实验三 利用MATLAB进行系统频域分析

合集下载

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。

它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。

采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。

1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。

由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。

Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

Matlab讲义连续时间系统的频域分析

Matlab讲义连续时间系统的频域分析

连续时间系统的频域分析一、 实验目的1. 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法。

2. 深刻理解和掌握非周期信号的傅里叶变换和其计算方法。

3. 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制。

4. 理解连续时间系统的频域分析原理和方法,掌握连续系统的频域响应求解方法,并画出相应的幅频和相频响应曲线。

二、 实验内容1. 周期信号的傅里叶分解 三角函数形式011()cos()sin()2n n n n a f t a n t b n t ωω+∞+∞===++∑∑ (1)式中傅里叶系数222()cos()d T T n a f t n t t T ω-=⎰,222()sin()d TT n b f t n t t T ω-=⎰指数函数形式j ()n tnn f t F eω+∞=-∞=∑ (2)式中傅里叶系数j 221()e d Tn t T n F f t t T ω--=⎰ (3)实现:数值积分——()函数 ()函数(‘’)为字符串,表示被积函数文件的文件名()表示函数句柄。

符号函数——()函数2. 周期信号的频谱幅度谱和相位谱——傅里叶系数直接获得。

4-1给定周期为4,脉冲宽度为2,幅值为0.5的矩形信号,计算傅里叶级数,绘制幅度谱和相位谱。

将其带入j ()Nn tnn Nf t F eω=-=∑,求10实的合成波形。

4;2;0.5;t12:0.0012;1=0.5*[(t1)<2];t2=[t1-2*T t1 t1 t1 t1+2*T]; (1,1,5);(4,1,1);(t2);(‘t’);(‘时域波形’);w0=2*;10;;[‘(*t*’, 2(w0),’*’2(k),’)’]; [2(A),’*(t,2)’] ;(1)([,’.*’]22);(4,1,2)(K*w0());(‘0’);(‘幅度谱’);;();(4,1,3)(K*w0);(‘0’);(‘相位谱’);;2*T:0.01:2*T;[]’;*(j*w0*K*t); (4,1,4) () (‘t ’); (‘合成波形’) ; 讲解1. B = () a BA. B [(A,1)*M, (A,2)*N].() . 复制矩阵函数 2. T = 2(X) X a T 4 ., , , . 数值到字符转换。

matlab中控制系统的频域分析

matlab中控制系统的频域分析

matlab中控制系统的频域分析求取系统对数频率特性图(波特图):bode()求取系统奈奎斯特图(幅相曲线图或极坐标图):nyquist()bode(a,b,c,d):自动绘制出系统的一组Bode图,它们是针对连续状态空间系统[a,b,c,d]的每个输入的Bode图。

其中频率范围由函数自动选取,而且在响应快速变化的位置会自动采用更多取样点。

bode(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的波特图。

bode(num,den):可绘制出以连续时间多项式传递函数表示的系统的波特图。

bode(a,b,c,d,iu,w)或bode(num,den,w):可利用指定的角频率矢量绘制出系统的波特图。

当带输出变量[mag,pha,w]或[mag,pha]引用函数时,可得到系统波特图相应的幅值mag、相角pha及角频率点w矢量或只是返回幅值与相角。

相角以度为单位,幅值可转换为分贝单位:magdb=20×log10(mag)nyquist(a,b,c,d):绘制出系统的一组Nyquist曲线,每条曲线相应于连续状态空间系统[a,b,c,d]的输入/输出组合对。

其中频率范围由函数自动选取,而且在响应快速变化的位置会自动采用更多取样点。

nyquist(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的极坐标图。

nyquist(num,den):可绘制出以连续时间多项式传递函数表示的系统的极坐标图。

nyquist(a,b,c,d,iu,w)或nyquist(num,den,w):可利用指定的角频率矢量绘制出系统的极坐标图。

当不带返回参数时,直接在屏幕上绘制出系统的极坐标图(图上用箭头表示w 的变化方向,负无穷到正无穷)。

当带输出变量[re,im,w]引用函数时,可得到系统频率特性函数的实部re和虚部im及角频率点w矢量(为正的部分)。

可以用plot(re,im)绘制出对应w从负无穷到零变化的部分。

基于matlab的控制系统频域分析实验

基于matlab的控制系统频域分析实验

基于matlab 的控制系统频域分析实验1. 已知系统开环传递函数)1()3()()(-+=s s s K s H s G用两种以上的方法,研究闭环系统稳定时K 的取值范围; 解:法一:闭环特征方程:s^2+(K-1)*s+3*K=0 列劳斯表: s^2 1 3 s^1 K-1 0 s 3*K系统稳定时:K-1>0 3*k>0所以:K>1 此时,系统稳定法二:由闭环特征方程得特征根:S=(-(K-1) + sprt((K-1)^2-12*K))/2由系统稳定的充要条件:所有特征根具有负实部,于是有:K-1>0得K>1法三:闭环传递函数为:由系统稳定的充要条件:闭环传递函数的极点均位于S 左半平面,于是有:K-1>0得K>1法四:令K=1,做Nyquist 图:曲线过(-1,j0)点,说明K=1时,系统临界稳定。

又令K=2,做Nyquist图:此时,系统稳定。

综上述,当K>1时,系统稳定。

2. 用MATLAB 绘制系统传递函数为2525)(2++=s s s G的Bode 图,并求取谐振频率和谐振峰值,相角裕度及幅值裕度。

G=tf([25],[1 1 25]) margin(G);幅值裕度:Gm=Inf dB 相角裕度:Pm=16.3 deg 谐振频率:10^0.845谐振峰值:14.02353. 单位反馈系统,开环传递函数为12.012)(232+++++=s s s s s s G用MATLAB 绘制系统的Nyquist 图及Bode 图,并求幅值裕量和相角裕量,在图中判断系统的稳定性。

G=tf([1 2 1],[1 0.2 1 1]) figure(1)margin(G); figure(2) nyquist(G); axis equalTransfer function: s^2 + 2 s + 1 --------------------- s^3 + 0.2 s^2 + s + 1由bode 图可知,相角裕度为Pm=26.8deg;幅值裕度为Gm=-5.35dB 。

线性系统的频域分析报告MATLAB实验

线性系统的频域分析报告MATLAB实验

1γ=50 20-=sK0原系统的伯德图:num/den =1.2347 s + 1 ------------- 0.20154 s + 1校正之后的系统开环传递函数为:num/den =6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 sP h a s e (d e g )Bode DiagramGm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec)-20020406080M a g n i t u d e (d B )alpha =6.1261;[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1];[num,den]=series(num0,den0,numc,denc);[gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc)disp('УÕýÖ®ºóµÄϵͳ¿ª»·´«µÝº¯ÊýΪ:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.');grid; ylabel('·ùÖµ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2);semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('Ïàλ(0)'); xlabel('ƵÂÊ(rad/sec)');title(['УÕýǰ£º·ùÖµÔ£Á¿=',num2str(20*log10(gm1)),'db','ÏàλԣÁ¿=',num2str(pm1),'0';'УÕýºó£º·ùÖµÔ£Á¿=',num2str(20*log10(gm)),'db','ÏàλԣÁ¿=',num2s tr(pm),'0']);10-110101102-60-40-2002040幅值(d b )--Go,-Gc,GoGc10-110101102-300-200-1000100相位(0)频率(rad/sec)矫正后系统的伯德图矫正之前系统单位阶跃响应矫正之后系统的单位阶跃响应:比较矫正前后系统的响应情况:可以看出超前矫正使系统的调节时间变短,响应更加迅速,但是超调量偏大,对改善系统的动态性能起到了巨大的作用。

实验三利用MATLAB进行系统频域分析

实验三利用MATLAB进行系统频域分析

实验三利用MATLAB进行系统频域分析系统频域分析是指通过对系统的输入输出信号进行频域分析,从而分析系统的频率响应特性和频率域特征。

利用MATLAB进行系统频域分析可以方便地实现信号的频谱分析、滤波器设计等功能。

下面将介绍如何利用MATLAB进行系统频域分析的基本步骤。

一、信号频谱分析1. 将信号导入MATLAB环境:可以使用`load`函数导入数据文件,或者使用`audioread`函数读取音频文件。

2. 绘制信号的时域波形图:使用`plot`函数绘制信号的时域波形图,以便对信号的整体特征有一个直观的了解。

3. 计算信号的频谱:使用快速傅里叶变换(FFT)算法对信号进行频谱分析。

使用`fft`函数对信号进行频域变换,并使用`abs`函数计算频谱的幅度。

4. 绘制信号的频谱图:使用`plot`函数绘制信号的频谱图,以便对信号的频率特征有一个直观的了解。

二、滤波器设计1.确定滤波器类型和要求:根据系统的要求和信号的特性,确定滤波器的类型(如低通滤波器、高通滤波器、带通滤波器等)和相应的频率响应要求。

2. 设计滤波器:使用MATLAB中的滤波器设计函数(如`fir1`、`butter`、`cheby1`等)来设计滤波器。

这些函数可以根据指定的滤波器类型、阶数和频率响应要求等参数来生成相应的滤波器系数。

3. 应用滤波器:使用`filter`函数将滤波器系数应用到信号上,得到滤波后的信号。

三、系统频率响应分析1. 生成输入信号:根据系统的要求和实际情况,生成相应的输入信号。

可以使用MATLAB中的信号生成函数(如`square`、`sine`、`sawtooth`等)来生成基本的周期信号,或者使用`randn`函数生成高斯白噪声信号。

2.绘制输入信号的频谱图:使用前面提到的信号频谱分析方法,绘制输入信号的频谱图。

3. 输入信号与输出信号的频域分析:使用`fft`函数对输入信号和输出信号进行频谱分析,并使用`abs`函数计算频谱的幅度。

基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真

基于MATLAB自动控制系统时域频域分析与仿真MATLAB是一款强大的数学软件,也是自动控制系统设计的常用工具。

它不仅可以进行时域分析和频域分析,还可以进行相关仿真实验。

本文将详细介绍MATLAB如何进行自动控制系统的时域和频域分析,以及如何进行仿真实验。

一、时域分析时域分析是指对系统的输入信号和输出信号进行时域上的观察和分析,以了解系统的动态特性和稳定性。

MATLAB提供了一系列的时域分析工具,如时域响应分析、稳态分析和步骤响应分析等。

1.时域响应分析通过时域响应分析,可以观察系统对于不同的输入信号的响应情况。

在MATLAB中,可以使用`lsim`函数进行系统的时域仿真。

具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。

-定义输入信号。

- 使用`lsim`函数进行时域仿真,并绘制系统输出信号。

例如,假设我们有一个二阶传递函数模型,并且输入信号为一个单位阶跃函数,可以通过以下代码进行时域仿真:```num = [1];den = [1, 1, 1];sys = tf(num, den);t=0:0.1:10;u = ones(size(t));[y, t, x] = lsim(sys, u, t);plot(t, y)```上述代码中,`num`和`den`分别表示系统的分子和分母多项式系数,`sys`表示系统模型,`t`表示时间序列,`u`表示输入信号,`y`表示输出信号。

通过绘制输出信号与时间的关系,可以观察到系统的响应情况。

2.稳态分析稳态分析用于研究系统在稳态下的性能指标,如稳态误差和稳态标准差。

在MATLAB中,可以使用`step`函数进行稳态分析。

具体步骤如下:- 利用`tf`函数或`ss`函数创建系统模型。

- 使用`step`函数进行稳态分析,并绘制系统的阶跃响应曲线。

例如,假设我们有一个一阶传递函数模型,可以通过以下代码进行稳态分析:```num = [1];den = [1, 1];sys = tf(num, den);step(sys)```通过绘制系统的阶跃响应曲线,我们可以观察到系统的稳态特性。

MATLAB实验3信号与系统频域分析的MATLAB实现

MATLAB实验3信号与系统频域分析的MATLAB实现

➢ N=500;%采样点数
➢ W=5*pi*1;%设定采样角频率
➢ w=k*W/N;%对频率采样
6
➢续
➢ F=r*sinc(t/pi)*exp(-j*t'*w);%计算采样函数的频谱
➢ F1=r*f1*exp(-j*t‘*w);%计算门函数的频谱 subplot(221);plot(t,f);
➢ xlabel('t'); ylabel('f(t)');
时域抽样定理
一个频谱受限的信号 f ( t ) , 如果频谱只占据 m ~ m
的范围, 则信号 f ( t ) 可以用等间隔的抽样值唯一的表示。而
1
抽样间隔必须不大于
2 fm
(其中m 2 fm)
或者说,最低抽样频率为 2 f m 。
最低抽样频率 fs 2fm 称为“奈奎斯特频率”。
也就是说:对于带限信号,当 2 时,频谱不发生混
➢ subplot(222); plot(w,F);
➢ axis([-2 2 -1 4]);
➢ xlabel('w'); ylabel('F(w)');
➢ subplot(223); plot(t,f1);
➢ axis([-2 2 -1 4]);
➢ xlabel('t'); ylabel('f1(t)');
17
%数值求解余弦信号的频谱 N = 300; W = 2*pi*5; k = -N:N; w = k*W/N; Y = 0.01*y*exp(-j*t‘*w); Y = abs(Y); subplot(222); plot(w/pi,Y) axis([-2,2,0,pi*7+0.2]); title('F(j\omega)'); xlabel('\omega 单位:pi');
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的
1.学会用MATLAB 求解周期信号和非周期信号的频谱;
2.学会用MATLAB 分析LTI 系统的频域特性
3.学会用MATLAB 分析LTI 系统的输出响应 二、实验原理 1.连续信号频谱
(1)连续周期信号频谱
周期信号f(t),周期为T1,基波角频率为ω1=2π/T1,可展开成三角形式:
011011
1
()[cos()sin()]cos()
n n n n n n f t a a n t b n t c c n t ωωωϕ∞∞
===++=++∑∑
直流分量:01
00
11()t T t a f t dt c T +=
=⎰ 余弦分量的幅度:01
112()cos()t T n t a f t n t dt T ω+=⎰
正弦分量的幅度:01
1
12()sin()t T n t b f t n t dt T ω+=⎰
n c =
1tan ()n
n n b a φ-=-
指数形式傅里叶级数:
1j 1()()e n t n f t F n ωω∞
=-∞
=

()11j j 1101()e d ()e n T n t
F n f t t F n T
φωωω-=
=⎰ 吉布斯现象:
对于具有不连续点的函数,当取的傅里叶级数的项数N 越多,所合成的波形SN(t)中出现的峰起越靠近f(t)的不连续点。

当项数N 很大时,该峰起值趋于一个常数,大约为总跳变值的9%,并从不连续点开始起伏振荡的形式逐渐衰减下去-吉布斯现象。

(2)非周期信号频谱
连续非周期信号的频谱用频谱密度函数表示
[]j ()()e d ()t F f t t F f t ωω∞
--∞
==⎰
()~:F ωω幅度频谱 ()~:φωω相位频谱
MATLAB 的symbolic Math Toolbox 提供了直接求解傅里叶变换及逆变换的函数fourier()和ifourier()两者的调用格式如下:
Fourier 变换的调用格式
F=fourier(f):它是符号函数f 的fourier 变换默认返回是关于ω的函数。

F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的w,()()jvx F v f x e dx
+∞
--∞
=

Fourier 逆变换的调用格式
f=ifourier(F):它是符号函数F 的fourier 逆变换,默认的独立变量为w,默认返回是关于x 的函数。

F=ifourier(f,u):它的返回函数f 是u 的函数,而不是默认的x 。

注意:在调用函数fourier()及ifourier()之前,要用syms 命令对所用到的变量(如t,u,v,w )进行说明,即将这些变量说明成符号变量。

用MATLAB 符号算法求傅里叶变换有一定局限,当信号不能用解析式表达时,会提示出错,这时用MATLAB 的数值计算也可以求连续信号的傅里叶变换,计算原理是
∑⎰

-∞
=-→-∞

-==n n j t
j e
n f dt e
t f j F ττωτ
ωτω)(lim
)()(0

τ足够小时,近似计算可满足要求。

若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉害,可
以近似地看成时限信号时,n 的取值就是有限的,设为N ,有
1
2()(),0,k N j n k n F k f n e k N
k N ωτπ
ττ
ωτ
--==≤≤=
∑是频率取样点 时间信号取样间隔
τ应小于奈奎斯特取样时间间隔,
若不是带限信号可根据计算精度要求确定一个频率W0为信号的带宽。

2.用MATLAB 分析LTI 系统的频率特性
当系统的频率响应H (jw )是jw 的有理多项式时,有
1110
1110()()()()()()()()()M M M M N N N N b jw b jw b jw b B w H jw A w a jw a jw a jw a ----++++==
++++
MATLAB 信号处理工具箱提供的freqs 函数可直接计算系统的频率响应的数值解。

其调用格式如下 H=freqs(b,a,w)
其中,a 和b 分别是H(jw)的分母和分子多项式的系数向量,w 为形如w1:p:w2的向量,定义系统频率响应的频率范围,w1为频率起始值,w2为频率终止值,p 为频率取样间隔。

H 返回w 所定义的频率点上,系统频率响应的样值。

例如,运行如下命令,计算0~2pi 频率范围内以间隔0.5取样的系统频率响应的样值 a=[1 2 1]; b=[0 1];
h=freqs(b,a,0:0.5:2*pi)
三、实验内容
1.验证实验原理中所述的相关程序 例1 求2()t
f t e
-=的傅立叶变换
例2 求2
1
()1F jw ω
=
+的逆变换f(t)
例4 用数值计算法求信号)1()1()(--+=t u t u t f 的傅里叶变换
解,信号频谱是)(2)(ωωSa j F =,第一个过零点是π,一般将此频率视为信号的带宽,若将精度提高到该值的50倍,既W0=50π,据此确定取样间隔,02.0021
=<
F τ
例 6 三阶归一化的butterworth 低通滤波器的频率响应为
321
()()2()2()1
H jw jw jw jw =
+++
试画出该系统的幅度响应()H jw 和相位响应()ϕω。

例7已知一RC电路如图所示系统的输入电压为f(t),输出信号为电阻两端的电压y(t).当RC=0.04,-∞<<+∞试求该系统的响应y(t)
f(t)=cos5t+cos100t, t
2.设2
1
()0.08()0.41
H jw jw jw =
++,试用MATLAB 画出该系统的幅频特性()H jw 和相频特性()ϕω。

3.求下图所示的周期方波通过所示的RC 系统的响应。

提示:1/j 1(j )1/j 1j C H R C RC
ωωωω==++
01πSa Sa 222n n A n C T ωττ⎛⎫⎛⎫=
= ⎪ ⎪⎝⎭⎝⎭
0j 00101π1()(j )e
Sa()cos[()]221j n t
n n n n y t C H n n t n RC
ωωωφωω∞
∞=-∞
==
=+++∑

1-t
)(t x 1
1
35
3
-5-+
-
-
y (t )
+
x (t )
C。

相关文档
最新文档