y的取值范围.【答案】-3<y<3【解析】试题分析:利用2x-y=1变形,用含y的式子表示x,再根据-1<x<2列出不等式组,解之即可.解:由2x-y=1,得x=12y+,则由-1<x<2得:112122yy+⎧>-⎪⎪⎨+⎪<⎪⎩,解得:-3<y<3.22. 平行四边形ABCD中,过A作AE⊥BC,垂足为E,连DE、F为线段DE上一点,且∠1=∠B.求证:△ADF∽△DEC.【答案】证明见试题解析.【解析】试题分析:先由平行线的性质得出∠ADF=∠DEC,∠C+∠B=180°,再由∠1=∠B,∠1+∠AFD=180°可得出∠C=∠AFD,由此可得出结论.试题解析:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠DEC,∠C+∠B=180°.∵∠1=∠B,∠1+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC.考点:1.相似三角形的判定;2.平行四边形的性质.23. 某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.【答案】这个包装盒的体积为90cm3【解析】试题分析:设这种长方体包装盒的高为x cm,则长为(13-2x)cm,宽为12(14-2x)cm.根据长方体表面公式,即可列出方程,求解即可.解:设高为x cm,则长为(13-2x)cm,宽为12(14-2x)cm.由题意,得,[(13-2x)12(14-2x)+12(14-2x)x+x(13-2x)]×2=146,解得:x1=2,x2=-9(舍去).∴长为:9cm,宽为:5cm.长方体的体积为:9×5×2=90cm3.答:这个包装盒的体积为90cm3.点睛:本题主要涉及立体图形的平面展开图、立体图形的表面积、体积.解题的关键是设高为x cm,利用长方体表面积公式建立方程.24. 如图,已知∠ABM=30°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是;(填写所有符合条件的序号)①AC=13;②tan∠ACB=125;③△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出示意图,求BC的长.【答案】(1)②③;(2)答案见解析.【解析】试题分析:根据给出的条件作出辅助线,根据锐角三角函数的概念和勾股定理求出BC的长,得到(1)(2)的答案.解:(1)②③;(2)方案一:选②作AD⊥BC于D,则∠ADB=∠ADC=90°.在Rt△ABD中,∵∠ADB=90°,∴AD=AB·sin B=10,BD=AB·cos B=3在Rt△ACD中,∵∠ADC=90°,∴CD=tan ADACB=256.∴BC=BD+CD=3256.25. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【答案】(1)18m或14m;(2)花园面积的最大值是255平方米.【解析】【分析】(1)根据AB=x米可知BC=(32-x)米,再根据矩形的面积公式即可得出结论;(2)根据P处有一棵树与墙CD、AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论.【详解】解:(1)设AB=x米,可知BC=(32-x)米,根据题意得:x(32-x)=252.解这个方程得:x1=18,x2=14,答:x的长度18m或14m.(2)设周围的矩形面积为S,则S=x(32-x)=-(x-16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和6米,∴6≤x≤15.∴当x=15时,S最大= -(15-16)2+256=255(平方米).答:花园面积的最大值是255平方米.【点睛】本题考查二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解题关键.26. 阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).小明利用“同弧所对的圆周角相等”这条性质解决了这个问题,下面是他的作图过程:第一步:分别作AB、BC的中垂线(虚线部分),设交点为O;第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)第三步:在弦BC上方的弧上(异于A点)取一点M,连结MB、MC,则∠BMC=∠BAC.(如图2)思考:如图2,在矩形ABCD中,BC=6,CD=10,E CD上一点,DE=2.(1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC =∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)(2)求PC的长.【答案】(1)详见解析;(2)310【解析】【分析】(1)作BC 的垂直平分线,交BE 于点O ,以O 为圆心,OB 为半径作圆,交垂直平分线于点P ,则点P 为所求.(2)先根据AD=6,CD=10,DE=2知CE=8,BE=10,从而得OB=OP=5,再由BQ=CQ=12BC=3得OQ=4,再根据勾股定理求解可得.【详解】解:(1)如图所示,点P 即为所求:(2)∵CD =10,DE =2, ∴CE =8,∵BC =AD =6,∴BE =10,则OP =OB =5,∵BQ =CQ =12BC =3, ∴OQ =4,则PQ =9,∴PC 22CQ PQ +2239+=10.【点睛】本题考查作图-复杂作图,解题的关键是掌握圆周角定理、线段垂直平分线的尺规作图、矩形的性质及勾股定理等知识点.27. 如图,在Rt △ABO 中,∠BAO =90°,AO =AB ,BO =2,点A 的坐标(﹣8,0),点C 在线段AO 上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.【答案】(1)(0,2t);(2)见解析;(3)t=421)【解析】【分析】(1)由已知条件可证明△ABC≌△OAD,根据全等三角形的性质即可求出点D的坐标;(2)由(1)的结论可证明△FOD≌△FOC,从而∠FCO=∠FDO,再根据(1)中△ABC≌△OAD,可得∠ACB=∠ADO,进而∠FCO=∠ACB得证;(3)在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK2m,根据角平分线的性质和三角形外角和定理可得KB=KC2m,从而求得m的值,进而t的值也可求出.【详解】解:(1)∵AD⊥BC,∴∠AEB=90°=∠BAC=∠AOD,∴∠ABC+∠BAE=90°,∠BAE+∠OAD=90°,∴∠ABC=∠OAD,∵AB=OA,∴△ABC≌△OAD(ASA),∴OD=AC=2t,∴D(0,2t).故答案为(0,2t);(2)如图1中,∵AB=AO,∠BAO=90°,OB=82,∴AB=AO=8,∵t=2,∴AC=OD=4,∴OC=OD=4,∵OF=OF,∠FOD=∠FOC,∴△FOD≌△FOC(SAS),∴∠FCO=∠FDO,∵△ABC≌△OAD,∴∠ACB=∠ADO,∴∠FCO=∠ACB;(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=2m.∵CB平分∠ABO,∴∠ABC=22.5°,∵∠AKC=45°=∠ABC+∠KCB,∴∠KBC=∠KCB=225°,∴KB=KC2m,∴m =8,∴m =81),∴t =81)2=4﹣1). 【点睛】全等三角形的判定和性质、角平分线的性质、三角形的外角和定理等知识都是本题的考点,熟练掌握相关知识并正确运用是解题的关键.。

2021年广东省中考数学仿真模拟试卷(三)(解析版)

2021年广东省中考数学仿真模拟试卷(三)(解析版)

2021年广东省中考数学仿真模拟试卷(三)一、选择题(共10小题).1.﹣9的绝对值是()A.B.﹣C.9D.﹣92.北京冬奥会和冬残奥会赛会志愿者招募工作进展顺利,截止2020年底,赛会志愿者申请人数已突破960000人.将960000用科学记数法表示为()A.96×104B.9.6×104C.9.6×105D.9.6×1063.在平面直角坐标系中,点(2,5)关于y轴对称点的坐标为()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(2,5)4.如图所示的几何体从上面看到的形状图是()A.B.C.D.5.代数式在实数范围内有意义的条件是()A.x>﹣B.x≠﹣C.x<﹣D.x≥﹣6.已知有下列四个算式:①(﹣5)+(+3)=﹣8;②﹣(﹣2)3=6;③(﹣3)÷(﹣)=9;④(﹣)﹣(﹣)=﹣.其中正确的有()A.1个B.2个C.3个D.4个7.若一个多边形内角和等于1260°,则该多边形边数是()A.8B.9C.10D.118.成都市某医院开展了主题为“抗击疫情,迎战硝烟”的护士技能比赛活动,决赛中5名护士的成绩(单位:分)分别为:88,93,90,93,92,则这组数据的中位数是()A.88B.90C.92D.939.已知m,n是方程x2+x﹣3=0的两个实数根,则m2﹣n+2019的值是()A.2019B.2020C.2021D.202310.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②9a+3b+c<0;③一元二次方程ax2+bx+c=2的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.将x2﹣4y2因式分解为.12.已知﹣7x6y4和3x2m y n是同类项,则m﹣n的值是.13.若某数的两个平方根是a+1与a﹣3,则这个数是.14.若实数m,n满足|m﹣2|+(n﹣2021)2=0,则m﹣1+n0=.15.用一个圆心角为180°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是.16.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为厘米.17.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值.(x﹣2y)2+2y(2x﹣3y).其中x=﹣1,y=.19.先化简,再求值:﹣,其中x=2﹣.20.如图,已知▱ABCD.(1)作出BC的垂直平分线,交AD于点E,交BC于点F,(用尺规作图,保留作图痕迹,不要求写作法);(2)在1的条件下,连接BE,CE,若∠D=65°,∠ABE=25°,求∠ECB的度数.三、解答题(二)(本大题3小题,每小题8分,共24分)21.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.22.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?23.如图,点O是Rt△ABC的斜边AB上一点,⊙O与边AB交于点A,D,与AC交于点E,点F是的中点,边BC经过点F,连接AF.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为5,AF=8,求AC的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,已知直线OA与反比例函数y=(m≠0)的图象在第一象限交于点A.若OA =4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.25.如图1,一次函数的图象与两坐标轴分别交于A,B两点,且B点坐标为(0,4),以点A为顶点的抛物线解析式为y=﹣(x+2)2.(1)求一次函数的解析式;(2)如图2,将抛物线的顶点沿线段AB平移,此时抛物线顶点记为C,与y轴交点记为D,当点C的横坐标为﹣1时,求抛物线的解析式及D点的坐标;(3)在(2)的条件下,线段AB上是否存在点P,使以点B,D,P为顶点的三角形与△AOB相似,若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

2021年广东省深圳市中考数学模拟试卷(一) 解析版

2021年广东省深圳市中考数学模拟试卷(一)  解析版

2021年广东省深圳市中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.2的相反数是()A.﹣B.C.2D.﹣22.据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×1073.计算m6÷m2的结果是()A.m3B.m4C.m8D.m124.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.5.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2B.3C.4D.56.下列说法正确的是()A.若点C是线段AB的黄金分割点,AB=2,则AC=﹣1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等7.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.128.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.69.如图,等腰直角三角形ABC以1cm/s的速度沿直线l向右移动,直到AB与EF重合时停止.设xs时,三角形与正方形重叠部分的面积为ycm2,则下列各图中,能大致表示出y 与x之间的函数关系的是()A.B.C.D.10.如图,在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,得到△PGC,边CG交AD于点E,连接BE,∠BEC=90°,BE交PC于点F,那么下列选项正确的有()①BP=BF;②若点E是AD的中点,则△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④当AD=25,可得sin∠PCB=;⑤当BP=9时,BE•EF=108.A.5个B.4个C.3个D.2个二、填空题(本大题共5小题,每小题3分,共15分)11.若+|tan B﹣|=0,那么△ABC的形状是.12.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.13.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2021次后,顶点A在整个旋转过程中所经过的路程之和是.14.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y 轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F 点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿EF对折后,C点恰好落在OB上的点D处,则k的值为.15.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题:(本大题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)16.(5分)计算:|1﹣|﹣()﹣1+(2020﹣π)0﹣2cos45°.17.(6分)先化简,再求值:÷(2+),其中a=2.18.(8分)深圳某中学为了解九年级学生的体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了名学生.(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学九年级共有700名学生,请你估计该中学九年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.19.(8分)如图,⊙O是△ABC的外接圆,弦AE交BC于点D,且.(1)求证:AB=AC;(2)连接BO并延长交AC于点F,若AF=4,CF=5,求⊙O的半径.20.(8分)在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式;每天所得销售利润w(元)与销售单价x(元)之间的函数关系式.(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?21.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)求点F到直线CA的距离;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)并求出该图形的面积;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.22.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;(3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.2021年广东省深圳市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.2的相反数是()A.﹣B.C.2D.﹣2【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:D.2.据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于3700000人有7位,所以可以确定n=7﹣1=6.【解答】解:3700000=3.7×106,故选:C.3.计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.4.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.【分析】分别得出各个几何体的左视图,进行判断即可.【解答】解:选项A中的几何体的左视图为三角形,因此不符合题意;选项B中的几何体其左视图为等腰三角形,因此选项B不符合题意;选项C中的几何体的左视图是长方形,因此选项C不符合题意;选项D中的几何体,其左视图为圆,因此选项D符合题意,故选:D.5.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,使得△A'B'C的边长是△ABC的边长的2倍.设点B的横坐标是﹣3,则点B'的横坐标是()A.2B.3C.4D.5【分析】作BD⊥x轴于D,B′E⊥x轴于E,根据位似图形的性质得到B′C=2BC,根据相似三角形的性质定理计算即可.【解答】解:作BD⊥x轴于D,B′E⊥x轴于E,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴=,即=,解得,CE=4,则OE=CE﹣OC=3,∴点B'的横坐标是3,故选:B.6.下列说法正确的是()A.若点C是线段AB的黄金分割点,AB=2,则AC=﹣1B.平面内,经过矩形对角线交点的直线,一定能平分它的面积C.两个正六边形一定位似D.菱形的两条对角线互相垂直且相等【分析】根据黄金分割、中心对称图形、位似变换、菱形的性质判断即可.【解答】解:A、若点C是线段AB的黄金分割点,AB=2,当AC>BC时,AC=﹣1,当AC<BC时,AC=3﹣,本选项说法错误;B、平面内,经过矩形对角线交点的直线,一定能平分它的面积,本选项说法正确;C、两个正六边形不一定位似,本选项说法错误;D、菱形的两条对角线互相垂直,但不一定相等,本选项说法错误;故选:B.7.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为()A.9B.10C.11D.12【分析】根据轴对称的性质得到:AD=DE,AC=CE,结合已知条件和三角形周长公式解答.【解答】解:∵点A与点E关于直线CD对称,∴AD=DE,AC=CE=9,∵AB=7,AC=9,BC=12,∴△DBE的周长=BD+DE+BE=BD+AD+BC﹣AC=AB+BC﹣AC=7+12﹣9=10.故选:B.8.如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.9.如图,等腰直角三角形ABC以1cm/s的速度沿直线l向右移动,直到AB与EF重合时停止.设xs时,三角形与正方形重叠部分的面积为ycm2,则下列各图中,能大致表示出y 与x之间的函数关系的是()A.B.C.D.【分析】分别求出x≤2时与2≤x≤4时的函数解析式,然后根据相应的函数图象找出符合条件的选项即可.【解答】解:如图1,当x≤2时,重叠部分为三角形,面积y=•x•x=x2,如图2,当2≤x≤4时,重叠部分为梯形,面积y=×2×2﹣×(x﹣2)2=﹣(x ﹣2)2+4,所以,图象为两段二次函数图象,纵观各选项,只有A选项符合.故选:A.10.如图,在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,得到△PGC,边CG交AD于点E,连接BE,∠BEC=90°,BE交PC于点F,那么下列选项正确的有()①BP=BF;②若点E是AD的中点,则△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④当AD=25,可得sin∠PCB=;⑤当BP=9时,BE•EF=108.A.5个B.4个C.3个D.2个【分析】①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;③判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16;④再判断出△ECF∽△GCP,进而求出PC,即可得出结论;⑤判断出四边形BPGF是菱形,即可得出结论.【解答】解:①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE===20,BE===15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=∴BP=,在Rt△PBC中,PC===,∴sin∠PCB==,故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108;故⑤正确,所以本题正确的有①②③⑤,共4个,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.若+|tan B﹣|=0,那么△ABC的形状是锐角三角形.【分析】利用特殊角的三角函数值可得∠A和∠B的度数,进而可得答案.【解答】解:由题意得:cos2A﹣=0,tan B﹣=0,则∠A=45°,∠B=60°,∴∠C=180°﹣60°﹣45°=75°,∴△ABC的形状是锐角三角形.故答案为:锐角三角形.12.已知二次函数y=2x2+bx+4顶点在x轴上,则b=±4.【分析】根据二次函数y=2x2+bx+4顶点在x轴上,可知顶点的坐标为0,即可得到=0,从而可以得到b的值.【解答】解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.13.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2021次后,顶点A在整个旋转过程中所经过的路程之和是3032π.【分析】矩形旋转一次,顶点A所经过的路径是以右下角的顶点为圆心,这个顶点到A 的距离为半径的圆周长的,每转4次又回到开始位置,即可得出答案.【解答】解:旋转1次,A旋转到左上角,A经过的路径为:2π•4×=2π,旋转2次,A旋转到右上角,A经过的路径为:2π+2π•5×=π,旋转3次,A旋转到右下角,A经过的路径为:π+2π•3×=6π,旋转4次,A旋转到左下角,A经过的路径为:6π+2π•0×=6π,即旋转4次,A又回到左下角,故每旋转4次,A经过的路径为6π,而2021=4×505+1,∴连续旋转2021次后,顶点A在整个旋转过程中所经过的路程之和是6π×505+2π=3032π,故答案为:3032π.14.如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y 轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F 点的反比例函数y=(k>0)的图象与AC边交于点E,将△CEF沿EF对折后,C点恰好落在OB上的点D处,则k的值为.【分析】证明Rt△MED∽Rt△BDF,则==,而EM:DB=ED:DF=4:3,求出DB,在Rt△DBF中,利用勾股定理即可求解.【解答】解:如图,过点E作EM⊥x轴于点M,∵将△CEF沿EF对折后,C点恰好落在OB上的D点处,∴∠EDF=∠C=90°,EC=ED,CF=DF,∴∠MDE+∠FDB=90°,而EM⊥OB,∴∠MDE+∠MED=90°,∴∠MED=∠FDB,∴Rt△MED∽Rt△BDF;又∵EC=AC﹣AE=4﹣,CF=BC﹣BF=3﹣,∴ED=4﹣,DF=3﹣,∴==;∵EM:DB=ED:DF=4:3,而EM=3,∴DB=,在Rt△DBF中,DF2=DB2+BF2,即(3﹣)2=()2+()2,解得k=,故答案为.15.如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为4或2.【分析】如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.【解答】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.三、解答题:(本大题共7小题,其中第16题5分,第17题6分,第18题8分,第19题8分,第20题8分,第21题10分,第22题10分,共55分)16.(5分)计算:|1﹣|﹣()﹣1+(2020﹣π)0﹣2cos45°.【分析】直接利用绝对值的性质以及负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣1﹣3+1﹣2×=﹣1﹣3+1﹣=﹣3.17.(6分)先化简,再求值:÷(2+),其中a=2.【分析】先将分式进行化简,然后代入值即可求解.【解答】解:原式=÷=÷=•=,当a=2时,原式==1.18.(8分)深圳某中学为了解九年级学生的体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了50名学生.(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学九年级共有700名学生,请你估计该中学九年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【分析】(1)根据A等级的人数和所占的百分比即可求出抽样调查的总人数;(2)用总数减去A、B、D中的人数,即可求出C等级的人数,画出条形图即可;(3)用九年级共有的学生数乘以D等级所占的比例,即可得出答案;(4)画树状图,再由概率公式求解即可.【解答】解:(1)10÷20%=50(名),即本次抽样调查共抽取了50名学生,故答案为:50;(2)测试结果为C等级的学生数为:50﹣10﹣20﹣4=16(名),故答案为:16,补全条形图如下:(3)700×=56(名),即估计该中学九年级学生中体能测试结果为D等级的学生有56名;(4)画树状图如图:共有12个等可能的结果,所抽取的两人恰好都是男生的结果有2个,∴抽取的两人恰好都是男生的概率==.19.(8分)如图,⊙O是△ABC的外接圆,弦AE交BC于点D,且.(1)求证:AB=AC;(2)连接BO并延长交AC于点F,若AF=4,CF=5,求⊙O的半径.【分析】(1)连接BE,证明△ABD∽△AEB,进而可得结论;(2)连接OC,连接AO并延长交BC于点H,证明△AFB∽△OF A.进而可求⊙O的半径.【解答】(1)证明:如图,连接BE,∵,∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABD=∠AEB,又∠C=∠AEB,∴∠ABD=∠C,∴AB=AC.(2)如图,连接OC,连接AO并延长交BC于点H,∵AF=4,CF=5,∴AB=AC=AF+CF=4+5=9.∵AB=AC,OB=OC,∴A、O在BC的垂直平分线上,∴AH⊥BC.又AB=AC,∴AH平分∠BAC,∴∠BAH=∠CAH.∵OA=OB,∴∠BAH=∠ABF.∴∠CAH=∠ABF.∵∠AFB=∠OF A,∴△AFB∽△OF A.∴,即.∴.∴.∴.20.(8分)在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y(袋)与销售单价x(元)之间的函数关系式y=﹣10x+500;每天所得销售利润w(元)与销售单价x(元)之间的函数关系式w=﹣10x2+700x﹣10000.(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?【分析】(1)根据“某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋”,即可得出y关于x的函数关系式,然后再根据题意得到销售利润w(元)与销售单价x(元)之间的函数关系式;(2)代入w=2000求出x的值,由此即可得出结论;(3)利用配方法将w关于x的函数关系式变形为w=﹣10(x﹣35)2+2250,根据二次函数的性质即可解决最值问题.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500;则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000,故答案为:y=﹣10x+500;w=﹣10x2+700x﹣10000;(2)∵w=2000,∴﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,答:销售单价应定为30元或40元,小明每天获得该类型口罩的销售利润2000元;(3)根据题意得,,∴x的取值范围为:37≤x≤40,∵函数w=﹣10(x﹣35)2+2250,对称轴为x=35,∴当x=37时,w最大值=2210.答:销售单价定位37元时,此时利润最大,最大利润是2210元.21.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)求点F到直线CA的距离;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法)并求出该图形的面积;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【分析】(1)如图,过点F作FH⊥AC于H.解直角三角形求出FH即可解决问题.(2)①根据要求作出图形即可,根据S阴=S扇形ACF﹣S△AE′C+S△EFC﹣S扇形ECE′,计算即可.②如图2中,过点E作EH⊥CF于H,设OE=OB=x.利用勾股定理构建方程,求解即可.【解答】解:(1)如图,过点F作FH⊥AC于H.在Rt△FCH中,∠FHC=90°,CF=CA=2BC=2,∴FH=CF=1.(2)①旋转运动所形成的平面图形,如图所示,S阴=S扇形ACF﹣S△AE′C+S△EFC﹣S扇形ECE′=﹣=;②如图2中,过点E作EH⊥CF于H,设OE=OB=x.∵EF=BC=2,∠CEF=90°,∠ECF=30°,∴CF=2EF=2,∠F=60°,∴FH=EF•cos60°=,EH=EF•sin60°=,∵∠B=90°,OB=x,BC=1,∴OC=,∵EH2=OH2+OE2,∴()2+(﹣)2=x2,解得x2=,∴OC==,∴OF=CF﹣OC=2﹣=.22.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴相交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;(3)在(2)的条件下,点F的坐标为(0,),点M在抛物线上,点N在直线BC上.当以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.【分析】(1)把点A(﹣1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则,设点D 的横坐标为t,则,列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=﹣x+3,设N(m,﹣m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.【解答】解:(1)∵抛物线经过点A(﹣1,0),C(0,3),∴,解得:,∴抛物线的解析式为:;(2)如图1,过点C作CE∥x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴,设点D的横坐标为t,则,∵C(0,3),∴,∵点B是与x轴的交点,∴,解得x1=4,x2=﹣1,∴B的坐标为(4,0),∴OB=4,∴,解得t1=0(舍去),t2=2,∴点D的纵坐标为:,则点D坐标为;(3)设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+3,设N(m,﹣m+3),分两种情况:①如图2﹣1和图2﹣2,以DF为边,DN为对角线,N在x轴的上方时,四边形DFNM 是平行四边形,∵D(2,),F(0,),∴M(m+2,﹣m+4),代入抛物线的解析式得:﹣=﹣m+4,解得:m=,∴N(,3﹣)或(﹣,3+);②如图3﹣1和3﹣2,以DF为边,DM为对角线,四边形DFMN是平行四边形,同理得:M(m﹣2,﹣m+2),代入抛物线的解析式得:﹣=﹣m+2,解得:m=4,∴N(4+,﹣)或(4﹣,);综上,点N的坐标分别为:(,3﹣)或(﹣,3+)或(4+,﹣)或(4﹣,).。

2021年山西省中考数学模考试卷解析版

2021年山西省中考数学模考试卷解析版

2021年山西省中考数学模考试卷解析版
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)
1.(3分)下面有理数比较大小,正确的是()
A.0<﹣2B.﹣5<3C.﹣2<﹣3D.1<﹣4
【解答】解:A、0>﹣2,故此选项错误;
B、﹣5<3,正确;
C、﹣2>﹣3,故此选项错误;
D、1>﹣4,故此选项错误;
故选:B.
2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()
A.《九章算术》B.《几何原本》
C.《海岛算经》D.《周髀算经》
【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;
B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;
C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所
撰;
D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;
故选:B.
3.(3分)下列运算正确的是()
A.(﹣a3)2=﹣a6B.2a2+3a2=6a2
第1 页共21 页。

2021年九年级数学中考试题(带解析)

2021年九年级数学中考试题(带解析)

2021年九年级中考模拟考试数 学 试 题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(3分)2-的相反数是( )A .12-B .12C .2D .2-2.(3分)下列运算正确的是( )A .236a a a =B .222()a b a b +=+C .33(2)8a a -=-D .224a a a +=3.(3分)下列二次根式中与2是同类二次根式的是( )A .12B .32C .23D .184.(3分)如图,将直尺与三角尺叠放在一起,如果128∠=︒,那么2∠的度数为( )A .62︒B .56︒C .28︒D .72︒5.(3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A .极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月6.(3分)春节燃放爆竹是中华民族辞旧迎新的习俗,然而因春节期间全国各地雾霾天气频现,各地纷纷出台禁止燃放烟花爆竹的通知,如图所示的是一种爆竹的示意图,则爆竹的俯视图是()A.B.C.D.7.(3分)若关于x的分式方程21mx x=-有正整数解,则整数m的值是()A.3B.5C.3或5D.3或48.(3分)如图,在平面直角坐标系中,Q是直线122y x=-+上的一个动点,将Q绕点(1,0)P顺时针旋转90︒,得到点Q',连接OQ',则OQ'的最小值为()A 45B5C52D65二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(32x-x的取值范围是.10.(3分)若点(,2)M a和(1,)N b关于原点对称,则a b+的值是.11.(3分)已知方程组2425x yx y+=⎧⎨-=-⎩,则3x y+的值为.12.(3分)点(,)P a b在函数32y x=+的图象上,则代数式621a b-+的值等于.13.(3分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是 . 14.(3分)如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为弧BD 的中点,若40DAB ∠=︒,则ABC ∠= .15.(3分)如图,在扇形AOB 中,90AOB ∠=︒,AC BC =,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为42时,则阴影部分的面积为 .16.(3分)如图,以点(0,1)C 为位似中心,将ABC ∆按相似比1:2缩小,得到DEC ∆,则点(1,1)A -的对应点D 的坐标为 .17.(3分)如图所示,已知1(1,)A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .18.(3分)如图,已知ABC ∆中,90ACB ∠=︒,4AC =,3BC =.点M 是线段CB 上一动点,过点M 作MN AM ⊥交AB 于点N ,当点M 从点C 运动到点B 的过程中,点N 经过的路径长是 .三、解答题(共10小题,满分96分)19.(8分)计算或化简:(1)020171(32)(1)sin 452---+-︒;(2)先化简,再求值:21(1)11a a a -÷+-,其中51a =+. 20.(8分)解不等式组2102323x x x +>⎧⎪-+⎨⎪⎩并在数轴上表示解集. 21.(8分)为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了如图两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A 表示“很了解”, B 表示“了解”, C 表示“一般”, D 表示“不了解”.(1)被调查的总人数是 人,补全频数分布直方图;(2)扇形统计图中C 部分所对应的扇形圆心角的度数为 ;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B 类有多少人.22.(8分)如图是某教室里日光灯的四个控制开关(分别记为A 、B 、C 、)D ,每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)王老师按下第一个开关恰好能打开第一排日光灯的概率是 ;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请用列表法或画树状图法加以分析.23.(10分)为迎接今年的植树节,某乡村进行了持续多天的植树活动.计划在规定期限植树4000棵,由于志愿者的支援,工作效率提高了20%,结果提前3天完成,并且多植树80棵,求规定期限.24.(10分)如图,菱形ABCD的对角线AC,BD相交于点O,60ABC∠=︒,过点B作AC的平行线交DC的延长线于点E.(1)求证:四边形ABEC为菱形;(2)若6AB=,连接OE,求OE的值.25.(10分)如图,ABC∆中,AB AC=,点D为BC上一点,且AD DC=,过A,B,D三点作O,AE是O的直径,连接DE.(1)求证:AC是O的切线;(2)若4sin5C=,6AC=,求O的直径.26.(10分)定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD 与四边形AEEG 都是正方形,135180AEB ︒<∠<︒,求证:四边形BEGD 是“等垂四边形”;(2)如图②,四边形ABCD 是“等垂四边形”, AD BC ≠,连接BD ,点E ,F ,G 分别是AD ,BC ,BD 的中点,连接EG ,FG ,EF .试判定EFG ∆的形状,并证明;(3)如图③,四边形ABCD 是“等垂四边形”, 4AD =,6BC =,试求边AB 长的最小值.27.(12分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ',记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接DB ',CE ,(1)如图1,当60α=︒时,DEB '∆的形状为 ,连接BD ,可求出BB CE'的值为 ; (2)当0360α︒<<︒且90α≠︒时.①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ',E ,C ,D 为顶点的四边形是平行四边形时,请求出BE B E '的值.28.(12分)已知二次函数2(2)y x a x a =-++的图象为C .(1)当4a =时,图象的顶点坐标为 ;(2)求证:不论a 为任何实数,图象C 恒过定点P ,并出点P 的坐标;(3)设图象C 的顶点为M ,图象C 与x 轴的两个交点为A ,B ,()i 求证:ABM ∆不可能是钝角三角形;()ii若2(其中点P为(2)中的定点),求实数a的值.AP BP参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(3分)2-的相反数是( )A .12-B .12C .2D .2-【解答】解:20-<,2∴-相反数是2.故选:C .2.(3分)下列运算正确的是( )A .236a a a =B .222()a b a b +=+C .33(2)8a a -=-D .224a a a +=【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、222()2a b a ab b +=++,原计算错误,故此选项不符合题意;C 、33(2)8a a -=-,原计算正确,故此选项符合题意;D 、2222a a a +=,原计算错误,故此选项不符合题意.故选:C .3.(3是同类二次根式的是( )A B C D【解答】解:A 的被开方数不同,不是同类二次根式,故A 选项错误;B 、B 选项错误;C 、C 选项错误;D D 选项正确.故选:D .4.(3分)如图,将直尺与三角尺叠放在一起,如果128∠=︒,那么2∠的度数为( )A.62︒B.56︒C.28︒D.72︒【解答】解:如图,标注字母,由题意可得:90DAC BAC∠=∠-∠=︒,∠=︒,162BACEF AD,//∴∠=∠=︒,DAC262故选:A.5.(3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月【解答】解:A、极差为:832855-=,故本选项错误;B 、58出现的次数最多,是2次,∴众数为:58,故本选项错误;C 、中位数为:(5858)258+÷=,故本选项正确;D 、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误; 故选:C .6.(3分)春节燃放爆竹是中华民族辞旧迎新的习俗,然而因春节期间全国各地雾霾天气频现,各地纷纷出台禁止燃放烟花爆竹的通知,如图所示的是一种爆竹的示意图,则爆竹的俯视图是( )A .B .C .D .【解答】解:从上面看,是一个有圆心的圆,故选:B .7.(3分)若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3 B .5C .3或5D .3或4 【解答】解:解分式方程,得2m x m =-, 经检验,2m x m =-是分式方程的解, 因为分式方程有正整数解,则整数m 的值是3或4.故选:D .8.(3分)如图,在平面直角坐标系中,Q 是直线122y x =-+上的一个动点,将Q 绕点(1,0)P 顺时针旋转90︒,得到点Q ',连接OQ ',则OQ '的最小值为( )A 45B 5C 52D 65【解答】解:作QM x ⊥轴于点M ,Q N x '⊥轴于N ,90PMQ PNQ QPQ ∠=∠'=∠'=︒,QPM NPQ PQ N NPQ ∴∠+∠'=∠'+∠',QPM PQ N ∴∠=∠'在PQM ∆和△Q PN '中,90PMQ PNQ QPM PQ NPQ PQ ∠=∠'=︒⎧⎪∠=∠'⎨⎪='⎩PQM ∴∆≅△()Q PN AAS ',PN QM ∴=,Q N PM '=, 设1(,2)2Q m m -+, |1|PM m ∴=-,1|2|2QM m =-+, 1|3|2ON m ∴=-, 1(32Q m ∴'-,1)m -, 22222155(3)(1)510(2)5244OQ m m m m m ∴'=-+-=-+=-+, 当2m =时,2OQ '有最小值为5,OQ ∴'5,故选:B .二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(32x-x的取值范围是2x.【解答】解:由题意得:20x-,解得:2x,故答案为:2x.10.(3分)若点(,2)M a和(1,)N b关于原点对称,则a b+的值是3-.【解答】解:点(,2)M a和(1,)N b关于原点对称,1a∴=-,2b=-,123a b∴+=--=-.故答案为:3-.11.(3分)已知方程组2425x yx y+=⎧⎨-=-⎩,则3x y+的值为9.【解答】解:2425x yx y+=⎧⎨-=-⎩①②,①-②得,39x y+=.故答案为:9.12.(3分)点(,)P a b在函数32y x=+的图象上,则代数式621a b-+的值等于3-.【解答】解:点(,)P a b在函数32y x=+的图象上,32b a∴=+,则32a b-=-.6212(3)1413a b a b∴-+=-+=-+=-,故答案为3-.13.(3分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是3π.【解答】解:圆锥的底面圆半径是1,∴圆锥的底面圆的周长2π=,则圆锥的侧面积12332ππ=⨯⨯=, 故答案为:3π.14.(3分)如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为弧BD 的中点,若40DAB ∠=︒,则ABC ∠= 70︒ .【解答】解:连接AC ,点C 为弧BD 的中点,1202CAB DAB ∴∠=∠=︒, AB 为O 的直径,90ACB ∴∠=︒,70ABC ∴∠=︒,故答案为:70︒.15.(3分)如图,在扇形AOB 中,90AOB ∠=︒,AC BC =,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为42时,则阴影部分的面积为 816π- .【解答】解:在扇形AOB 中90AOB ∠=︒,且AC BC =,45COD ∴∠=︒,4228OC ∴=,ODC BOC S S S ∆∴=-阴影扇形224581(42)3602π⨯=-⨯ 816π=-.故答案为:816π-.16.(3分)如图,以点(0,1)C 为位似中心,将ABC ∆按相似比1:2缩小,得到DEC ∆,则点(1,1)A -的对应点D 的坐标为 1(2-,2) .【解答】解:把ABC ∆向下平移1个单位得到A 点的对应点的坐标为(1,2)-,点(1,2)-以原点为位似中心,在位似中心两侧的对应点的坐标为1(2-,1),把点1(2-,1)先上平移1个单位得到1(2-,2), 所以D 点坐标为1(2-,2). 故答案为1(2-,2). 17.(3分)如图所示,已知1(1,)A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 (4,0) .【解答】解:把1(1,)A y ,2(3,)B y 代入1y x =得11y =,213y =,则A 点坐标为(1,1),B 点坐标为1(3,)3, 设直线AB 的解析式为y kx b =+,把(1,1)A ,1(3,)3B 代入得1133k b k b +=⎧⎪⎨+=⎪⎩,解得1343k b ⎧=-⎪⎪⎨⎪=⎪⎩, 所以直线AB 的解析式为1433y x =-+, 因为||PA PB AB -,所以当点P 为直线AB 与x 轴的交点时,线段AP 与线段BP 之差达到最大,把0y =代入1433y x =-+得14033x -+=,解得4x =, 所以P 点坐标为(4,0).故答案为(4,0).18.(3分)如图,已知ABC ∆中,90ACB ∠=︒,4AC =,3BC =.点M 是线段CB 上一动点,过点M 作MN AM ⊥交AB 于点N ,当点M 从点C 运动到点B 的过程中,点N 经过的路径长是 109.【解答】解:如图,过点N 作NJ BC ⊥于J ,设BN y =,CM x =.90C ∠=︒,AC =,3BC =,2222435AB AC BC ∴=+=+=,//NJ AC ,∴BN BJ NJ AB CB AC ==, ∴534y BJ NJ ==, 35BJ y ∴=,45NJ y =, 335MJ BC CM BJ x y ∴=--=--, 90C AMN NJM ∠=∠=∠=︒,90AMC NMJ ∴∠+∠=︒,90NMJ MNJ ∠+∠=︒,AMC MNJ ∴∠=∠,ACM MJN ∴∆∆∽, ∴AC CM MJ NJ=, ∴434355x x y y =--, 2316(3)055x y x y ∴+-+=, △0,2364(3)055y y ∴--, 294102250y y ∴-+,(95)(45)0y y ∴--, 59y ∴或45y , 45y 不符合题意, 59y ∴, BN ∴的最大值为59, 当点M 从点C 运动到点B 的过程中,点N 经过的路径长是2倍的BN 的最大值, ∴点N 经过的路径长是109, 故答案为:109. 三、解答题(共10小题,满分96分)19.(8分)计算或化简:(1)020172)(1)sin 45--+︒; (2)先化简,再求值:21(1)11a a a -÷+-,其中1a =. 【解答】(1)原式11=+ 2=; (2)原式2111()11a a a a a+-=-⋅-+(1)(1)1a a a a a +-=⋅+ 1a =-, 当51a =+时,原式5115=+-=.20.(8分)解不等式组2102323x x x +>⎧⎪-+⎨⎪⎩并在数轴上表示解集.【解答】解:解不等式210x +>,得:12x >-, 解不等式2323xx -+,得:0x , 则不等式组的解集为102x -<, 将不等式组的解集表示在数轴上如下:21.(8分)为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了如图两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A 表示“很了解”, B 表示“了解”, C 表示“一般”, D 表示“不了解”.(1)被调查的总人数是 50 人,补全频数分布直方图;(2)扇形统计图中C 部分所对应的扇形圆心角的度数为 ;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B 类有多少人.【解答】解:(1)因为被调查的总人数是510%50÷=(人),所以50530510---=(人),补全的频数分布直方图如下:故答案为:50;(2)3036021650︒⨯=︒;答:扇形统计图中C部分所对应的扇形圆心角的度数为216︒;故答案为:216︒;(3)503010180036050--⨯=人.答:该校1800名学生中B类有360人.22.(8分)如图是某教室里日光灯的四个控制开关(分别记为A、B、C、)D,每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)王老师按下第一个开关恰好能打开第一排日光灯的概率是14;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请用列表法或画树状图法加以分析.【解答】解:(1)由题意可知王老师按下第一个开关恰好能打开第一排日光灯的概率为14,故答案为:14;(2)画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.P∴(两个开关恰好能打开第一排与第三排日光灯)21 126==.23.(10分)为迎接今年的植树节,某乡村进行了持续多天的植树活动.计划在规定期限植树4000棵,由于志愿者的支援,工作效率提高了20%,结果提前3天完成,并且多植树80棵,求规定期限.【解答】解:设规定期限为x天,则实际(3)x-天完成植树任务,依题意得:4000804000(120%)3x x+=+⨯-,解得:20x=,经检验,20x=是原方程的解,且符合题意.答:规定期限为20天.24.(10分)如图,菱形ABCD的对角线AC,BD相交于点O,60ABC∠=︒,过点B作AC的平行线交DC的延长线于点E.(1)求证:四边形ABEC为菱形;(2)若6AB=,连接OE,求OE的值.【解答】解:(1)菱形ABCD,AB BC∴=,//AB DE,//BE AC,∴四边形ABEC为平行四边形,AB BC=,60ABC∠=︒,ABC∴∆为等边三角形,AB AC∴=,∴平行四边形ABEC 为菱形;(2)6AB =,60ABC ∠=︒,ABC ∆为等边三角形,30OBC ∴∠=︒,33OB =, 306090OBE ∴∠=︒+︒=︒,2222(33)66337OE OB BE ∴=+=+==.25.(10分)如图,ABC ∆中,AB AC =,点D 为BC 上一点,且AD DC =,过A ,B ,D 三点作O ,AE 是O 的直径,连接DE .(1)求证:AC 是O 的切线;(2)若4sin 5C =,6AC =,求O 的直径.【解答】(1)证明:AB AC =,AD DC =, C B ∴∠=∠,1C ∠=∠,1B ∴∠=∠,又E B ∠=∠,1E ∴∠=∠,AE 是O 的直径,90ADE ∴∠=︒,90E EAD ∴∠+∠=︒,190EAD ∴∠+∠=︒,即90EAC ∠=︒,AE AC ∴⊥,AC ∴是O 的切线;(2)解:过点D 作DF AC ⊥于点F ,如图, DA DC =,132CF AC ∴==, 在Rt CDF ∆中,4sin 5DF C DC ==, 设4DF x =,5DC x =,223CF CD DF x ∴=-=,33x ∴=,解得1x =,5DC ∴=,5AD ∴=,90ADE DFC ∠=∠=︒,E C ∠=∠,ADE DFC ∴∆∆∽,∴AE AD DC DF =,即554AE =,解得254AE =, 即O 的直径为254.26.(10分)定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD 与四边形AEEG 都是正方形,135180AEB ︒<∠<︒,求证:四边形BEGD 是“等垂四边形”;(2)如图②,四边形ABCD 是“等垂四边形”, AD BC ≠,连接BD ,点E ,F ,G 分别是AD ,BC ,BD 的中点,连接EG ,FG ,EF .试判定EFG ∆的形状,并证明;(3)如图③,四边形ABCD 是“等垂四边形”, 4AD =,6BC =,试求边AB 长的最小值.【解答】解:(1)如图①,延长BE ,DG 交于点H ,四边形ABCD 与四边形AEFG 都为正方形,AB AD ∴=,AE AG =,90BAD EAG ∠=∠=︒.BAE DAG ∴∠=∠.()ABE ADG SAS ∴∆≅∆.BE DG ∴=,ABE ADG ∠=∠.90ABD ADB ∠+∠=︒,90ABE EBD ADB DBE ADB ADG ∴∠+∠+∠=∠+∠+∠=︒,即90EBD BDG ∠+∠=︒,90BHD ∴∠=︒.BE DG ∴⊥.又BE DG =,∴四边形BEGD 是“等垂四边形”.(2)EFG ∆是等腰直角三角形.理由如下:如图②,延长BA ,CD 交于点H ,四边形ABCD 是“等垂四边形”, AD BC ≠,AB CD ∴⊥,AB CD =,90HBC HCB ∴∠+∠=︒,点E ,F ,G 分别是AD ,BC ,BD 的中点,∴12EG AB =,12GF CD =,//EG AB ,//GF DC , BFG C ∴∠=∠,EGD HBD ∠=∠,EG GF =.90EGF EGD FGD ABD DBC GFB ABD DBC C HBC HCB ∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒. EFG ∴∆是等腰直角三角形.(3)延长BA ,CD 交于点H ,分别取AD ,BC 的中点E ,F .连接HE ,EF ,HF ,则1132122EF HF HE BC AD -=-=-=, 由(2)可知22AB EF =.AB ∴227.(12分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ',记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接DB ',CE ,(1)如图1,当60α=︒时,DEB '∆的形状为 等腰直角三角形 ,连接BD ,可求出BB CE'的值为 ;(2)当0360α︒<<︒且90α≠︒时.①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ',E ,C ,D 为顶点的四边形是平行四边形时,请求出BE B E '的值.【解答】解:(1)如图1所示:四边形ABCD 是正方形,45BDC ∴∠=︒,2CD BD =90BAD ∠=︒,AB AD =, 由旋转的性质得:AB AB =',60BAB ∠'=︒,AB AD AB ∴==',ABB ∆'为等边三角形,906030B AD ∠'=︒-︒=︒,60AB B '∴∠=︒,1(18030)752AB D ∠'=︒-︒=︒, 180607545DB E '∴∠=︒-︒-︒=︒,DE BB '⊥,90DEB '∴∠=︒,45B DE '∴∠=︒,DEB '∴∆为等腰直角三角形,45BDC B DE '∴∠=∠=︒,2DE DB =', BDC B DC B DE B DC '''∴∠-∠=∠-∠,即BDB CDE '∠=∠,2CD DE BD DB ==' BDB CDE '∴∆∆∽, ∴2BB BD CE CD'==, 2;(2)①两个结论仍然成立,理由如下:连接BD ,如图2所示:由旋转的性质得:AB AB '=,BAB α'∠=,1(180)9022AB B αα∴∠'=︒-=︒-,90B AD α'∠=-︒,AD AB '=,1(18090)13522AB D αα∴∠'=︒-+︒=︒-, 135904522EB D AB D AB B αα'''∴∠=∠-∠=︒--︒+=︒,DE BB '⊥,45EDB EB D ''∴∠=∠=︒,DEB '∴∆是等腰直角三角形,∴DB DE'= 四边形ABCD 为正方形,∴BD CD =45BDC ∠=︒, ∴BD DB CD DE'=, EDB BDC '∠=∠,B DB EDC '∴∠=∠,∴△B DB EDC '∆∽,∴BB BD CE CD'==, ∴(1)中的两个结论不变,依然成立;②若以点B ',E ,C ,D 为顶点的四边形是平行四边形时,分两种情况讨论: 第一种:以CD 为边时,则//CD B E ',此时点B '在线段BA 的延长线上,如图3所示:此时点E 与点A 重合,BE CD B E ∴==', ∴1BE B E='; 第二种:当以CD 为对角线时,如图4所示:四边形CB DE '是平行四边形,12B F EF B E ∴'==',点F 为CD 中点, 2BC CD CF ∴==,DE BB '⊥,CB BB ''∴⊥,90BB C CB F ∴∠'=∠'=︒,90BCF ∠=︒,BCF CB F BB C ∴∠=∠'=∠',CBF B BC ∠=∠',BFC CFB ∠=∠',BCF ∴∆∽△CB F '∽△BB C ', ∴2BC CB BB CF B F CB ''==='', 4BB B F ''∴=,6BE B F '∴=,2B E B F ''=,∴632BE B F B E B F'=='', 综上所述,BE B E '的值为3或1.28.(12分)已知二次函数2(2)y x a x a =-++的图象为C .(1)当4a =时,图象的顶点坐标为 (3,5)- ;(2)求证:不论a 为任何实数,图象C 恒过定点P ,并出点P 的坐标;(3)设图象C 的顶点为M ,图象C 与x 轴的两个交点为A ,B ,()i 求证:ABM ∆不可能是钝角三角形;()ii 若2AP BP =(其中点P 为(2)中的定点),求实数a 的值. 【解答】解:(1)把4a =代入2(2)y x a x a =-++中,得2264(3)5y x x x =-+=--,∴二次函数2(2)y x a x a =-++的图象的顶点为(3,5)-,故答案为(3,5)-;(2)22(2)(1)(1)1y x a x a x a x =-++=-+--,∴当10x -=时,1y =-,∴当1x =时,1y =-,∴定点P 的坐标为(1,1)-;(3)()i 证明:如图,过点M 作MH x ⊥轴于H ,则90AHM ∠=︒,点M 是抛物线的顶点,MA MB ∴=,MAB MBA ∴∠=∠,12AH BH AB==,2 22222224(2)()()()2224a a a ay x a x a x a x++++ =-++=-+-=--,2(2aM+∴,24)4a+-,244aMH+∴=,设点1(A x,0),2(B x,0),令2(2)0x a x a-++=,122x x a∴+=+,12x x a=,12||AB x x∴=-在Rt AHM∆中,244tan112aMH MHBAMAH AB+∠====,20a,244a∴+,∴1,tan1BAM∴∠,45BAM∴∠︒,90ABM BAM∴∠+∠︒,90AMB∴∠︒,ABM∴∆不可能是钝角三角形;()ii由(1)知(1,1)P-,对于2(2)y x a x a=-++,设0y=,则2(2)0x a x a-++=,解得x=x=,224(2a a A +-+∴,0),224(2a a B +++,0)或224(2a a A +++,0),224(2a a B +-+,0), 2222222222424[(1)1][(1)1]422a a a a AP BP a ++++-+∴+=-++-+=+, 由()i 知,24AB a =+,224AB a ∴=+,222AP BP AB ∴+=,ABF ∴∆是以AB 为斜边的直角三角形,2AP PB =,1tan 2BP A AP ∴==, 如图,过点P 作PG x ⊥轴于G ,则1PG =,1tan 2PG A AG ∴==, 2AG ∴=,当点A 在点B 的左边时,224(a a A +-+,0), 2224412a a a a AG +-++-∴==, 32a ∴=-, 当点A 在B 的右边时,224(a a A +++0),12AG ∴=-==, 32a ∴=, a ∴的值为32±.。

2021年湖南省长沙市中考数学模拟试卷(一)(含解析)

2021年湖南省长沙市中考数学模拟试卷(一)(含解析)

2021年湖南省长沙市中考数学模拟试卷(一)一、选择题(共12小题).1.计算的结果等于()A.±2B.2C.﹣2D.42.在平面直角坐标系中,点(4,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.B.(a﹣b)2=a2﹣b2C.3m•m=6m D.(﹣n3)2=n64.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城5.疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同6.下列尺规作图,能确定AD是△ABC的中线的是()A.B.C.D.7.下列说法正确的是()A.为了解湖南省中学生的心理健康情况,宜采用普查的方式B.商场抽奖促销,中一等奖的概率是1%,则做100次这样的游戏一定会中一等奖C.一组数据1,3,3,3,4,8的中位数和众数都是3D.若甲、乙两个射击选手的平均成绩相同,且s甲2=0.01,s乙2=0.1,则应该选乙参赛8.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.69.如图,已知AB是⊙O的切线,切点为A,OA=3,,则扇形OAC的面积为()A.B.3πC.πD.10.如图,一块等腰直角三角形板如图摆放,点E,G分别在AB,CD上,且AB∥CD,如果∠AEF=25°,那么∠CGF的大小为()A.25°B.65°C.30°D.45°11.《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步几之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为()A.250步B.200步C.160步D.320步12.如图,已知△ABC的三个顶点A(a,0)、B(b,0)、C(0,2a)(b>a>0),作△ABC关于直线AC的对称图形△AB′C,若点B′恰好落在y轴上,则的值为()A.B.C.D.二、填空题(共4个小题,每小题3分,共12分)13.分解因式:3ab2﹣3a=.14.某地区中考,将学生的初二的生物中考卷面成绩(满分100分)乘40%,加上初三的物理、化学卷面成绩(满分200分)乘80%作为该生的最后理科综合最终成绩.某学生生物成绩为90分,若该生理科综合最终成绩想不低于160分,则该生物理、化学卷面成绩至少是分.15.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.16.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF =120°,设.(1)若n=1,则=;(2)若,则n=.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。

2021年初三数学中考模拟试题(附解析)

2021年初三数学中考模拟试题(附解析)

2021年九年级中考模拟考试数学试题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

1.下列各数中,最小的数是()A.3B.﹣2C.﹣D.02.据统计,2021年第一季度全球手机出货量达到3.4亿部,将数据3.4亿用科学记数法表示为()A.3.4×108B.3.4×1010C.0.34×109D.34×1073.下列图形中,不能经过折叠围成正方体的是()A.B.C.D.4.下列计算正确的是()A.a+b=ab B.3a2+2a2=5a4C.(﹣a3b)2=a6b2D.a2b3c÷(﹣ab2)=﹣ab5.下列说法中,错误的是()A.明天会下雨是随机事件B.某发行量较大的彩票中奖概率是,那么购买1001张彩票一定会中奖C.要了解某市初中生每天的睡眠时间,应该采用抽样调查的方式进行D.乘客乘坐飞机前的安检应采取全面调查的方式进行6.已知y是x的一次函数,下表给出5组自变量x及其对应的函数y的值.x…﹣2﹣1012…y…﹣3﹣1136…其中只有1个函数值计算有误,则这个错误的函数值是()A.﹣1B.1C.3D.67.如图,点A、C在∠FBD的两条边BF、BD上,BE平分∠FBD,CE平分∠ACD,连接AE,若∠BEC=35°,则∠FAE的度数为()A.35°B.45°C.55°D.65°8.如图,一次函数y=﹣x+2的图象与坐标轴的交点为A和B,下列说法中正确的是()A.点(2,﹣1)在直线AB上B.y随x的增大而增大C.当x>0时,y<2D.△AOB的面积是29.如图,菱形OABC的边OA在x轴上,点B坐标为(9,3),分别以点B、C为圆心,以大于BC 的长为半径画弧,两弧交于点D、E,作直线DE,交x轴于点F,则点F的坐标是()A.(7.5,0)B.(6.5,0)C.(7,0)D.(8,0)10.如图,矩形ABCD中,AB=8cm,BC=4cm,动点E和F同时从点A出发,点E以每秒2cm的速度沿A→D的方向运动,到达点D时停止,点F以每秒4cm的速度沿A→B→C→D的方向运动,到达点D时停止.设点F运动x(秒)时,△AEF的面积为y(cm2),则y关于x的函数的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.写出一个比﹣3大且比2小的负无理数.12.有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是.13.已知关于x的一元二次方程mx2+x﹣3=0有两个不相等的实数根,则m的取值范围是.14.如图,半圆O的直径AB=4cm,=,点C是上的一个动点(不与点B,G重合),CD ⊥OG于点D,CE⊥OB于点E,点E与点F关于点O中心对称,连接DE、DF,则△DEF面积的最大值为cm2.15.如图,正方形ABCD的边长为3,点G在边AD上,GD=1,GH⊥BC于点H,点E是边AB 上一动点(不与点A,B重合),EF⊥CD于点F,交GH于点Q,点O、P分别是EH和GQ的中点,连接OP,则线段OP的长度为.三、解答题(本大题共8个小题,满分75分)16.(1)化简:(a﹣2)2﹣(a+1)(a﹣6);(2)计算:2sin45°﹣20210﹣+|﹣1|.17.为了解某校七年级男生的身高情况,某数学活动小组进行了抽样和分析,过程如下:[收集数据]随机抽取了七年级若干名男生,测得他们的身高(单位:cm),记录如下:152 153 154 155 155 155 156 156 157 157 158 160 160 160161 161 162 162 162 163 163 163 163 164 164 164 165 165165 166 167 168 169 169 170 170 172 172 175 175[整理数据]整理以上数据,得到如下尚不完整的频数分布表和直方图:调查结果频数分布表组别身高(单位:cm)频数频率A150≤x<155a0.075B155≤x<16080.2C160≤x<165150.375D165≤x<1700.2E170≤x<17560.15 [分析数据]根据以上频数分布表和直方图,即可对数据进行针对性的分析.根据以上信息解答下列问题:(1)此次抽样调查的样本容量是,统计表中a=.(2)所抽取的样本中,男生身高的中位数所在的组别是.(3)请把频数分布直方图补充完整.(4)若该校七年级有男生400人,根据调查数据估计身高不低于165cm的大约有多少人?18.某数学兴趣小组进行了一次有趣的数学探究:如图①所示,在钝角∠AOB的边OB上任取一点C,过点C作CE∥OA,以点C为圆心,CO的长为半径画弧,交射线CE于点D,在上任取一点P,作射线OP,交射线CE于点F,当点P在上移动时,点F也随之移动,是否存在某个时刻,∠AOF恰好等于∠AOB呢?经过试验、猜想、推理验证,他们发现:当PF与OC满足某种数量关系时,∠AOF=∠AOB.请你根据以上信息,把如下不完整的“图②”和“已知”补充完整,并写出“证明”过程.已知:如图②,点C在钝角∠AOB的边OB上,CE∥OA,以点C为圆心、CO的长为半径画弧,交射线CE于点D,点P在上,射线OP交CE于点F,(填PF与OC的数量关系).求证:∠AOF=∠AOB.19.钓鱼岛是我国固有领土,2021年4月26日,中华人民共和国自然资源部在其官网上公布《钓鱼岛及其附属岛屿地形地貌调查报告》,报告公布了钓鱼岛及其附属岛屿的高分辨率海岛地形数据.如图所示,点A是岛上最西端“西钓角”,点B是岛上最东端“东钓角”,AB长约3641米,点D是岛上的小黄鱼岛,且A、B、D三点共线.某日中国海监一艘执法船巡航到点C处时,恰好看到正北方的小黄鱼岛D,并测得∠ACD=70°,∠BCD=45°.根据以上数据,请求出此时执法船距离小黄鱼岛D的距离CD的值.(参考数据:tan70°≈2.75,sin70°≈0.94,cos70°≈0.34,结果精确到1米.)20.如图,已知二次函数y=x2﹣2mx﹣2+m2的顶点为P,矩形OABC的边OA落在x轴上,点B的坐标是(6,2).(1)求点P的坐标,并说明随着m值的变化,点P的运动轨迹是什么?(2)若该二次函数的图象与矩形OABC的边恰好有2个交点,请直接写出此时m的取值范围.21.某水果批发店销售粑粑柑和苹果,均按整箱出售,粑粑柑比苹果每箱贵30元.某天粑粑柑销售额为1800元,苹果销售额为3600元,该日苹果销售量恰好是粑粑柑销售量的3倍.(1)求粑粑柑、苹果每箱各是多少元?(2)某单位决定去该水果批发店购买粑粑柑、苹果共30箱,恰逢批发店对售价进行调整,苹果单价提高了5%,粑粑柑按九折销售,本次购买预算总费用不超过2100元,那么可最多购买多少箱粑粑柑?22.研究函数y=+3的图象和性质,可以通过列表、描点、连线画出函数图象,然后结合函数图象进行分析.探究过程如下:(1)函数y=+3的自变量x的取值范围是.(2)y与x的几组对应值如表:x…﹣3﹣2﹣101 1.5 2.534567…y… 2.8 2.75m 2.52154 3.5n 3.25 3.2…根据表格中的数据,在同一平面直角坐标系中描点,并用平滑的曲线进行连线,画出图象的另外一支,并写出m+n﹣2=.(3)观察图象可知,函数图象既是中心对称图形,又是轴对称图形,它的对称中心的坐标是,它的对称轴的解析式是.(4)当x满足时,y随x的增大而减小.(5)结合函数图象填空:当关于x的方程+3=k(x﹣2)+3有两个不相等的实数根时,实数k的取值范围是;关于x的方程+3=k(x﹣2)+3无实数根时,实数k的取值范围是.23.已知点M是矩形ABCD的边AB上一个动点,过点M作MG⊥CD于点G,交对角线AC于点E,连接BE,过点E作EF⊥BE,交射线DC于点F.(1)如图1,若AB=AD,则FG与DG的数量关系是;(2)如图2.若AB=4,AD=3,①当点M在边AB上移动时,FG与DG的数量关系是否保持不变?若不变,请仅就图2求出它们之间的数量关系;若变化,请说明理由.②当时,请直接写出AM的最大值和最小值.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学模拟试题解析版一、选择题(每小题2分,共20分)1.(2分)﹣的相反数是()A.﹣B.C.D.﹣【解答】解:﹣的相反数是,故选:C.2.(2分)如图是由四个相同的小正方体组成的立体图形,它的左视图为()A.B.C.D.【解答】解:从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选:A.3.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.4.(2分)2018年春节期间共有7.68亿人选择使用微信红包传递新年祝福,收发红包总人数同比去年增加约10%,7.68亿用科学记数法可以表示为()A.7.68×109B.7.68×108C.0.768×109D.0.768×1010【解答】解:7.68亿用科学记数法可以表示为7.68×108.故选:B.5.(2分)下列计算正确的是()A.2a2﹣a2=1B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6【解答】解:A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确.故选:D.6.(2分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小时)7891011学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.9,8B.9,9C.9.5,9D.9.5,8【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.7.(2分)平面直角坐标系中,点P,Q在同一反比例函数图象上的是()A.P(﹣2,﹣3),Q(3,﹣2)B.P(2,﹣3)Q(3,2)C.P(2,3),Q(﹣4,)D.P(﹣2,3),Q(﹣3,﹣2)【解答】解:A、∵(﹣2)×(﹣3)≠3×(﹣2),故点P,Q不在同一反比例函数图象上;B、∵2×(﹣3)≠3×2,故点P,Q不在同一反比例函数图象上;C、∵2×3=(﹣4)×(),故点P,Q在同一反比例函数图象上;D、∵(﹣2)×3≠(﹣3)×(﹣2),故点P,Q不在同一反比例函数图象上;故选:C.8.(2分)如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选:C.9.(2分)无理数2﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵2=,∴6<<7,∴无理数2﹣3在3和4之间.故选:B.10.(2分)如图,ABCDEF为⊙O的内接正六边形,AB=m,则图中阴影部分的面积是()A.m2B.m2C.()m2D.()m2【解答】解:∵正六边形的边长为m,∴⊙O的半径为m,∴⊙O的面积为π×m2=πm2,∵空白正六边形为六个边长为m的正三角形,∴每个三角形面积为×m×m×sin60°=m2,∴正六边形面积为m2,∴阴影面积为(πm2﹣m2)×=(﹣)m2,故选:D.二、填空题(每小题3分,共18分)11.(3分)分解因式:a2﹣4=(a+2)(a﹣2).【解答】解:a2﹣4=(a+2)(a﹣2).12.(3分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是15.【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.13.(3分)若分式方程有增根,则实数a的值是4或8.【解答】解:∵+=,∴+=,当x2﹣2x≠0时,原式化为3x﹣a+x=2x﹣4,∴2x=a﹣4,∵分式方程有增根,∴x=0或x=2,当x=0时,a=4;当x=2时,a=8.故答案是4或8.14.(3分)如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是.【解答】解:连接AB,∵OA2=12+32=10,AB2=12+32=10,OB2=22+42=20,∴OA2+AB2=OB2,OA=AB,∴△AOB是等腰直角三角形,即∠OAB=90°,∴∠AOB=45°,∴cos∠AOB=cos45°=.故答案为:.15.(3分)某企业2018年初获利润300万元,到2020年初计划利润达到507万元,则这两年的年利润平均增长率为30%.【解答】解:这两年的年利润平均增长率为x,根据题意可列出方程为:300(1+x)2=507,解得:x1=﹣2.3(不合题意舍去),x2=0.3=30%,故答案为:30%.16.(3分)如图,将边长为4的正方形纸片ABCD折叠,使得点A落在边CD的中点E处,折痕为FG,点F、G分别在边AD、BC上,则折痕FG的长度为.【解答】解:如图,过点G作GH⊥AD于H,则四边形ABGH中,HG=AB,由翻折变换的性质得GF⊥AE,∵∠AFG+∠DAE=90°,∠AED+∠DAE=90°,∴∠AFG=∠AED,∵四边形ABCD是正方形,∴AD=AB,∴HG=AD,在△ADE和△GHF中,,∴△ADE≌△GHF(AAS),∴GF=AE,∵点E是CD的中点,∴DE=CD=2,在Rt△ADE中,由勾股定理得,AE===2,∴GF的长为2.故答案为:2.三、解答题(17题6分,18题、19题各8分,共22分)17.(6分)计算:2﹣1+3tan60°﹣+(2019﹣π)0【解答】解:2﹣1+3tan60°﹣+(2019﹣π)0=+3﹣2+1=3﹣18.(8分)如图.在平行四边形ABCD中,过点B作BM⊥AC于点E,交CD于点M,过点D作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=5,EM=3,求AN的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=3,在Rt△AFN中,AN=.19.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.四、(每小题8分,共16分)20.(8分)某学校在‘小小数学家’的课堂练习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国数学大赛,请用列表法或画树状图法,求恰好同时选中甲、丁两位同学的概率.【解答】解:画树状图得:∵共有12种等可能的结果,恰好同时选中甲、丁两位同学的有2种情况,∴恰好同时选中甲、丁两位同学的概率为=.21.(8分)小颖准备用21元买笔和笔记本.已知每支笔3元,每个笔记本2.5元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?【解答】解:设她还可以买x支笔,根据题意,得3x+2.5×2≤21,解得x≤,答:她还可能买1支、2支、3支、4支、或5支笔.五、(本题10分)22.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD 于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.六、(本题10分)23.(10分)如图,在平面直角坐标系中,过点A(1,)B(4,)的直线l分别与x 轴、y轴交于点C,D.(1)求直线l的函数表达式.(2)P为x轴上一点,若△PCD为等腰三角形直接写出点P的坐标.(3)将线段AB绕B点旋转90°,直接写出点A对应的点A的坐标.【解答】解:(1)设直线l的函数表达式为y=kx+b(k≠0),将A(1,),B(4,)代入y=kx+b,得:,解得:,∴直线l的函数表达式为y=﹣x+8.(2)当x=0时,y=﹣x+8=8,∴点D的坐标为(0,8);当y=0时,﹣x+8=0,解得:x=6,∴点C的坐标为(6,0),∴CD=10.分三种情况考虑(如图1所示):①当DC=DP时,OC=OP1,∴点P1的坐标为(﹣6,0);②当CD=CP时,CP=10,∴点P2的坐标为(﹣4,0),点P3的坐标为(16,0);③当PC=PD时,设OP4=m,∴(6+m)2=82+m2,解得:m=,∴点P4的坐标为(﹣,0).综上所述:点P的坐标为(﹣6,0),(﹣4,0),(16,0)或(﹣,0).(3)过点B作直线l的垂线,交y轴于点E,如图2所示.∵点B(4,),点D(0,8),∴BD==.∵∠CDO=∠EDB,∠DOC=∠DBE=90°,∴△DOC∽△DBE,∴=,即=,∴DE=,∴点E的坐标为(0,﹣).利用待定系数法可求出直线BE的函数表达式为y=x﹣.设点A′的坐标为(n,n﹣).∵A′B=AB,∴(4﹣n)2+[﹣(n﹣)]2=(4﹣1)2+(﹣)2,即n2﹣8n=0,解得:n1=0,n2=8,∴点A′的坐标为(0,﹣)或(8,).七、(本题12分)24.(12分)如图在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,M为AC的中点.D 是射线CB上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接MN.(1)如图1,∠BCE=90°,NM与AC的位置关系是MN⊥AC;(2)如图2,判断(1)中NM与AC的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当CD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.【解答】解:(1)如图1中,连接AN,CN.∵△ABC,△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠B=∠ACB=45°∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠ECB=45°+45°=90°,∵DN=EN,∴CN=DE,同法AN=DE,∴NA=NC,∵AM=MC,∴NM⊥AC,故答案为90°,MN⊥AC.(2)如图2中,结论不变.理由:连接AN,CN.∵△ABC,△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∠B=∠ACB=45°∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵∠ABC=∠ACB=45°,∴∠ABD=∠ACE=135°,∴∠DCE=90°,∵DN=EN,∴CN=DE,同法AN=DE,∴NA=NC,∵AM=MC,∴NM⊥AC.(3)如图3中,由(1)可知∠ECB=90°,∴CE⊥BC,∴当ME⊥EC时,ME的值最小,在Rt△ABC中,∵AB=AC=2,∴BC=4,∵AM=MC=,在Rt△CME中,∵∠ECM=∠CME=45°,∴EC=EM=1,由(1)可知:△BAD≌△CAE,∴BD=EC=1,∴CD=4﹣1=3.∴当CD=3时,EM的值最小,最小值为1.八、(本题12分)25.(12分)如图,在平面直角坐标中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),C(0,3),点P是直线BC上方抛物线上的一动点,PE∥y轴,交直线BC于点E连接AP,交直线BC于点D.(1)求抛物线的函数表达式;(2)当AD=2PD时,求点P的坐标;(3)求线段PE的最大值;(4)当线段PE最大时,若点F在直线BC上且∠EFP=2∠ACO,直接写出点F的坐标.【解答】解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3)(a≠0),则3=a×1×(﹣3),∴a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3;(2)过A作EF⊥x轴,与BC相交于点F,如图1,设P(t,﹣t2+2t+3),则AF∥PE,设BC的解析式为y=kx+b(k≠0),则,解得,,∴直线BC的解析式为:y=﹣x+3,∴E(t,﹣t+3),F(﹣1,4),∴AF=4,PE=﹣t2+3t,∵AF∥PE,∴△AFD∽△PED,∴,∵AD=2PD,∴,解得,t=1或2,∴P(1,4)或P(2,3);(3)∵PE的解析式为:PE=﹣t2+3t=﹣(t﹣)2+(0<t<3),∴当t=时,PE的值最大为;(4)①当F点在PE的左边时,过点P作PM⊥BC于点M,过E作EN⊥x轴于点N,过点F作FQ⊥x轴于点Q,过点O作OG⊥AC于点G,取AC的中点H,连接OH,由(3)知,当PE取最大值时,P(,),PE=,E(,),∵OB=OC=3,∴∠OBC=∠OCB=45°,∴BE=EM=,∠PEM=45°,∴PM=EM=,∵AC=,∴OH=CH=,OG=,∴HG=,∠OHG=2∠ACO,∵∠EFP=2∠ACO,∴∠EFP=∠OHG,∵∠OGH=∠PMF,∴△OGH∽△PMF,∴,即,∴MF=,∴BF=BE+EM+MF=,∴FQ=BQ=BF=,∴OQ=,∴F(﹣,),②当F点在PE的右边时,此时的F点恰好与(﹣,)关于PM对称,易求此时F (,).故F的坐标为(﹣,)或(,).。

相关文档
最新文档