线性变换的运算
第七章 线性变换

(4) 多项式:
1) n 个( n 是正整数)线性变换 /A的乘积为/A的
n次幂,记为/An,即/An=/A/A.../A(n个). 规定 /A0 = /E. 当线性变换/A可逆时, 规定/A-n=(/A-1)n 2) 设 f (x) = amxm + am -1xm -1 + … + a0 是P[ x ] 中 一多项式,/A是 V 的一线性变换,则称 f (/A ) = am /A m + am -1 /A m -1 + … + a0/E
xi1, xi 2 ,, xiri
,则向量组
x11 , x12 ,, x1r1,x21 , x22 ,, x2r2, ,xs1, xs 2 ,, xsrs
线性无关.
6) 设B=X-1AX,即矩阵A与B相似. 如果i是A的特征
值,xi是A对应特征值i的特征向量,则i是B的特征值 ,且B对应特征值i的特征向量是X-1x.
是线性变换 /A 的多项式.
3) 线性变换的幂运算规律 ① /A n + m = /A n /A m , (/A n )m = /A m n (m , n 0) . ② 一般来说:(/A /B )n /A n /B n . 4) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(/A ) = f (/A ) + g(/A ) , p(/A ) = f (/A ) g(/A ) .
1+ 2+ ...+n=a11+a22+...+ann; 12...n=|A|.
4) 如果1, 2, ..., s是矩阵A的互异特征值,其对应
8.2线性变换的运算一、加法及其算律

8.2 线性变换的运算V 是数域F 上的向量空间,用()L V 表示数域F 上向量空间V 的一切线性变换所成的集合.我们将在()L V 中引进加法、数乘和乘法.如何研究线性变换:注10第一个手段是对某空间V 的全体线性变换的集合()L V 引进运算:加法、数乘和乘法。
这样()L V 构成F 上的向量空间。
我们可以利用这些运算来研究线性变换。
20第二个手段。
在空间给定一个基,在该基下引入线性变换的矩阵,从而把空间的几何对象“线性变换”与数量对象“矩阵”进行了对应。
在解析几何中,点与坐标的对应称为“形”“数”转换,现在的线性变换与矩阵的对应是更广义的“形”“数”转换。
这种转换有两方面的好处:一方面可把向量空间与线性变换的一些问题转换为数字计算的问题;另一方面可把一些数量关系的问题联系上空间的性质(如线性变换的性质)而得到解决。
一、加法及其算律定义8.2.1 设()L V στ∈,,对于V 的每一向量ξ,令()()+στξξ与之对应,这样得到V 的一个变换,叫做σ与τ的和,记作+στ,即+στ:()()+στξξξ或()()()()+=+στστξξξ.求σ与τ的和的运算叫做σ与τ的加法.注10先定义和,再定义加法,()()+στξξ是V 中的向量。
+στ应看做一个整体,代表V 的一个新变换。
例8.2.1 设向量空间3F 的两个线性变换,对任意的()3123=x x x F ∈,,ξ,规定: ()()1231212=+x x x x x x x σ,,,,,()()123123312=+0x x x x x x x x x τ---,,,,,则()()()12312323=2x x x x x x x x στ+-,,+,,.命题1 V 的线性变换σ,τ的和+στ也是V 的一个线性变换.即()L V στ∀∈,,()+L V στ∈。
事实上,对任意的a b F ∈,,V ∈,ξη,()()()()()()()()()()()()()()()()()()()()+=.a b a b a b a b a b a b a b a b στστσσττστστστστστστ+=+=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦=+⎡⎤⎡⎤⎣⎦⎣⎦+++++++++++ξηξηξηξηξηξξηηξξηηξη所以+στ是V 的一个线性变换.容易证明,线性变换的加法满足交换律和结合律.对任意的()L V ρστ∈,,,(1)+=+σττσ;(2)()()++=++ρστρστ;(3)令θ表示V 的零变换,对任意的()L V σ∈,有+=θσσ;(4)设()L V σ∈,σ的负变换σ-是指V 到自身的映射()σσ--:ξξ.σ-也是V 的线性变换,并且()+σσθ-=.命题2 σ-也是V 的线性变换。
线性变换的运算解读

一. 线性变换的加法 二. 线性变换的乘法 三. 线性变换数量乘法 四. 可逆的线性变换 五. 线性变换的多项式
L(V) = {A │ A : V→V的线性变换}
A : V→V是线
性空间V上的 一种运动,变 化。本节将研 究这样的运动、 变化之间的运 算,联系及进 一步的特征性 质。
证明: 首先要证明A +B ∈L(V),即证明A +B 是V上
的变换;且对向量加法和数乘保持不变.
, V, (A +B )( ) = A ( )+B ( ) = A ( )+
B ( ) = (A +B )( ) → A +B 是 V 上的变换.
证明:首先证明A, B ∈L(V), 即A, B 是上的变换,且保持
向量加法,数乘运算不变. 据映射合成即知确为V上的变换.对任意的α,β ∈V, k ∈P, A, B (α+β ) = A, (B (α+β )) = A, (B (α) +B (β )) = A, (B (α)) +A, (B (β )) = A, B (α) +A, B (β ); A, B (kα) = A, (B (kα)) = A, (kB (α)) = kA, (B (α)) = k A, B (α) . 故 A, B 是V上的线性变换,即A, B ∈L(V). 5. 因一般映射的合成满足结合律,故5.成立.
4) 据三角形法则, R x ( ) 2 ( ) E( ) → (R x 2 )( ) E( )
( R 3 )→ R x E - 2 . 因 E , L(R 3 ) , 故 R x E - 2 L(R3 ) .
线性变换的运算

当k=2时,若 AB BA E,
①
对①两端左乘 A ,得 A2B ABA A,
对①两端右乘 A,得 ABA BA 2 A,
上两式相加,即得 A2B BA2 2A 2A 21.
第22页共24页
假设命题对 k 1时成立,即
Ak1B BAk1 (k 1)Ak2 .
②
对②两端左乘 A ,得
证:" " 设 A 为线性空间V上可逆线性变换.
任取 , V , 若 A( ) A( ), 则有 ( A1A)( ) A1(A( )) A1(A( ))
(A1A)( ) . A 为单射. 其次,对 V , 令 A1( ), 则 V ,且 A( ) A(A1( )) AA1( ) . A 为满射.
D f x f x
J
f
x
x
0
f
t
dt
DJ f x D
x
0
f t dt
f x,
即 DJ E.
而,
JD
f
x
J
f x
x
0
f t dt
f
x
f
0
DJ JD.
第4页共24页
例2. 设A、B Pnn为两个取定的矩阵,定义变换
A( X ) AX , B( X ) XB,
X P nn
故 A(1 ), A( 2 ), , A( n ) 线性无关. " " 若 A(1 ), A( ), , A( n ) 线性无关,则它
也为V的一组基. 因而,对 V , 有
k1A(1 ) k2 A( 2 ) kn A( n ),
即有 A(k11 k2 2 kn n ) .
又 A 可逆,于是 A 是一一对应,且 A(0) 0
三、线性变换的乘积

© 2009, Henan Polytechnic University §2 全排列及其逆序数 线性变换的运算
1212
第一章 线性变换 第七章 行列式
注:
① 易证
m n
,
m n
m
n
mn ,
m, n 0
② 当 为可逆变换时,定义 的负整数幂为
注:① 在 P[ x] 中,若
h x f x g x , p x f x g x
则有, h f g ,
p f g
② 对 f ( x ), g( x ) P[ x ], 有
1 1
1 k 1 k 1 1 k 1 1 来自 k 1
( 1 )(k( 1 ( ))) k 1
1.定义 设 为线性空间V的线性变换,k P , 定义 k 与 的数量乘积 k 为:
k k ,
则 k 也是V的线性变换.
V
© 2009, Henan Polytechnic University §2 全排列及其逆序数 线性变换的运算
4 4
注:交换律一般不成立,即一般地,
© 2009, Henan Polytechnic University §2 全排列及其逆序数 线性变换的运算
7 7
第一章 线性变换 第七章 行列式
例1 线性空间R[ x] 中,线性变换
D f x f x
2、线性变换的运算

k 1.
①
,
2
,
2
上两式相加,即得 2 2 2 2 21 .
§7.2 线性变换的运算
假设命题对 k 1 时成立,即
k 1 k 1 (k 1) k 2 .
对②两端左乘 ,得
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §6线性变换的值域与核 §7不变子空间 §8 若尔当标准形介绍
§4 特征值与特征向量 §9 最小多项式 §5 对角矩阵
§7.2 线性变换的运算
一、线性变换的乘积 二、线性变换的和 三、线性变换的数量乘法 四、线性变换的逆 五、线性变换的多项式
§7.2 线性变换的运算
一、 线性变换的乘积
1、定义
设 , 为线性空间V的两个线性变换,定义它们 的乘积 为: , V 则 也是V的线性变换.
事实上,( )( ) ( ( )) ( ( ) ( ))
则 也是V的线性变换.
事实上, ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( ) ( )( ), ( )( k ) ( k ) ( k ) k ( ) k ( ) k ( ( ) ( )) k ( )( ).
( )( X ) ( ( X )) ( XB ) A( XB ) AXB, ( )( X ) ( ( X )) ( AX ) ( AX ) B AXB.
.
§7.2 线性变换的运算
二、 线性变换的和
线性变换的运算

则 i cij j ,
j 1
n
i 1,2, , r
就是属于这个特征值 0 的全部线性无关的特征向量. 而 k11 k22 krr , (其中, k1 , k2 , , kr P 不全为零) 就是 的属于 0 的全部特征向量.
§7.4 特征值与特征向量
§7.4 特征值与特征向量
2. 求特征值与特征向量的一般步骤
i) 在V中任取一组基 1 , 2 , , n ,写出 在这组基下
的矩阵A .
ii) 求A的特征多项式 E A 在P上的全部根它们 就是 的全部特征值. iii) 把所求得的特征值逐个代入方程组
( E A) X 0
§7.4 特征值与特征向量
二、特征值与特征向量的求法
分析: 设 dimV n, 1 , 2 ,, n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
x01 1 , 2 , , n 下的坐标记为 , x 0n
§7.4 特征值与特征向量
把 5 代入齐次方程组 ( E A) X 0, 得
4 x1 2 x2 2 x3 0 2 x1 4 x2 2 x3 0 2 x1 2 x2 4 x3 0
解得它的一个基础解系为: (1,1,1) 因此,属于5的一个线性无关的特征向量为
并求出它的一组基础解系.(它们就是属于这个特征值 的全部线性无关的特征向量在基 1 , 2 , , 下的坐标.) n
§7.4 特征值与特征向量
如果特征值 0 对应方程组的基础解系为:
(c11 , c12 , , c1n ),(c21 , c22 ,, c2 n ),,(cr 1 , cr 2 ,, crn )
机械原理课件-线性变换及其矩阵表示

(c) 线性变换的运算 设T1,T2是线性空间V的两个线性变换,定义它们 T1 T2 x T1 x T2 x , x V . 的和为: T1+T2仍然是线性空间V上的线性变换。 设T是线性空间V的线性变换,定义它的负变换 为: (-T)(x)=-T(x)。这也是一个线性变换。 设T是线性空间V的线性变换,k∈K,定义数乘 变换为:(kT)(x)=kT(x)。这也是一个线性变换。 注:线性空间V上的全体线性变换所构成的集合 对于线性变换的加法与数量乘法构成数域K上的 一个线性空间。
这是一个线性变换。来自 ( )例3 考虑V=Pn[x]中的微分变换:
D : V V , D( f ( x )) f ( x ), f ( x ) V ,
这是一个线性变换。
例4 考虑[a,b]上的所有连续函数构成的线性空间 C[a,b]上的积分变换:
J : C a , b C a , b , J f x f x dx ,
√
×
2 T f ( x ) f ( x ). 2.在 Pn[ x ] 中,
×
√ × .√
T , V 非零固定. 3.在线性空间V中,
4. 在 C
n n
nn 固定. T X AX , A C 中,
T ( x) x . 5.复数域C看成是自身上的线性空间,
(b) 线性变换 从集合S 到集合S的映射也称为变换。 设V为数域K上线性空间,若变换 T : V V 满足: T x y T x T y, T kx kT x , x , y V , k K , 则称T是线性空间V上的线性变换。 单位变换(恒等变换):Te : Te x x , x V , 零变换: T0 : T0 x 0, x V , 数乘变换:K : K x kx , x V . 上述定义中的条件可以等价的写成: T kx ly kT x lT y .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
线性变换的加法 线性变换的数量乘法 线性变换的乘积 线性变换的逆变换 线性变换的多项式 举例
二、线性变换的加法
1. 定义 定义3 设 A , B 是线性空间 V 的两个线性变
换,定义它们的和 A+ B 为 (A + B ) ( ) = A ( ) + B ( ) ( V ) .
可以用公式
x ( ) = - ( )
来表示 (如图 7-7 ).
因此
( )
x( )
x R x ( )
图 7-7
x = E - ,
对于平面 x 的反射
R x也是一个线性变换,且 R x ( ) = - 2 ( )
所以
R x = E - 2 .
2. 运算规律
1) 2) ( kl ) A = k ( l A ) , (k+l)A=kA+lA,
3)
4)
k (A + B ) = k A + k B ,
1A =A.
三、线性变换的乘积
1. 定义
线性空间的线性变换作为映射的特殊情形当然 可以定义乘法.
定义2 设 A , B 是线性空间 V 的两个线性变
线性变换的多项式有以下性质: 1) f (A ) 是一线性变换. 2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) , 那么 h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) . 特别地, f ( A ) g(A ) = g( A ) f (A ) .
2. 性质
如果线性变换 A是可逆的,那么它的逆变换
A 也是线性变换. 证明
因为
-1
A -1( ) = A -1[(A A -1) ( ) + (A A -1) ( )]
= A -1[A ( A -1( ) ) + A ( A -1 ( ) ) ]
= ( A -1A ) ( A -1( ) + A -1 ( ) )
n个
来表示,称为 A 的 n 次幂,简单地记作 A n.
即
A n = A A ... A
n个
另外,规定 A 0 = E .
线性变换的幂运算规律 A n + m = A n A m , (A n )m = A m n (m , n 0) .
当线性变换 A 可逆时,定义 A 的负整数幂为
A
-n=
( A -1 ) n
( n 为正整数 ) .
这时,指数法则可以推广到负整数幂的情形.
注意 线性变换乘积的指数法则不成立,即
一般来说
(A B )n A n B n .
2. 线性变换的多项式 定义6 设 f (x) = amxm + am -1xm -1 + … + a0 是
P[ x ] 中一多项式,A 是 V 的一线性变换,则称 f ( A ) = a m A m + a m -1 A m -1 + … + a 0 是线性变换 A 的多项式.
换,定义它们的乘积 AB 为
(AB ) ( ) = A (B ( ) ) ( V ).
2. 性质 性质 1 线性变换的乘积是线性变换. 性质 2 结合律 (AB )C = A (BC ) . 注意:线性变换的乘法一般不满足交换律.
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知,
a f ( a) f ( ) af ( ) f ( ) 2! n 1 a ( n 1) f ( ) , (n 1)!
可知 Sa 实质上是 D 的多项式:
n 1 a a S a =E + a D + D 2 + … + D n -1 . 2! ( n 1)!
2. 性质 性质 1 线性变换的和是线性变换. 性质 2 零变换与所有线性变换 A的和仍等 于 A: A+ 0= A. 负变换:线性变换 A的负变换定义为:
( - A) ( ) 运算规律
1) 交换律
A +B=B+A.
2) 结合律
A + (B+C) =(A+ B) + C .
六、举例
例 1 在三维几何空间中,对于某一向量
的内射影 (投影) 是一线性变换(参看图 7-6 ).
可以用下面的公式来表示 (第一节
):
( , ) Π ( ) . ( , )
这里 ( , ), ( , )
表示内积.
( )
图 7-6
在以 为法向量的平面 x 上的内射影 x ( )
-1
= k A -1 ( ) .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线 性变换 A 重复相乘时,其最终结果是完全确定的, 与乘积的结合方式无关. 因此当 n 个( n 是正整数) 线性变换 A 相乘时,我们就可以用
A A ... A
线性空间 V 中全体线性变换,对于如上定义的加法
与数量乘法,也构成数域 P 上一个线性空间. 对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的
如果有 V 的变换 B 存在,使
AB= BA= E .
这时,变换 B称为 A的逆变换,记为 A-1 .
设 , 是空间的两个向量,则 与 互相垂 直的充分必要条件为
= 0 .
例 2 在线性空间 P[ ]中,求微商是一个线 性变换,用 D 表示 ( 第一节 ) . 显然有 D n= 0 .
其次,变数的平移
f ( ) f ( + a )
(aP)
也是一个线性变换,用 Sa 表示. 根据泰勒展开式
= A -1( ) + A -1 ( ) .
A -1( k ) = A -1( k (A A -1) ( ) )
= A -1( k (A ( A -1) ( ) ) ) = A -1(A ( k A -1 ( ) ) ) = ( A -1A ) ( k A -1 ( ) ) 所以 A 是线性变换.
3) 存在负变换使 A +( - A) = 0 . 4) 存在零变换0,使得 A+0=A
三、线性变换的数量乘法
1. 定义 定义4 数域 P 中的数与线性变换的数量乘法
定义为 k A = K A ,
即
(k A ) ( ) = K (A ( ) ) = K A ( ) .
显然,k A 还是线性变换.
2
2
本节内容已结束 !! 本节内容已结束 本节内容已结束 ! 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 本节内容已结束 ! ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 本节内容已结束 ! ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 本节内容已结束 ! ! 若想结束本堂课 , 请单击返回按钮 . 本节内容已结束 ! 若想结束本堂课 若想结束本堂课 ,, .. ,, 请单击返回按钮 若想结束本堂课 若想结束本堂课 请单击返回按钮 若想结束本堂课 若想结束本堂课 ,, .. , 请单击返回按钮 若想结束本堂课 请单击返回按钮 请单击返回按钮 . 请单击返回按钮 请单击返回按钮 .. .. 请单击返回按钮 请单击返回按钮 请单击返回按钮.