红外光谱仪

红外光谱仪
红外光谱仪

红外光谱仪

摘要

本文简要介绍了红外光谱仪的发展过程,并阐述了傅里叶红外光谱仪的基本原理。应实时实地测量及无损测量的要求,提出了便携式红外光谱仪的研究。文章中还给出了实现便携式红外光谱仪便携化的途径。最后,总结了红外光谱仪的在各领域中的应用。

关键词:红外光谱仪傅里叶便携式应用

1 红外光谱仪的发展过程

第一台近红外光谱仪的分光系统(50年代后期)是滤光片分光系统,测量样品必须预先干燥,使其水分含量小于15%,然后样品经磨碎,使其粒径小于1毫米,并装样品池。此类仪器只能在单一或少数几个波长下测定(非连续波长),灵活性差,而且波长稳定性、重现性差,如样品的基体发生变化,往往会引起较大的测量误差!“滤光片”被称为第一代分光技术。

70年代中期至80年代,光栅扫描分光系统开始应用,但存在以下不足:扫描速度慢、波长重现性差,内部移动部件多。此类仪器最大的弱点是光栅或反光镜的机械轴长时间连续使用容易磨损,影响波长的精度和重现性,不适合作为过程分析仪器使用。“光栅”被称为第二代分光技术。

80年代中后期至90年代中前期,应用“傅里叶变换”分光系统,但是由于干涉计中动镜的存在,仪器的在线可靠性受到限制,特别是对仪器的使用和放置环境有严格要求,比如室温、湿度、杂散光、震动等。“傅里叶变换”被称为第三代分光技术。

90年代中期,开始有了应用二极管阵列技术的近红外光谱仪,这种近红外光谱仪采用固定光栅扫描方式,仪器的波长范围和分辨率有限,波长通常不超过1750nm。由于该波段检测到的主要是样品的三级和四级倍频,样品的摩尔吸收系数较低,因而需要的光程往往较长。“二极管阵列”被称为第四代分光技术。 90年代末,来自航天技术的“声光可调滤光器”(缩写为AOTF)技术的问世,被认为是“90年代近红外光谱仪最突出的进展”, AOTF是利用超声波与特定的晶体作用而产生分光的光电器件,与通常的单色器相比,采用声光调制即通过超声射频的变化实现光谱扫描,光学系统无移动性部件,波长切换快、重现性好,程序化的波长控制使得这种仪器的应用具有更大的灵活性,尤其是外部防尘和内置的温、湿度集成控制装置,大大提高了仪器的环境适应性,加之全固态集

成设计产生优异的避震性能,使其近年来在工业在线和现场(室外)分析中得到越来越广泛的应用,“声光可调滤光器”被称为第五代分光技术。

2 傅里叶红外光谱仪的基本原理

当某一频率的红外光线聚焦照射在被分析的样品时,如果样品分子中某个基团的振动频率与所照射红外线频率相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到反映试样成份特征的光谱,从而推测化合物的类型和结构。傅里叶变换红外光谱仪是一种非色散型红外吸收光谱仪,其光学系统的主体是迈克尔逊(Michelson)干涉仪,干涉仪的结构如图所示。

图1 干涉仪原理图

干涉仪主要由两个互成90°夹角的平面镜(动镜和定镜)和一个分束器所构成。定镜、动镜和分束器组成了傅里叶变换红外光谱仪的核心部件———迈克尔逊干涉仪。

动镜在移动中要与定镜保持90°夹角。分束器具有半透明性质,位于动镜与定镜之间并与它们呈45°夹角放置。

由光源射来的一束红外光进入干涉仪后被分束器分为两束:一束透射光(T)和一束反射光(R)。

透射光(T)经动镜的反射到分束器后又分为两部分,一部分透射返回光源(TT),另一部分经反射到达样品(TR);反射光(R)经定镜的反射到分束器后又分成两部分,一部分经反射返回光源(RR),另一部分透射到达样品(RT)。

也就是说,经过样品到达干涉仪检测器的有两束光,并且这两束相干光被叠

加,随着动镜的移动这两光束的光程差会改变,进而产生干涉,得到干涉图,据此做出干涉图函数的傅里叶余弦变化图谱即得光谱,这就是大家所熟悉的傅里叶变换。

图2 傅里叶变换红外光谱仪工作原理

3 便携式傅里叶红外光谱仪

红外光谱是鉴定分子结构及判断官能团的有力手段。光经由样品穿过以后,分子选择性吸收入射光中某个波长的特定光线,所得到的透射光被检测器接受然后传导到转换器,从而产生样品的特征红外光谱。在傅里叶变换红外光谱仪中,信号的产生主要依靠光线在经过迈克尔逊干涉仪后干涉而成。信号的产生的质量受光路是否准直,入射光和反射光是否平行的因素影响很大。

从20世纪第一台傅里叶变换红外光谱仪发明到现在,仪器的性能已经有长足的发展。一是趋于更加强大的综合性能和更高的精度,另个方向就是开发更友善简易的操作平台,向占地更小更经济的方向发展。在上世纪末,红外光谱仪技术发展到实时实地测量及无损测量。在这种情况下传统的台式机已经不能完全满足样品的测试需求。例如当被测物质体积太大无法被移动或是测试环境恶劣时,使用传统的台式机测试样品已经变得很不方便甚至不可能。与台式机比较,便携式红外光谱仪有占地少,质量相对轻,能抗震或耐恶劣环境等特点。

3.1 样品制备及界面的革新

便携式傅里叶红外光谱仪的另一个重要特点是进样技术的革新,这使得测试能做到实地测量,实时跟踪。漫反射及红外显微镜技术特别是ATR技术(衰减全反射法,也叫内反射法)的出现使得样品只需稍加准备甚至无需制备就能进行无损测试,极大地拓宽了红外光谱仪的使用范围。值得一提的是,ATR技术的加载只需在原有红外光谱仪装置ATR附件即可。一般ATR晶体为具有高折射律的晶体,如KSR-5、锗(Ge)、硅等。为了增强折射,也可镀上金属如

金或银。市售便携式傅里叶红外光谱仪多数会配置ATR附件,对样品的状态没有严格限制。按照传统的方法测试前必须把样品制成溴化钾压片或者石蜡研糊,但是实际上有些样品是很难压片或者预制备的。气体测试则需有ATR气体池。有仪器商还会配置特别的卡口转换支持不同样品界面的互换。测试完成后,样品平台的清洁也是比较简单的。由于操作及清洗便捷,这些比较新式的红外光谱仪附件成为一些要求迅速提供结果的使用者的常见配套。

3.2 耐受性及稳定性

在严苛的测试环境下,便携式傅里叶红外光谱仪较传统台式机就更能展现出它的特点。要保证数据的可重复性,仪器必须具有足够的机械稳定性及耐受性,如振动的耐受。便携式光谱仪的设计特点之一就是整个仪器能适应各种机械的振动。这就要求仪器在被移动或震动下光源仍能够保持原来的方向不变及光路准直。有制造商在设计仪器时,改进了迈克尔逊干涉仪,采取自补偿技术,避免使用传统角棱镜及动态对线。从而系统光学系统是不需要从外部进行调整,而是永久自动对准,这也就保证了整个系统的抗震性。例如,Bruker公司对传统的迈克尔逊干涉仪进行改进,出产了Rocksolid专利干涉仪。采用立体直角反射镜,保证光路永远准直,即使在整个光谱仪翻转的情况下,红外信号都能正常收集,无需从外部对光路进行重新调整。要做到随时随地原位测试,仪器也必须对环境湿度,温度有一定化学耐受性及稳定性。如在湿度比较大的环境中,可以采用Zn-Se或者石英光窗,达到防水的目的。测试腐蚀性溶液中的某些物质时,普通的ATR晶体是耐受不住这种条件的,而金刚石探头具有良好的化学稳定性和耐磨性,适用于大部分固液体样品的测试。

3.3人机交互性增强

20世纪80年代,红外技术已经广泛应用在在实验室甚至工业定性定量分析中。这不仅仅是因为得益于仪器本身光学和电学方面的改革和改进,人机交互性的强调和数据库功能的增强也推动了这个进程。如今很多红外光谱仪支持与普通手提电脑联网,或者把电脑内置化,装置USB接口及触摸屏。制造商会提供仪器使用培训及附送谱图库,这使得一些非专业人士都能通过简单的培训学会机器的操作,样品成分的分析测试也更简便了。

4 红外光谱仪的应用

在气态、液态及固态样品中,红外光谱技术都有应用,有机、无机及高分子等化合物都可用红外光谱技术检测。远红外、近红外及偏振红外技术,会成为FTIR 技术的新的发展方向,还有高压红外、红外光声光谱、红外遥感技术、可控变温红外、拉曼光谱和色散光谱技术等也会相继出现,这些现代化联用技术的不断涌

现,将使红外光谱检测技术成为物质结构分析和鉴定分析的有效方法。现阶段,红外光谱检测技术已广泛在石油的勘探分析、地质矿物的研究中有效应用,在现代农业、生物学、医学、法庭科学、环境科学、染织工业和材料科学等各个学科的研究方面起到了很大的作用。物质分子结构的特点会以强度与位置的关系在红外光谱吸收峰中得以反映出来,以此来确定物质的化学基团或鉴别未知物的结构组成;而吸收谱带的吸收强度反映化学基团的含量,可在纯度测定及定量分析中有效应用。此外,在化学反应的机理研究上,红外光谱也起到了不可磨灭的作用,但还是在未知化合物的结构鉴定的应用中最为广泛。

4.1 在刑侦工作中的应用

红外光谱在刑侦工作中有以下三个用途:

1)在侦破各类案件中,用红外光谱技术能鉴定案发现场罪犯所遗留的微量物证是何种物质,从而提供了侦查方向、线索,为破案缩小了范围。

2)在侦破案件中,把案发现场的物证检材与犯罪嫌疑人处提取的比对样品进行比较,用红外光谱技术可以认定或否定犯罪嫌疑人。

3)无损检验、微量检验。红外光谱是一种不破坏样品的鉴定方法,为一份样品进行多种方法鉴定提供了方便,非常适用于样品来源不易的物证鉴定。无论是气体、液体、或是固体样品,它们都可以直接测得红外光谱。

红外光谱技术样品用量只需要数微克,很适用于微量物证样品的鉴定。

鉴定结果充分可靠。有机化合物和多元素无机化合物都有其特征的红外光谱图,并且谱图相当复杂,这就像人的指纹一样,故有人把红外光谱称之为“分子指纹”。

4.2 在食品检测中的应用

食品的掺假种类和方式千变万化,下面仅以油脂为例,说明红外光谱在其掺假检测中的应用:

目前市面上销售的橄榄油主要可以分为:特级纯、纯和精炼的不同三个等级,品质高、口感好的橄榄油因具有其独特的风味,所以价格也较高,特级纯橄榄油的价格约是其精炼产品2 倍左右,因此向高品质的油中掺假较为便宜的同类型低档的油,或不同种类低价的油,已经成为一种新的牟利方式。

根据油脂多次甲基链中的C—H和C—O在中红外光谱区振动频率和振动方式

不同,因为可以反映油品信息的不同特性,从而判断是否有掺假。采用中红外光谱的衰减全反射对固态脂肪样品进行检测,采用中红外光纤对液态油样进行分析。

根据不饱和脂肪酸含量的不同,第一主成分由脂肪的一阶导数光谱所得,从而将黄油和菜油区分;对于液态油,根据油样中亚麻酸含量差异性,对光谱进行二阶导数处理,结合第一主成分,使花生油和橄榄油与菜籽油得以区别,可进一

步检测油品中的相关掺假产品。

4.3 在宝玉石检测中的应用

随着现代宝玉石检测技术的发展,红外光谱技术被广泛应用于宝玉石鉴定与研究领域中。在红外光谱中不同基团的吸收谱带对应于不同的分子或原子基团,其峰位和峰强的变化直接反映宝玉石的特性,有“指纹谱”之称。

宝玉石吸收红外辐射(即红外光)后,引起晶格分子、络阴离子团和配位基的振动与转动能级的跃迁而产生偶极矩变化,与其固有振动频率相同的特定波长的红外光被吸收形成的红外吸收谱带。

红外光谱技术在宝玉石检测中主要用于研究分析宝玉石的分子结构和化学成分。有助于判定钻石类型、确定宝玉石的种属、天然与合成、优化处理、仿制品等重要信息。对于准确、快速、简易、日常无损检测鉴别宝玉石中用途大、效果好,具有重要的补充和完善宝玉石常规检测的意义。

4.4 在医学研究中的应用

国内有学者经过大量研究,使用大型分析软件SPSS 处理红外测试数据来判断人体组织是否有癌变。

肿瘤的发生是多阶段、多步骤、多基因调控发展的过程。在这一过程中,细胞中的核酸、蛋白、糖、脂类物质的含量、结构有所变化。这些变化早于在光学显微镜下见到的变化。

傅里叶变换红外光谱仪可在分子水平上检测这种变化,并对其进行定性、定量(相对含量)分析。

参考文献

[1]宋萍.便携式傅里叶红外光谱仪简介.分析仪器,2014,3:1-3.[2]王明智.傅里叶红外光谱仪(FTIR)的基本原理及其应用.应用科技,2014,3

[3]红外光谱仪的发展

红外光谱仪的应用

红外光谱仪的应用 (陕西科技大学材料科学与工程学院西安任莹莹710021) 摘要:傅里叶转换红外光谱(FTIR)是一种用来获得吸收,射出光电导性或固体,液体或气体的拉曼散射的仪器。本文将从红外光谱仪的使用原理,样品制备,结果分析等几个方面对红外光谱仪进行介绍。 关键字:FTIR,原理,样品制备,结果分析 The Application of Infrared Spectrometer (School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an Ren yingying 710021) Abstract:Fourier transform infrared spectroscopy (FTIR) is a kind of instrument, which is used to get absorbed, penetrate photoconductivity or solid, liquid or gas Raman scattering. This article from the principle of the use of infrared spectrometer, sample preparation, the analysis of several aspects, such as the infrared spectrometer is introduced. Key words: FTIR, principle, sample preparation, analysis of the results 一、原理 红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5—5μm;4000—400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。 红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率和红外光的频率一样时,分子就吸收能量由原来的基态振动能级跃迁到能量较高的振动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。如图1,辛烷的红外光谱图,纵坐标为透过率,横坐标为波长λ(μm )或波数(cm-1)。

近红外光谱仪操作规程

NIR-Antaris II 傅立叶变换近红外光谱仪 一、工作环境 1.供电电源:AC220V±10%;50±1Hz单相交流电。 2.环境温度:15-35℃;空气相对湿度:45-80%RH。 3.仪器应置于固定的工作台上,不应有强震动源。 4.室内无电磁干扰及有害有毒气体。 二、开机 打开计算机电源开关,打开近红外光谱仪电源开关,电源指示灯(Power)亮,光谱仪开机预热1 h等仪器稳定后再使用。 三、工作流(Workflow)的建立 1.先计划好该工作流保存的路径、各样品分析报告和光谱保存路径,然后将所分析指标对应的分析模型建立到对应的文件夹中。 2.从桌面或“开始”菜单中打开RESULT-Integration软件。 3.从“文件”菜单中的“新建工作流”选项或工具栏上的“新建”工具新建一个工作流,并点击“另存为”工具将其保存到预先计划好的路径下。 4.点击工具栏上的“向导”,在弹出窗口中的“样品物质”处输入样品名称,并分别设置以下各项: ①采集 ?采集方式的选 ?背景和样品采集时的提示信息 ?采集次数、分辨率、光谱数据格式 ②测量 ?当前工作流的保存路径 ?建模方法 ?测定类型 ③报告 ?表头、表格、光谱、打印报告 ④归档

⑤点击确定,关闭当前窗口 5.在“执行”和“注释”下的文字框中输入对该工作流的描述信息,如说明该工作流的用途和方法等。 6.点击导视窗口中的各项Event前面的,将其下的子事件展开。 7.分别在导视窗口点到各项子事件,在右边的显示和参数设置窗口中设置的各项事件参数: ①设置采集项 在使用向导时已经设置过分辨率、扫描次数。在样品光谱采集时,还要看 是否使用样品杯旋转器,所以可以通过“样品规格”后面的“详细信息”按键 进入到下一个界面。对于积分球方式,如果使用,“样品杯旋转器”后面可以选 择“旋转样品杯”,不使用则选择None。 ②设置测试项 点击“详细信息”按键,选择对应的模型文件、建模所使用的方法、设置 模型测定的指标。 ③设置报告项 鼠标点击导视窗口的“报告”,点击“详细信息”按键,可设置报告的名称; 使用窗口下方的“添加”和“删除”按钮可添加或删除各项,“向上”和“向下” 按钮可对报告中的各项进行上下排序。使用右方的“新建”按钮可以新建报告 项,“详细信息”按钮可以查看和设置各项的详细参数。 ④设置存档项 在该处可设置需要存档的项目、保存路径、报告和光谱保存格式、报告和 光谱存档文件名等。 8.使用工具栏的“添加”按钮添加事件(Event)。 根据设置工作流程的需要,可以使用工具栏上的“添加”按钮添加各种Event,然后按类似于前面各步的方法设置各项参数,在导视窗口中根据需要设置好次序,以达到按既定的程序对样品进行分析的目的。 9.工作流的测试。 按前述方法建立好工作流后,可以通过工具栏上的“测试”按钮,对工作流进行测试,以检查工作流是否能够按照预定的程序运行。

红外光谱仪操作规程及注意事项

发表日期:2007年6月3日【编辑录入:admin】 1.保持室内干燥,空调和除湿机必须全天开机(保持环境条件25±10℃左右,湿度≤70%); 2.保持实验室安静和整洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。 3.经常检查干燥剂颜色,如果兰色变浅,立即更换。 4.根据样品特性以及状态,制定相应的制样方法并制样。5.测试红外光谱图时,扫描空光路背景信号和样品文件信号,经傅立叶变换得到样品红外光谱图。根据需要,打印或者保存 红外光谱图。 6.实验完毕后在记录本上记录使用情况。 7.设备停止使用时,样品室内应放置盛满干燥剂的培养皿。8.干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。 9.将压片模具、KBr晶体、液体池及其窗片放在干燥器内备用。10.液体池使用NaCl、CaF2、BaF2等晶体很脆易碎,应小心保存。11.液体池使用的KRS-5晶体剧毒,使用时避免直接接触(戴手套),打磨KRS-5晶体时避免接触或吸入KRS-5粉末,打磨的 废弃物必须妥善处理。

2010-01-12 17:11:38 来源:实验室设备信息网浏览:342次 红外光谱仪操作规程及注意事项 一、操作步骤 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温为21±5℃左右,湿度≤65%才能开机。 2.开机 开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。 4.扫描和输出红外光谱图 测试红外光谱图时,先扫描空光路背景信号(Collect→Background),再扫描样品文件信号(Collect→Sample),经傅立叶变换得到样品红外光谱图。 5.关机 (1)关机时,先关闭OMNIC软件,再关闭仪器电源,最后关闭计算机并盖上仪器防尘罩。(2)在记录本记录使用情况。 二、注意事项1.测定时实验室的温度应在15~30℃,所用的电源应配备有稳压装置。2.为防止仪器受潮而影响使用寿命,红外实验室应保持干燥(相对湿度应在65%以下)。3.样品的研磨要在红外灯下进行,防止样品吸水。 4.压片用的模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以免锈蚀。 5.OMNI采样器使用过程中必须注意以下几点: (1)样品与Ge晶体间必须紧密接触,不留缝隙。否则红外光射到空气层就发生衰减全反

傅里叶红外光谱仪操作规程

傅里叶红外光谱仪操作规程 1.开机前准备 开机前检查实验室电源、温度和湿度等环境条件,当电压稳定,室温在 15~25℃、湿度≤60%才能开机。 2.开机 首先打开仪器的外置电源,稳定半小时,使得仪器能量达到最佳状态。开启电脑,并打开仪器操作平台 OMNIC软件,运行 Diagnostic菜单,检查仪器稳定性。 3.制样 根据样品特性以及状态,制定相应的制样方法并制样。固体粉末样品用 KBr 压片法制成透明的薄片;液体样品用液膜法、涂膜法或直接注入液体池内进行测定;(液膜法是在可拆液体池两片窗片之间,滴上 1-2滴液体试样,使之形成一薄的液膜;涂膜法是用刮刀取适量的试样均匀涂于 KBr窗片上,然后将另一块 窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜;沸点较低,挥发性较大的液体试样,可直接注入封闭的红外玻璃或石英液体池中,液层厚度一般为 0.01~1mm)。 4.扫描和输出红外光谱图 将制好的 KBr薄片轻轻放在锁氏样品架内,插入样品池并拉紧盖子,在软 件设置好的模式和参数下测试红外光谱图。先扫描空光路背景信号(或不放样品时的 KBr薄片,有 4个扣除空气背景的方法可供选择),再扫描样品信号,经 傅里叶变换得到样品红外光谱图。根据需要,打印或者保存红外光谱图。5.关机 (1)先关闭 OMNIC软件,再关闭仪器电源,盖上仪器防尘罩。 (2)在记录本上记录使用情况。 6.清洗压片模具和玛瑙研钵 KBr对钢制模具的平滑表面会产生极强的腐蚀性,因此模具用后应立即用水冲洗,再用去离子水冲洗三遍,用脱脂棉蘸取乙醇或丙酮擦洗各个部分,然后用电吹风吹干,保存在干燥箱内备用。玛瑙研钵的清洗与模具相同。

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

红外光谱仪操作规程及注意事项

红外光谱仪操作规程及注意事项 第一环境部分: 1. 保持室内干燥,空调和除湿机必须全天开机(保持环境条件不要低于20度,湿度≤65%);在南方潮湿地方,除湿机要每天都开着控制湿度,如果是由于湿度的原因,造成KBr窗片被腐蚀,是不在保修范围内的。温度变化梯度不能大于1摄氏度每小时. 2. 保持实验室清洁,不得在实验室内进行样品化学处理,实验完毕即取出样品室内的样品。 3. 一般要求红外光谱仪24小时开机,即使做不到这一点也要保证每周都开机预热三次以上,每次两个小时以上。 4.随机带的干燥剂是分子筛,可以重复使用。若仪器humidity指示灯变红色,表明干燥剂已经受潮,应倒出放到一个烧杯里在烘箱中烘干,条件是150度下连续烘24小时,降温时可置于干燥皿中以防止再度吸潮。千万不能连干燥管一起放到烘箱烘干。(由技术员负责) 5.样品室内放有盛变色硅胶的烧杯,一旦有半数以上颜色变红,必须更换硅胶。干燥剂再生:将干燥剂在烘箱内105℃烘干至兰色(约3小时)即可。 第二制样部分: 固体样品的准备 1. 样品和KBr的比例一般为1—2mg样品配上200mg的KBr。如果样品太多,测出来的吸收峰太强,如果样品太少,有些弱峰将测不出来。因不可能用天平称量,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所测得的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。最强吸收峰的透光率如太大(如大于30%),则说明取样量太少; 相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。 2. 红外光谱测定最常用的溴化钾最好应为光学试剂级,至少也要分析纯级。溴化钾和样品用前在红外干燥箱里充分干燥,研磨3—5分钟要连同玛瑙研钵一块放到红外烘干箱里进行干燥5分钟。 3. 压片时,把样品和KBr混合物放到压片模具时,保证样品是均匀铺平在模具里,一般压力在10-15MPa, 压力太小压出来的片子不透明,压力太大容易损坏模具。一般加上压以后,保持压力1—2分钟,然后放压取片。 4、模具用后应立即把各部分用乙醇擦干净,必要时先用水清洗干净后再用乙醇擦干,置干燥器中保存,以兔锈蚀。

近红外光谱仪厂家

【导语】近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。那么今天我们一起走入下文了解一下关于近红外光谱仪。 【近红外光谱仪注意事项】 由于近红外光在常规光纤中有良好的传输特性,且其近红外光谱仪较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,近红外光谱仪成为在线分析仪表中的一枝奇葩。近红外光谱仪的一个重要特点就是技术本身的成套性,即必须同时具备三个条件: (1)各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求; (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具; (3)准确并适用范围足够宽的模型。 这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,为此付出代价的厂家有之,因此,一定要对厂家提供模型与技术支持情况有详细了解。 【近红外光谱仪厂家】

山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类环境而努力奋斗。山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类环境而努力奋斗。

近红外光谱仪主要性能指标及研究进展

综 述 近红外光谱仪主要性能指标及研究进展 张 琳1 周金池2 (11北京林业大学林学院森林保护系,北京,100083;21北京林业大学分析测试实验中心,北京,100083) 摘 要 介绍了近红外光谱仪的主要性能指标;对国内外在仪器硬件、测样附件、软件开发及新型仪器研制等方面的进展作了评述。总结了我国近红外光谱仪发展的成就与不足。讨论了近红外光谱仪的发展趋势,特别是我国近红外光谱仪发展中的关键问题。 关键词 近红外光谱仪 性能指标 国内外进展 资助项目:北京林业大学/211工程0三期研究生创新人才培养建设计划子项目。 作者简介:张琳,女,北京林业大学森林保护系在读硕士生。E -mail:Zhanglin20051986@https://www.360docs.net/doc/496801219.html, 通讯联系人:周金池,男,汉族,1971年出生,山东省德州市人,副教授,专业方向:仪器分析与造林新技术的应用。E -m ail:zjc@https://www.360docs.net/doc/496801219.html, 1 引 言 近红外(NIR)光谱仪是近年来发展较为迅速的一种高新分析测试技术,是光谱测量技术、计算机技术、化学计量学技术与基础测量技术的有机结合。与传统分析技术相比,近红外光谱仪具有无损检测、分析效率高、分析速度快、分析成本低、重现性好、样品测量一般勿需预处理、光谱测量方便、适合于现场检测(如大批量抽检)和在线分析等独特优势[1] 。 NIR 光谱仪的类型较多,主要有滤光片型、发光二极管(LED)型、光栅色散型、傅里叶变换干涉仪型、声光可调滤光片型(AOTF)、多通道检测型(二极管阵列PDA 、电荷耦合器件CCD)等[2]。光栅色散型仪器又可分为扫描-单通道检测器和固定光路-阵列检测器两种类型。除了采用单色器分光以外,也有仪器采用多种不同波长的发光二极管(LED)作光源,即LED 型近红外光谱仪。尽管我国NIR 光谱仪硬件研制相对较晚,但以上提到的6种类型NIR 光谱仪,在我国都有相关单位进行研发[3]。 2 近红外光谱仪器的主要性能指标 211 分辨率 近红外光谱仪的分辨率是指仪器对于紧密相邻 的峰可以分辨的最小波长间隔,表示仪器实际分开相邻峰的能力,即M /$M 或(K /$K ),M 为两峰中任一峰的波数,$M 为两峰波数之差。它是仪器的最主要指标之一,也是仪器质量的综合反映。仪器的分辨率主要取决于仪器分光系统的性能。对于色散型仪器而言,其分辨率取决于分光后狭缝截取的波段精度,狭缝越小截取的波段越窄,分辨率越高。但随之而来的是能量急剧下降,灵敏度不断降低,为了兼顾检出灵敏度,就不能以无限制地缩小狭缝来提高分辨率,因此,要想让色散型仪器既能分辨率达到0.1cm -1,又能得到一张质量良好的谱图是一件很困难的事。而对于傅里叶变换型的近红外光谱仪,由于有多路通过的特点,无狭缝的限制,因此仪器的分辨率仅取决于干涉采样数据点的多少,即取决于动镜移动的距离,由于动镜的移动由激光控制,因此可以很轻松地得到一张高质量、高分辨率的谱图。212 波长准确性 光谱仪波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差(傅里叶变换型红外光谱仪习惯用波数cm -1来表示)。波长准确度一般用波长误差,即上述两值之差来表示。由于近红外分析是用已知样品所建立的模型来分析未知样品的,如果仪器的波长准确度不能保证,则不同测定光谱就会因仪器波长的移动(即x 轴发生了平

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

尼高力红外光谱仪应用软件Omnic6.0使用指南解读

尼高力红外光谱仪应用软件"Omnic6.0"使用指南 Omnic软件使用指南 1. Omnic与系统 Omnic是Nicolet公司的在PC机使用最广泛的窗口软件平台上运行的红外软件,从开始在Windows3.1上运行的版本的 1.0到目前的 6.1a,现行的的操作系统Windows98/Me/NT/2000/XP都支持。EZ-Omnic是简化的软件,一方面价格比较低,同时更加简明,容易掌握,虽然功能比较简单,仍可以满足先当部分用户的需求。 使用的仪器通讯接口有:LTP(并行口)或PCI卡,部分早一些的仪器使用ISA卡。 2.文件结构 Omnic 6.0以上版本的缺省的文件分别存在于三个目录中:C:\My Documents\Omnic,在其子目录中分门别类地存放数据与参数等文件,如Spectra存光谱,Param中存设置参数,Quant存定量方法;C:\Program Files\Omnic,存有驱动与程序文件等,系统的卸载命令在它的子目录Uninstall中;C:\MyDocument\Omnic\Lib,存放谱库,包括购买和自建的谱库。 软件安装的应用程序除了Omnic外还有Bench Diagnostics,这是一个在系统发生故障时进行判断的重要命令,能够检查从接口卡到仪器的各个重要部件。它们与PDF文件一起置于Thermo Nicolet程序组中, 3.启动Omnic软件 使用下列方法之一启动Omnic 红外软件系统: 1.在Windows98等的桌面上双击(或者) 2.从Srart→Program→Thermo Nicolet→Omnic(或者从Srart→Program→Omnic5.0→) 3.其他,如Win98中的快捷方式启动。 4. Omnic显示面板: 1. Omnic是一种与窗口软件充分兼容的软件,可以显示一个或多个显示窗口,当显示多个窗口时可以选择平铺(Tile)或层叠(Cascade)方式,但其中只有一个是活动窗口(被选中的)。光谱图可以在窗口间拖动、复制与粘贴,而且可以把复制的光谱图直接粘贴到其他应用程序的文本文件中,为发表文章或书写报告带来方便。 2.在每个显示窗口中,可以显示一个到多个光谱图,最后加入的光谱是自动被选中的,缺省颜色是红色。有些对光谱进行进一步处理时需要或可以同时处理多个光谱。需要有多个被选中的光谱时,通过按住Ctrl或Shift键操作鼠标来增减被选中光谱。 3.标题框在光谱窗口的上面,标题内容为人工输入,或根据使用的需要,通过“选项”中所设定的方式中适当选择自动生成。 4.按“信息按钮”或双击“标题框”中的标题,打开“选中”光谱的采集和数据处理记录的窗口,在其中的注释(Comment)等若干框中,可以输入文字信息,这些信息可以随同谱图一起打印,其它的记录为非编辑内容。 5.当显示多个光谱图时,按“标题框”右边的箭头,显示出所有谱图的标题表。用鼠标击标题表(选中)后,用键盘上的箭头键可以改变被选中的光谱,同时可以编辑被选中的光

红外光谱仪标准操作规程

目的:建立尼高力IS5型红外光谱仪标准操作规程,规范检验人员的操作。: 范围:适用于本公司尼高力IS5型红外光谱仪的操作。 职责:质量管理部、QC. 内容: 1系统组成:本系统由主机,OMNIC光谱数据工作站和电脑等组成,另外还包括打印机、不间断电源等辅助设备。 应在120℃干燥4h,样品在105℃干燥4h,完成后放入干燥2操作前准备,KB r 器内备用。 2.1根据检验样品特性进行处理 压片法:取样品约1mg,置于玛瑙研钵中,一个方向均匀研磨,样品粒径小KB r 一个方向均匀研磨,粒径应小于2.5um。装入压片于2.5um,然后加入约100mg KB r 磨具约60mg,放入便携式压片机,进行压片,样片应平整透明。 涂膜法:将样品溶于不含水的溶剂中,如氯仿、甲醇、无水乙醇,滴加在盐片上,挥干溶剂后,进行检测。 薄膜法:将液体样品均匀涂于盐片上,然后盖上令一个盐片,稍加用力,来回推移,使之形成一层均匀无气泡的液膜,进行检测。 糊状法:将样品约1mg,置于玛瑙研钵中,一个方向均匀研磨,样品粒度小于2.5um,滴加石蜡糊或荧光湖,充分研磨,涂抹于盐片上,进行检测。 2.3 检查仪器各部件的电源线、数据线是否连接正常。 2.4准备相应的文件,如仪器操作规程、仪器使用记录、检验原始记录等。 2.5准备其它辅助用品。 3 开机:开启仪器开关,会听到“滋滋”声,蓝色指示灯闪烁,仪器需预热30min。打开电脑显示器、主机电源开关。点击电脑桌面“OMNIC”图标,软件右上角显示绿色对号,证明已联机。

4实验设置:点击上面工具栏“实验设置”图标,扫描次数为16次,选择“采集样品前采集背景”按钮,点击“确定”。 5 采集样品 5.1 点击软件上面工具栏的“采集样品”,在弹出的小窗口输入样品名称、批号,点击“确定”,先进行背景扫描。 5.2将样品取出固定于样品架,放入仪器,点击“确定”,开始扫描。 5.3 在左上角弹出窗口中点击“确定”,将谱图添加于当前窗口。 6红外谱图处理分析 6.1校正,点击“自动基线校正”,此时谱图会平整美观,点击校正前的谱图,谱图线变红色,然后点击“Ctrl+Delete”将原谱图删除,保留校正后谱图。 6.2转换,点击“数据处理”下拉菜单中的“透过率”,将谱图由吸光度转换为透过率。 6.3显示:下拉菜单“显示”选择“显示范围”,在x轴输入4000-400cm-1,在y 轴输入0-100%。 6.4标峰,点击“谱图分析”下拉菜单中的“标峰”,通过调节显示主要特征峰,然后点击“替代”,此“替代”必须执行,否则其他操作不能进行。 6.5使用谱图下方标注工具“T”,对“标峰”中未统一标出的峰进行单独标注或删除,谱图处理完成后,保存。 7谱图检索 7.1下拉菜单“谱图分析”选择“检索设置”,将“可选谱库和谱库组”全部加入“已选谱库和谱库组”,点击“确定”。 7.2点击下拉菜单“谱图分析”选择“谱图检索”,此时会看到样品谱图与谱图库进行对比。完成后可看到与标准谱图库中谱图的相似度与谱图名称。 8报告 8.1添加谱图库标准谱图,将谱图检索中标准谱图复制并粘贴于样品谱图窗口中,点击工具栏中“分层谱图显示”,窗口中分层显示标准谱图与样品谱图。 8.2点击下拉菜单“报告”选择“报告模板”,在弹出的小窗口中选择模板,并点击“编辑”,同时出现新的编辑窗口。 8.3在新窗口中输入样品名称、批号、实验仪器、型号、检测日期,注明标准谱

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要................................................................................... I ABSTRACT......................................................................... II 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (4) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (6) 2.3傅立叶变换红外光谱仪的主要特点 (7) 3 样品处理 (8) 3.1气体样品 (8) 3.2液体和溶液样品 (8) 3.3固体样品 (8) 4 傅立叶变换红外光谱仪的应用 (9) 4.1在临床医学和药学方面的应用⑷ (9) 4.2在化学、化工方面的应用 (10) 4.3在环境分析中的应用 (11) 4.4在半导体和超导材料等方面的应用⑼ (11) 5 全文总结 (12) 参考文献 (13)

TENSOR27红外光谱仪标准操作规程

TENSOR27红外光谱仪标准操作规程 SOP FOR FT-IR SPECTROMETER TENSOR27 文件编码/Document code: AT03-126-00 替代原版本/Supersedes: NEW 生效日期/Effective Date: a 起草人/Written by: 日期/Date: 技术部批准/Tech Approval: 日期/Date: 质控部批准/Quality Approval: 日期/Date: 目的/PURPOSE: 规范TENSOR27 红外光谱仪的操作和维护规程,保证检测工作顺利进行。 To define procedures for operation and maintenance of FT-IR spectrometer Tensor 27, and to ensure the test work run well. 范围和职责/SCOPE AND RESPONSIBILITY: 本规程适用于TENSOR27 红外光谱仪的使用操作与日常维护。 This procedure is applicable to daily operation and maintenance of FT-IR spectrometer Tensor 27.所有使用TENSOR27 红外光谱仪的人员必须经本SOP培训,按照标准操作程序进行操作。质量保证部负责监督本SOP的执行。 Personnel using FT-IR spectrometer Tensor 27 should be well trained and strictly follow the SOP. It is the responsibility of Quality Assurance to supervise the execution of the SOP. 操作/ OPERATION: 打开仪器背后的电源,等待“Status”灯变绿。仪器加电后至少要等待10 分钟,等电子部

近红外光谱仪器的发展现状

电子知识 现代近红外光谱仪器从分光系统可分为固定波长滤光片、光栅色散、快速傅立叶变换和声光可调滤光器(AOTF)四种类型。光栅色散型仪器根据使用检测器的差异又分为扫描式和固定光路两种。在各种类型仪器中,光栅扫描式是最常用的仪器类型,采用全息光栅分光、PbS 或其他光敏元件作检测器,具有较高的信噪比。由于仪器中的可动部件(如光栅轴)在连续高强度的运行中可能存在磨损问题,从而影响光谱采集的可靠性,不太合适于在线分析。 傅立叶变换近红外光谱仪是目前近红外光谱仪器的主导产品,具有较高的分辨率和扫描速度,这类仪器的弱点同样是干涉仪中存在移动部件,且需要较严格的工作环境。AOTF 是90年代初出现的一类新型分光器件,采用双折射晶体,通过改变频率来调节扫描的波长,整个仪器系统无移动部件,扫描速度快,具有较好的仪器稳定性,特别适合在线分析。但目前这类仪器的分辨率相对较低,AOTF 的价格也较高。随着多通道检测器件生产技术的日趋成熟,采用固定光路、光栅分光、多通道检测器构成的NIR 仪器,以其性能稳定、扫描速度快、分辨率高、性能价格比好等特点正越来越引起人们的重视。在与固定光路相匹配的多通道检测器中,常用的有二极管阵列(Photodiode-array 简称PDA)和电荷耦合器件(Charge Coupled Devices 简称 CCD)两种类型。 国外NIR 光谱仪发展状况:国外便携式近红外光谱仪的研制工作开展的较早,技术也比较成熟。从厂家的网上材料看,NIR 仪器不断向小型化、固态化、模块化和快速实时方向发展。其中典型的有美国的ASD公司的可见/近红外便携式光谱分析仪

Labspec Pro 系列,可选择光谱测量范围1000-1800nm、1000-2500nm、350-2500nm,光纤探头,并配以用于化学计量学模型编程的Unscrambler 标准软件。澳大利亚Integrated Spectronics Pty Ltd 的PIMA (Portable Infrared Mineral Analyzer)是典型的便携式野外岩石矿物NIR 分析仪器。PIMA 系光栅扫描型,光谱范围1 300~2500 nm,仪器重2.5Kg,野外电池供电,外接笔记本电脑。 Ocean Optics Inc.研制生产的USB2000 微型光纤光谱仪(USB2000 Miniature Fiber Optic Spectrometer),有标准组件的光谱仪系统,配以不同的光栅、狭缝、不同的光纤设备等,可检测吸收、反射、发射光谱等,范围200-1100nm。USB2000 整体尺寸为89mm×64mm×34mm,重量在270克左右。 我国NIR仪器的研制起步较晚,90 年代中期,有的厂家在生产傅立叶变换红外光谱仪的基础上,开发生产了傅立叶变换近红外光谱仪器。北京北分瑞利分析仪器有限责任公司(原北京第二光学仪器厂)研制出傅立叶变换型NIR 光谱仪。在多通道近红外光谱仪器的研制方面,石油化工科学研究所研制、深圳英贤仪器公司生产的NIR-2000 型近红外光谱仪已于1998 年9 月通过中国石油化工集团公司鉴定,并进入批量生产。该仪器采用硅基2048 像素CCD 作检测器,波长范围700~1100nm,主要用于多种石油产品组成和性质的分析。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中

傅里叶红外光谱仪操作规程

傅立叶变换红外光谱仪 操作规程 一、主要技术指标 1、仪器型号:Nicolet 6700 2、扫描范围:4000 cm-1~ 400cm-1 3、最小精度:1cm-1 4、检测器:DTGS 5、分束器:多层镀膜溴化钾 6、光源:EverGlo光源 二、环境条件 1、电源要求: 仪器供电电压:220V±10%,频率50Hz±10% 2、温湿度要求: 室内温度18℃~25℃相对湿度≤60% 为保证仪器达到较高的控温精度,应保证稳定室温; 实验室保持抽湿状态,以维持空气干燥,且不宜开空调。 样品室窗门应轻开轻关,避免仪器振动受损。 三、试验步骤 1、标样质量浓度曲线的绘制 (1)配制系列浓度的标液:分别称取脂肪酸甲酯0.0100g、0.0200g、 0.0300g、0.0400g和0.0500g于10mL容量瓶中,加入少量环己烷摇匀, 再加环己烷至刻线位置。分别得到质量浓度为1g/L、2 g/L、3 g/L、4 g/L、 5 g/L的脂肪酸甲酯标准溶液。 (2)按以下试验操作步骤2扫描以上所配制的各个不同质量浓度的脂肪酸甲酯标准溶液,分别得到其红外谱图。 (3)打开OMNIC分析软件,将所得的不同浓度的标样图谱以及相应的浓度数值等输入该软件,绘制脂肪酸甲酯质量浓度曲线,保存。 2、试验操作: (1)开机时,首先打开仪器电源,稳定半小时,使得仪器能量达到最佳状态。 (2)开启电脑,并打开仪器操作平台OMNIC软件,运行Diagnostic 菜单,设置实验参数并检查仪器稳定性。

(3)扫描背景谱图:用环己烷反复清洗样品池(一般为3次),扫描环己烷红外谱图并保存。 (4)稀释待测试样,用稀释过的待测试样润洗样品池(2到3次)。然后向样品池中加满试样,以环己烷为背景对试样进行扫描得到其红外谱图并保存。 (5)每个样品重复进行上述(3)(4)两步骤进行平行测定。 3、试验数据分析: (1)打开OMNIC分析软件,调取试验所得的试样谱图,与标样数据对比分析,得到试样中待测物的质量浓度。 (2)试验结束后,并依次关闭OMNIC软件及仪器、主机的电源,清洗样品池,使仪器周围保持干净整洁。 四、注意事项及维护保养 1、实验室必须有良好的接地。 2、在仪器使用过程中,请经常检查仪器内部的湿度指示,Nicolet系 列用户可用软件检查干燥剂湿度是否过关。若干燥剂颜色变浅,请 及时将干燥剂在烘箱里烘干。 3、每次做完样品后,在样品仓内放一杯干燥硅胶,以保持样品仓的干 燥并同时保护两边的KBr窗片。 4、仪器长时间不使用时,间隔几天开启仪器一段时间,使仪器处于通 电状态,可防止仪器受潮。 5、每次做完试验,用布罩将仪器盖好。

红外光谱仪

红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下,希望可以帮助到您! 电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光

(14000-4000 cm-1)可以激发泛音和谐波震动。红外光谱法的工作原理是由于震动能级不同,化学键具有不同的频率。共振频率或者振动频率取决于分子等势面的形状、原子质量、和最终的相关振动耦合。为使分子的振动模式在红外活跃,必须存在永久双极子的改变。具体的,在波恩-奥本海默和谐振子近似中,例如,当对应于电子基态的分子哈密顿量能被分子几何结构的平衡态附近的谐振子近似时,分子电子能量基态的势面决定的固有振荡模,决定了共振频率。然而,共振频率经过一次近似后同键的强度和键两头的原子质量联系起来。这样,振动频率可以和特定的键型联系起来。 合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分

近红外光谱仪的性能指标

近红外光谱仪器的主要性能指标 北京英贤仪器有限公司销售工程师王燕岭 在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。 1、仪器的波长范围 对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。 2、光谱的分辨率 光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1] 3、波长准确性 光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。[1]

4、波长重现性 波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。[1] 5、吸光度准确性 吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。 6、吸光度重现性 吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。 7、吸光度噪音 吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。 8、吸光度范围 吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低

相关文档
最新文档