2020年四川省南充市高考数学二诊试卷(理科)(有答案解析)

合集下载

2020届四川省南充市高三第二次高考适应性考试(理科)数学试题含答案

2020届四川省南充市高三第二次高考适应性考试(理科)数学试题含答案

南充市高2020届第二次高考适应性考试数学试题(理科)第Ⅰ卷选择题(共60分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标题涂黑.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1i i +=( )A. 2i -B. 12iC. 0D. 2i 2.已知集合{A =,{}1,B m =,若A B A ⋃=,则m =( )A 0 B. 0或3 C. 1D. 1或33.已知1tan 2α=-,2παπ<<,则sin α=( )B.C.4.如图1,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何? 意思是:有一根竹子, 原高一丈(1丈=10尺), 现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为( )尺.A. 5.45B. 4.55C. 4.2D. 5.85.已知等式2324214012141(1(2))x x x a a x a x a x -+⋅-=++++L 成立,则2414a a a +++=L ( )A. 0B. 5C. 7D. 136.过圆224x y +=外一点(4,1)M -引圆的两条切线,则经过两切点的直线方程是( ). .A. 440x y --=B. 440x y +-=C. 440x y ++=D. 440x y -+= 7.定义在R 上的函数()f x 满足(4)1f =,()f x '为()f x 的导函数,已知()y f x '=的图象如图所示,若两个正数,a b 满足(2)1f a b +<,11b a ++则的取值范围是( )A. (11,53) B. 1(,)(5,)3-∞⋃+∞ C. (1,53) D. (,3)-∞8.一个空间几何体的正视图是长为4的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A. 3B.C. 3D. 9.ABC V 的内角,,A B C 的对边分别为,,a b c ,若(2)cos cos a b C c B -=,则内角C =( ) A. 6π B. 4π C. 3π D. 2π 10.正三棱锥底面边长为3,侧棱与底面成60︒角,则正三棱锥的外接球的体积为( )A. 4πB. 16πC. 163πD. 323π 11.设双曲线22:1916x y C -=的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C 交于点B ,则AFB △的面积为( ) A. 3215 B.6415 C. 5 D. 6 12.已知函数()x a f x x e -=+,()()ln 24a x g x x e -=+-,其中e 为自然对数的底数,若存在实数0x ,使()()003f x g x -=成立,则实数a 的值为( )A. ln21--B. 1ln2-+C. ln 2-D. ln 2第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量,a b r r 满足(2)()6a b a b +⋅-=-r r r r ,且||1,||2a b ==r r ,则cos ,a b <>=r r _________.14.函数()cos f x x =[0,)+∞的零点个数为_________.15.已知函数2()ln f x a x bx =-图象上一点(2,(2)f 处的切线方程为32ln 22y x =-++,则a b +=_______.16.设F 为抛物线2:4C y x =的焦点,,,A B D 为C 上互相不重合的三点,且||AF uuu r 、||BF uuu r 、||DF uuu r 成等差数列,若线段AD 的垂直平分线与x 轴交于(3,0)E ,则B 的坐标为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.等差数列{}n a 中,1631,2a a a ==.(1)求{}n a 的通项公式;(2)设2n a n b =,记n S 为数列{}n b 前n 项和,若62m S =,求m .18.为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米. 的(1)求出易倒伏玉米茎高的中位数m ;(2)根据茎叶图数据,完成下面的列联表: (3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,19.在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,120,2,,BAD PA PB PC PD E ∠=︒===是PB 的中点. 的..(1)证明:PA ⊥平面ABCD ;(2)设F 是直线BC 上的动点,当点E 到平面PAF 距离最大时,求面PAF 与面EAC 所成二面角的正弦值.20.设点()1,0F c -,()2,0F c 分别是椭圆()222:11x C y a a+=>的左、右焦点,P 为椭圆C 上任意一点,且12•PF PF u u u v u u u u v 的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线:l y kx m =+与椭圆C 有且仅有一个公共点,点M ,N 是直线l 上的两点,且1F M l ⊥,2F N l ⊥,求四边形12F MNF 面积S 的最大值.21.已知函数21()ln 2f x x mx x =++. (1)若函数()f x 不存在单调递减区间,求实数m 的取值范围;(2)若函数()y f x =的两个极值点为()1212x x x x <,2m ≤-,求()()12f x f x -的最小值. (二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,直线l的参数方程为322x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,圆C的方程为ρθ=.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P坐标为,圆C 与直线l 交于,A B 两点,求||||PA PB +的值.23.设函数()()1f x x x a a R =-+-∈.(1)当4a =时,求不等式()5f x ≥的解集;(2)若()4f x ≥对x ∈R 恒成立,求a 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C2.B3.D4.B5.D6.A7.C8.B9.C10.D11.A12.A第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13. 1214. 115. 316. (1,2)或(1,2)-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.解:(1)设{}n a 的公差为d ,由题设得1(1)n a n d =+-因为632a a =,所以1(61)2[1(31)]d d +-=+-解得1d =,故n a n =.(2)由(1)得2nn b =.所以数列{}n b 是以2为首项,2为公比的等比数列, 所以11222212n n n S ++-==--, 由62m S =得12262m +-=,解得5m =.18.解:(1)1901901902m +==. (2)(3)由于2245(1516410)7.287 6.63519262520k ⨯⨯-⨯==>⨯⨯⨯,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.19.(1)证明:取BC 中点M ,连接,PM AM ,因为四边形ABCD 为菱形且120BAD ∠=︒.所以AM BC ⊥,因为PB PC =,所以PM BC ⊥,又AM PM M =I ,所以BC ⊥平面PAM ,因为PA ⊂平面PAM ,所以PA BC ⊥.同理可证PA DC ⊥,因为DC BC C =I ,所以PA ⊥平面ABCD .(2)解:由(1)得PA ⊥平面ABCD ,所以平面PAF ⊥平面ABCD ,平面PAF ⋂平面ABCD AF =.所以点B 到直线AF 的距离即为点B 到平面PAF 的距离.过B 作AF 的垂线段,在所有的垂线段中长度最大的为2AB =,此时AF 必过DC 的中点, 因为E 为PB 中点,所以此时,点E 到平面PAF 的距离最大,最大值为1. 以A 为坐标原点,直线,,AF AB AP 分别为,,x y z 轴建立空间直角坐标系A xyz -.则(0,0,0),(0,1,1),(0,2,0)A C E B所以(0,1,1),(0,2,0)AC AE AB ===u u u r u u u r u u u r平面PAF 的一个法向量为(0,2,0)AB =u u u r ,设平面AEC 的法向量为(,,)n x y z =r, 则0,0,AC n AE n ⎧⋅=⎨⋅=⎩u u u v r u u u v r即0,0,y y z +=+=⎪⎩取1y =,则(1)3n =--r ,cos ,7||||n AB n AB n AB ⋅<>==⋅u u u r r u u u r r u u u r r ,所以sin ,n AB <>==u u u r r , 所以面PAF 与面EAC. 20. (1)设(),P x y ,则()1,F P x c y =+u u u v ,()2,F P x c y =-u u u u v ,2222221221•1a PF PF x y c x c au u u v u u u u v -∴=+-=+-,[],x a a ∈-,由题意得,221012c c a -=⇒=⇒=,∴椭圆C 的方程为22x y 12+=; (2)将直线l 的方程y kx m =+代入椭圆C 的方程2222x y +=中,得()222214220k x kmx m +++-=.由直线l 与椭圆C 仅有一个公共点知,()()222216421220k m k m ∆=-+-=, 化简得:2221m k =+.设11d F M ==,22d F M ==,当0k ≠时,设直线l 的倾斜角为θ, 则12tan d d MN θ-=⨯,121=MN d d k∴⋅-, ()12122211=21m S d d d d k k ∴⨯⋅-⋅+=+, 2221m k =+Q ,22244=111mmS k m m m ∴==+++∴当0k ≠时,1m >,12m m+>, 2S <∴.当0k =时,四边形12F MNF 是矩形,2S =.所以四边形12F MNF 面积S 的最大值为2.21.(1)由函数()21ln 2f x x mx x =++有意义,则()0,0+x ∞>即定义域为, 由()1,f x x m x=++'且()f x 不存在单调递减区间,则()0f x '≥在()0,+∞上恒成立, ()1x m 0,x∞∴+≥-+在上恒成立1x 0,x 2,x 12x>+≥==Q 当且仅当时取到最小值 m 2m 2∴-≤≥-恒成立,解得[)m 2+∞∴-的取值范围为,(2)由()1知()()()1f x 0,,f x x m x∞+='++定义域为, 令()2110x mx f x x m x x++=++==',即210x mx ++= 由()f x 有两个极值点1212,(0)x x x x <<故12,x x 为方程210x mx ++=的两根,1212,1x x m x x ∴+=-=,∴ ()12m x x =-+,22121221,x x x x x x == 则()()221211122211ln ln 22f x f x x mx x x mx x ⎛⎫-=++-++ ⎪⎝⎭ ()()221121221ln 2x x x m x x x =-+-+ ()()22221121221ln 2x x x x x x =---+ ()2211221ln 2x x x x =--1122211ln 2x x x x x x ⎛⎫=-- ⎪⎝⎭由()1122110,,ln ,01,2x x x t g t t t t x t ⎛⎫<<==--<< ⎪⎝⎭令则 由()211122g x t t =-+' ()22102t t -=-<,则()()0,1g t 在上单调递减2m ≤-Q 又,即()122x x -+≤-122x x ∴+≥ ()2221212121221192222x x x x x x x x t x x t ∴+=++=++=++≥ 15 2t t ∴+≥ 122t t ∴≥≤或 由01t <<知102t <≤ ()11113 ln 2ln222224g x g ⎛⎫⎛⎫∴≥=--=- ⎪ ⎪⎝⎭⎝⎭ 综上所述,()()12f x f x -的最小值为3ln24-. (二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.解:(Ⅰ)由得直线l 的普通方程为x+y ﹣3﹣=0又由得 ρ2=2ρsinθ,化为直角坐标方程为x 2+(y ﹣)2=5; (Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,得(3﹣t )2+(t )2=5,即t 2﹣3t+4=0设t 1,t 2是上述方程的两实数根,所以t 1+t 2=3又直线l 过点P ,A 、B 两点对应的参数分别为t 1,t 2,所以|PA|+|PB|=|t 1|+|t 2|=t 1+t 2=3. 23.(1)145x x -+-≥等价于1255x x <⎧⎨-+≥⎩或1435x ≤≤⎧⎨≥⎩或4255x x >⎧⎨-≥⎩, 解得:0x ≤或5x ≥.故不等式()5f x ≥的解集为{|0x x ≤或5}x ≥.(2)因为:()()()111f x x x a x x a a =-+-≥---=- 所以()min 1f x a =-,由题意得:14a -≥,解得3a ≤-或5a ≥.。

2020年四川省南充市高考数学二诊试卷(文科) (含答案解析)

2020年四川省南充市高考数学二诊试卷(文科) (含答案解析)

2020年四川省南充市高考数学二诊试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1.复数3−ii=()A. 1+3iB. −1−3iC. −1+3iD. 1−3i2.设集合A={1,3,4},B={2,3,6},则A∪B等于()A. {3}B. {1,2,3,4}C. {1,2,3,6}D. {1,2,3,4,6}3.现有历史、政治、数学、物理、化学共有5本书,从中任取2本,取出的书至少有一本文科书的概率为()A. 310B. 12C. 710D. 454.已知α∈[π,3π2],sinα=−35,则tanα=()A. −43B. 43C. −34D. 345.在ΔABC中,AB=3,BC=√13,AC=4,则边AC上的高为()A. 3√22B. 32C. 3√32D. 3√36.已知函数y=2sin(2x+π4),则它的一条对称轴方程为()A. x=−π8B. x=0 C. x=π8D. x=π47.过圆x2+y2=2外一点P(1,3)向该圆引两条切线,M,N为切点,则MN的直线方程为()A. 2x+y−1=0B. x+3y−2=0C. x+2y−3=0D. 2x−3y+2=08.已知函数f(x)的定义域[−3,+∞)且f(6)=2,f′(x)为f(x)的导函数,f′(x)的图象如图所示,若正数a,b满足f(2a+b)<2,则b+3a−2的取值范围是()A. (−∞,−32)∪(3,+∞) B. (−92,3) C. (−∞,−92)∪(3,+∞)D. (−32,3)9. 某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为( )A. 8+4√3π3B. 8+2√3π3C. 4+4√3π3D. 4+8√3π310. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,b =2√2,A =30∘,C =105∘,则a =( )A. 1B. √2C. 2D. √311. 已知正三棱柱ABC −A 1B1C1(底面是正三角形,且侧棱垂直于底面)的底面边长为4,侧棱长为2√3,则该正三棱柱外接球的表面积为( )A.253πB.1003π C. 25π D. 100π12. 如图,F 1、F 2分别是双曲线的左、右焦点,过F 1的直线与双曲线的左、右两支分别交于A 、B 两点,若△ABF 2为等边三角形,则该双曲线的离心率为( )A. √3B. √5C. √7D. 3二、填空题(本大题共4小题,共20.0分)13. 已知|b ⃗ |=1,a ⃗ ⋅b ⃗ =2,则向量(2a ⃗ −b⃗ )⋅b ⃗ =______. 14. 已知某班有女生20人,男生30人,一次考试女生的平均分为75分,全班的平均分为72分,则男生的平均分为______.15. 已知函数f(x)=lnx +x ,则函数y =f(x)图象在点(1,f(1))处的切线方程为______. 16. 过抛物线C :y 2=2px(p >0)的焦点F 的直线与抛物线交于M ,N 两点,若MF ⃗⃗⃗⃗⃗⃗ =4FN⃗⃗⃗⃗⃗⃗ ,则直线l 的斜率为______.三、解答题(本大题共7小题,共82.0分)17. 在等差数列{a n }中,a 2+a 3=7,a 4+a 5+a 6=18.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,求1S 3+1S 6+⋯+1S 3n.18. 某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A ,B 两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”. (1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关. P(K 2≥k 0)0.400 0.250 0.150 0.100 0.050 0.025 k 00.7081.3232.0722.7063.8415.024参考公式:K 2=n(ad−bc)2(a+c)(b+d)(a+b)(c+d)(n =a +b +c +d)19.如图,四棱锥P−ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,PB=PD=2,PA=√6,E为PA的中点,(1)证明:PC//面BCE;(2)求三棱锥P−BCE的体积.20.如图,椭圆C:x24+y23=1的右焦点为F,过点F的直线l与椭圆交于A,B两点,直线n:x=4与x轴相交于点E,点M在直线n上,且满足BM//x轴.(1)当直线l与x轴垂直时,求直线AM的方程;(2)证明:直线AM经过线段EF的中点.21.已知函数f(x)=xlnx+2x−1.(1)求f(x)的极值;(2)若对任意的x>1,都有f(x)−k(x−1)>0(k∈Z)恒成立,求k的最大值.22.在平面直角坐标系xOy中,曲线C1:x2+y2−2y=0,倾斜角为π的直线l过点M(−2,0),以原6点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求C1和C2交点的直角坐标;(2)若直线l与C1交于A,B两点,求|MA|+|MB|的值.23.已知函数F(x)=|3x−1|+ax(Ⅰ)当a=3时,解关于x的不等式f(x)≥|x−3|;(Ⅱ)若f(x)≥x−1在R上恒成立,求实数a的取值范围.2【答案与解析】1.答案:B解析:解:3−ii =−i(3−i)−i2=−1−3i,故选:B.直接由复数代数形式的乘除运算化简复数3−ii,则答案可求.本题考查了复数代数形式的乘除运算,是基础题.2.答案:D解析:解:由已知集合A={1,3,4},B={2,3,6},则A∪B={1,2,3,4,6};故选D.找出两个集合的公共元素组成的集合.本题考查了集合的并集运算;属于基础题.3.答案:C解析:分析:本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.历史、政治、数学、物理、化学共有5本书,从中任取两本,基本事件总数有10种,取出的书至少有一本文科书有7种,根据概率公式计算即可.解:历史、政治、数学、物理、化学共有5本书,从中任取两本,基本事件有:(历史,政治),(历史,数学),(历史,物理),(历史,化学),(政治,数学),(政治,物理),(政治,化学),(数学,物理),(数学,化学),(物理,化学),共10种,取出的书至少有一本文科书有7种情况,∴取出的书至少有一本文科书的概率p=710,故选C.4.答案:D解析:由条件利用同角三角函数的基本关系,求得tanα的值.本题主要考查同角三角函数的基本关系的应用,以及三角函数在各个象限中的符号,属于基础题.解:∵已知α∈[π,3π2],sinα=−35,∴cosα=√1−sin2α=−45,则tanα=sinαcosα=34,故选:D.5.答案:C解析:本题考查了解三角形的应用.由点B向AC作垂线,交点为D,设AD=x,则CD=4−x,利用勾股定理可知BD=√AB2−AD2=√BC2−CD2,进而解得x的值,再利用勾股定理求得BD.解:由点B向AC作垂线,交点为D.设AD=x,则CD=4−x,∴BD=√9−x2=√13−(4−x)2,解得x=32,因此BD=√9−x2=32√3.故选C.6.答案:C解析:解:由2x+π4=kπ+π2,得x=kπ2+π8(k∈Z),令k=0,得x=π8,∴它的一条对称轴方程为x=π8,故选:C.利用正弦函数的对称性,可知2x+π4=kπ+π2(k∈Z),k赋值为0即可求得答案.本题考查正弦函数的对称性,熟练掌握正弦函数的对称轴方程是解决问题的关键,属于基础题.7.答案:B解析:本题考查切线方程,和切点弦方程,基础题. 求出切线方程,得出切点弦方程. 解:M(a,b),N(m,n),由y−bx−a ⋅ba =−1, 得:直线PM :ax +by =2, 同理:直线PN :mx +ny =2,P(1,3)代入,所以a +3b =2,m +3n =2, 则x +3y −2=0是过M ,N 的直线, 也就是MN 的直线方程, 故选:B .8.答案:A解析:如图所示,f′(x)≥0在[0,+∞)上恒成立,∴函数f(x)在[−3,0)是减函数,(0,+∞)上是增函数,又∵f(2a +b)<2=f(6),∴{2a +b >02a +b <6,画出平面区域,令t =b+3a−2表示过定点(2,−3)的直线的斜率如图所示,故选A .9.答案:A解析:本题考查由三视图求空间组合体的体积,解决本题的关键是得到该几何体的形状,属于中档题.由已知中的三视图可得该几何体是一个半圆锥和三棱锥的组合体,计算出底面面积和高,代入锥体体积公式,可得答案.解:由已知中的三视图可得该几何体是一个半圆锥和三棱锥的组合体,半圆锥的底面半径为2,高为√42−22=2√3,三棱锥的底面为边长为4的正三角形,高为2√3,其体积为:1 3×[12×(π×22)+12×(4×2√3)]×2√3.故选A.10.答案:C解析:本题考查正弦定理,考查了推理能力与计算能力,属于基础题.利用正弦定理即可得出.解:∵A=30∘,C=105∘,∴B=45°,∵asinA =bsinB,∴a=bsinAsinB=2√2sin30∘sin45∘=2,故选C.11.答案:B解析:如图,取ΔABC的重心E,ΔA1B1C1的重心E1,取AC中点D,则EE1的中点O是该正三棱柱外接球的球心,OA为球半径,∵正三棱柱ABC−A1B1C1的底面边长为4,侧棱长为2√3,∴OE=√3,AE=BE=23BD=23√42−22=4√33,∴R =OA =√(√3)2+(4√33)2=√253, ∴该正三棱柱外接球的表面积:S =4πR 2=4π×(√253)2=100π3.故选:B .12.答案:C解析:本题考查双曲线的定义和余弦定理,双曲线离心率的求法,属于中档题.根据双曲线的定义算出△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,由△ABF 2是等边三角形得∠F 1AF 2=120°,利用余弦定理算出c =√7a ,结合双曲线离心率公式即可算出双曲线C 的离心率.解:根据双曲线的定义,可得|BF 1|−|BF 2|=2a ,∵△ABF 2是等边三角形,即|BF 2|=|AB|,∴|BF 1|−|BF 2|=2a ,即|BF 1|−|AB|=|AF 1|=2a ,又∵|AF 2|−|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2−2|AF 1|⋅|AF 2|cos120°,即4c 2=4a 2+16a 2−2×2a ×4a ×(−12)=28a 2,解得c =√7a ,由此可得双曲线C 的离心率e =c a =√7.故选C .13.答案:3解析:本题主要考查了向量数量积的性质的简单应用属于容易试题.直接利用向量数量积的性质进行求解即可.解:∵|b⃗ |=1,a⃗⋅b⃗ =2,则向量(2a⃗−b⃗ )⋅b⃗ =2a⃗⋅b⃗ −b⃗ 2=4−1=3.故答案为3.14.答案:70分解析:本题主要考查平均分的概念、运算以及应用,根据题意列出关系式可得解.解:设男生的平均分为x,则30x+75×20=(20+30)×72,解得x=70.即男生的平均分为70分.故答案为70分.15.答案:y=2x−1解析:本题考查利用导数计算函数的切线方程,注意导数的几何意义,属于基础题.根据题意,由函数的解析式求出其导数,计算可得f(1)与f′(1)的值,由直线的点斜式方程可得切线的方程,变形即可得答案.+1,解:根据题意,f(x)=lnx+x,则f′(x)=1x+1=2,则f(1)=ln1+1=1,f′(1)=11则切线的方程为y−1=2(x−1),即y=2x−1;故答案为:y=2x−1.16.答案:±43 解析: 作MB 垂直准线于B ,作NC 垂直准线于C ,作NA 垂直MB 于A ,根据抛物线定义,可得tan∠NMA 就是直线l 的斜率.本题考查了抛物线的定义的应用,利用平面几何知识,结合直线斜率与倾斜角的关系求解,属于中档题.解:如图,作MB 垂直准线于B ,作NC 垂直准线于C ,根据抛物线定义,可得MB =MF ,NC =NF .作NA 垂直MB 于A ,设FN =m ,则MN =5m ,NA =MF −NF =3m . 在直角三角形AMN 中,tan∠NMA =AN AM =43,∴直线l 的斜率为±43,故答案为:±43. 17.答案:解:(1)设等差数列{a n }的公差为d ,依题意,{a 1+d +a 1+2d =7a 1+3d +a 1+4d +a 1+5d =18,解得a 1=2,d =1, ∴a n =2+(n −1)×1=n +1(2)S 3n =3n(a 1+a 3n )2=3n(2+3n+1)2=9n(n+1)2,∴1S 3n =29n(n +1)=29(1n −1n +1) ∴1S 3+1S 6+⋯+1S 3n =29[(1−12)+(12−13)+⋯+(1n −1n +1)]=2n 9(n +1)解析:本题考查数列的求和,考查等差数列的通项公式与求和公式,考查裂项法,考查转化与分析运算的能力,属于中档题.(1)由等差数列{a n }中的a 2+a 3=7,a 4+a 5+a 6=18,即可求得其首项与公差,从而可得数列{a n }的通项公式;(2)可先求得S 3n ,再用裂项法即可求得答案.18.答案:解:(1)由题意知本题是一个等可能事件的概率,记该事件为A ,根据等可能事件的概率得到P(A)=C 52C 62=1015=23;-----------------(4分) (2)由已知数据,填写列联表得甲班 乙班 总计 成绩优秀1 5 6 成绩不优秀19 15 34 总计 20 20 40----------------------(6分)根据列联表中的数据,计算得随机变量K 2的观测值为k =40×(1×15−5×19)220×20×6×34≈3.137,-----------------------(9分)由于3.137>2.706,所以在犯错误的概率不超过0.1的前提下认为“成绩优秀”与教学方式有关.-----------------------(10分)解析:(1)由题意根据等可能事件的概率计算即可;(2)由已知数据填写列联表,计算得K 2的观测值,对照临界值得出结论.本题考查了古典概型的概率计算问题,也考查了独立性检验的应用问题,是基础题.19.答案:(1)证明:如图所示,连接AC 交BD 于点O .∵底面ABCD 是菱形,∴OA =OC ,又∵E 为PA 的中点,∴EO//PC ,而PC ⊄平面BED ,EO ⊂平面BED ,∴PC//平面EBD .(2)∵点E 是PA 的中点,∴V 三棱锥P−BCE ═12V 三棱锥A−PBC .由O 点是AC 的中点,可得V 三棱锥A−PBC =2V 三棱锥A−POB =13×12×OP ×OB ×OA =13×√3×1×√3=1.∴得V 三棱锥P−BCE =12V 三棱锥A−PBC =12解析:(1)如图所示,连接AC 交BD 于点O.由底面ABCD 是菱形,可得OA =OC ,利用三角形的中位线定理可得OE//PC ,再利用线面平行的判定定理即可证明PC//平面EBD .(2)由于点E 是PA 的中点,可得V 三棱锥P−BCE =12V 三棱锥A−PBC .由O 点是AC 的中点,可得V 三棱锥A−PBC =2V 三棱锥A−POB =13×12×OP ×OB ×OA ,即可得出.题考查了菱形的性质、三角形的中位线定理、线面平行的判定定理、三棱锥的体积计算公式,考查了了推理能力与计算能力,属于中档题 20.答案:解:(1)由c =√4−3=1,∴F(1,0),∵直线l 与x 轴垂直,∴x =1,由{x =1x 24+y 23=1得{x =1,y =32,或{x =1,y =−32, ∴A(1,32),M(4,−32)∴直线AM 的方程为y =−x +52.证明(2)设直线l 的方程为x =my +1,由{x 24+y 23=1x =my +1得3(my +1)2+4y 2=12, 即(3m 2+4)y 2+6my −9=0,设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4,∵EF 的中点N(52,0),点M(4,y 2),∴NA ⃗⃗⃗⃗⃗⃗ =(x 1−52,y 1)═(my 1−32,y 1),NM ⃗⃗⃗⃗⃗⃗⃗ =(32,y 2), ∴NA ⃗⃗⃗⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =my 1y 2−32(y 1+y 2)=−9m 3m 2+4−32×−6m 3m 2+4=0.∴A ,N ,M 三点共线,∴直线AM 经过线段EF 的中点.解析:(1)由题意求出点A ,M 的坐标,即可求出直线AM 的方程,(2)设直线l 的方程为x =my +1,与椭圆联立,根据韦达定理和向量的运算即可证明A ,N ,M 三点共线,可得直线AM 经过线段EF 的中点本题主要考查了椭圆的标准方程.涉及了直线与椭圆的关系,考查了运算能力和转化能力,属于中档题21.答案:解:(1)函数f(x)的定义域为(0,+∞),f′(x)=lnx +3,令f′(x)=0,解得x =e −3,当x ∈(0,e −3)时,f′(x)<0,函数f(x)递减;当x ∈(e −3,+∞)时,f′(x)>0,函数f(x)递增;故f(x)的极小值为f(e −3)=−e −3−1,无极大值;(2)原式可化为k <f(x)x−1=xlnx+2x−1x−1, 令g(x)=xlnx+2x−1x−1(x >1),则g′(x)=x−2−lnx (x−1)2, 令ℎ(x)=x −2−lnx(x >1),则ℎ′(x)=1−1x >0,故ℎ(x)在(1,+∞)上递增,且ℎ(3)=1−ln3<0;ℎ(4)=2−ln4>0;故存在唯一的x 0∈(3,4),使得ℎ(x 0)=0,即lnx 0=x 0−2,且当x ∈(1,x 0)时,ℎ(x)<0,g′(x)<0,g(x)递减;当x ∈(x 0,+∞)时,ℎ(x)>0,g′(x)>0,g(x)递增;故g(x)min =g(x 0)=x 0+1,故k <x 0+1∈(4,5),所以整数k 的最大值为4.解析:(1)求导判断函数的单调性,由极值定义得解;(2)问题转化为k <f(x)x−1=xlnx+2x−1x−1在(1,+∞)上恒成立,构造函数g(x)=xlnx+2x−1x−1(x >1),利用导数求函数g(x)的范围,进而得到实数k 的范围,由此得到答案.本题考查利用导数研究函数的单调性,极值及最值,考查不等式的恒成立问题,考查分离参数法及转化思想,考查逻辑推理能力,属于常规题目.22.答案:解:(1)曲线C 2的极坐标方程为,化为直角坐标系的方程为x +y −2=0,联立{x +y −2=0x 2+y 2−2y =0, 消去x 得,y 2−3y +2=0,解得y =1或2,故C 1和C 2交点的坐标为(0,2),(1,1).(2)依题意,直线l 的参数方程为为参数),把直线l 的参数方程{x =−2+√32t y =12t 代入x 2+y 2−2y =0, 得(−2+√32t)2+(12t)2−t =0, 即t 2−(2√3+1)t +4=0,设A ,B 对应得参数分别为t 1,t 2,则t 1+t 2=2√3+1,t 1·t 2=4.易知点M 在圆x 2+y 2−2y =0外,所以|MA|+|MB|=|t 1+t 2|=2√3+1.解析:本题主要考查由直线极坐标方程求直角坐标方程,由直线直角坐标方程求其参数方程,考查参数的几何意义,属于中档题.(1)将曲线C 2的极坐标方程化成直角坐标方程,联立方程即可求解;(2)通过设直线l 的参数方程,联立方程,利用参数的几何意义求解.23.答案:解:(Ⅰ)当a =3时,关于x 的不等式f(x)≥|x −3|即|3x −1|+3x ≥|x −3|, 即|3x −1|−|x −3|+3x ≥0. ∴{x ≥33x −1−(x −3)+3x ≥0①,或{13≤x <33x −1−(3−x)+3x ≥0②,或 {x <131−3x −3+x +3x ≥0. 解①求得x ≥3,解②求得47≤x <3,解③求得x ∈⌀.综上可得,不等式的解集为[47,+∞).(Ⅱ)若f(x)≥x −12在R 上恒成立,即|3x −1|+ax ≥x −12在R 上恒成立,即|3x −1|+12≥(1−a)x .故函数ℎ(x)=|3x −1|+12的图象应该在直线y =(1−a)x 的上方或重合.如图所示:∴0≤1−a≤3,或−3≤1−a<0,解得−2≤a≤1,或1<a≤4,即a的范围是[−2,4]解析:(Ⅰ)当a=3时,关于x的不等式即|3x−1|−|x−3|+3x≥0,转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得函数ℎ(x)=|3x−1|+1的图象应该在直线y=(1−a)x的上方或重合,可得0≤1−2a≤1,或−2≤1−a<0,由此求得a的范围.本题主要考查绝对值不等式的解法,很熟的恒成立问题,体现了转化、分类讨论的数学思想,属于中档题.。

2020届四川省南充市高三毕业班诊断性测试数学(理)试卷及解析

2020届四川省南充市高三毕业班诊断性测试数学(理)试卷及解析

2020届四川省南充市高三毕业班诊断性测试数学(理)试卷★祝考试顺利★(解析版)一、选择题1.设i 是虚数单位,若2i a i -+为纯虚数,则实数a 的值为( ) A. 2-B. 12-C. 12D. 2【答案】C【解析】根据纯虚数的定义计算即可.【详解】解:()()()()()222122=1i a i a a i i a i a i a i a -⋅---+⋅-=++⋅-+为纯虚数 2101,202a a a -=⎧=⎨+≠⎩故选:C2.设全集U =R ,集合{}2log 1A x x =<,{}21B x x =≥,则将韦恩图(Venn )图中的阴影部分表示成区间是( )A. ()0,1B. ()1,1-C. ()1,2D. ()1,2-【答案】A【解析】 先求{}2log 1A x x =<,再求()1,1U B =-,最后求U A B .【详解】解:{}{}2log 102A x x x x =<=<<{}(][)()21,11,,1,1U B x x B =≥=-∞-⋃+∞=-(){}{}()02110,1U A B x x x x ⋂=<<⋂-<<= 故选:A 3.在63x x ⎛- ⎪⎝⎭的展开式中,2x 项的系数为( ) A. 20B. 15C. 15-D. 20-【答案】D【解析】 先求通项,再令x 的指数为2,最后求系数【详解】解:184631663(1 )rr r r r r r T C x C x x --+⎛=-=- ⎪⎝⎭ 令1842,33r r -==,2x 项的系数为633()201C -=- 故选:D4.某几何体的三视图如图所示,则该几何体的体积为( )A. 21πB. 24πC. 27πD. 30π【答案】B【解析】 该几何题上面是圆锥,下面是半球,半球的半径为3,圆锥的高为2,分别求其体积,再求和.【详解】解:该几何题上面是圆锥,下面是半球,半球的半径为3,圆锥的高为2231 2 11432+3=24323V V V πππ=+=⨯⨯⨯⨯⨯⨯ 故选:B5.设sin 24a =︒,tan38b =︒,cos52c =︒则( )。

四川省南充市高2020届第二次高考适应性考试理科数学答案

四川省南充市高2020届第二次高考适应性考试理科数学答案

南充市高2020届第二次高考适应性考试
数学试题(理科)参考答案及评分意见
一㊁选择题:
1.C
2.B
3.D
4.A
5.D
6.A
7.C
8.B
9.C 10.D 11.A 12.B 二㊁填空题:
13.12 14.1 15.3 16.(1,2)或(1,-2)
三㊁解答题:
17.解:(1)设{a n}的公差为d,由题设得
a n=1+(n-1)d 2分
因为a6=2a3,
所以1+(6-1)d=2[1+(3-1)d] 4分
解得d=1,
故a n=n. 6分
(2)由(1)得b n=2n.
所以数列{b n}是以2为首项,2为公比的等比数列, 8分
所以S n=2-2n+11-2=2n+1-2, 10分
由S m=62得2m+1-2=62,
解得m=5. 12分18.解:(1)m=190+1902=190. 4分
(2)抗倒伏易倒伏
8分矮茎154
高茎1016
(3)由于k2=45×(15×16-4×10)2
19×26×25×20≐7.287>6.635,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关. 12分19.(1)证明:取BC中点M,连接PM,AM,
因为四边形ABCD为菱形且∠BAD=120°.
所以AM⊥BC,
因为PB=PC,所以PM⊥BC, 2分又AM∩PM=M,
所以BC⊥平面PAM,因为PA⊂平面PAM,
所以PA⊥BC. 4分同理可证PA⊥DC,
因为DC∩BC=C,
高三数学(理科)二诊答案 第1 页(共4页)。

南充市高2020届第二次高考适应性考试 数学试题(理科) 参考答案及评分标准

南充市高2020届第二次高考适应性考试 数学试题(理科) 参考答案及评分标准

点,
因为 E 为 PB 中点,所以此时,点 E 到平面 PAF 的距离最大,最大值为 1.
………………8 分
以 A 为坐标原点,直线 AF,AB,AP 分别为 x,y,z 轴建立空间直角坐标系 A-xyz.
则 A(0,0,0) ,C( 3 ,1,0) ,E(0,1,1) ,B(0,2,0)
所以 A寅C = ( 3 ,1,0) ,A寅E = (0,1,1) ,A寅B = (0,2,0)
=
-(
t-1) 2 2t
<0,
故 渍(t) 在(0,1) 上单调递减.
因为
m臆-322
,所以( x1
+x2 )2 逸
9 2
,所以
x21
+x22 逸
5 2
即xx211+xx222 逸
5 2
,故
t+
1 t

5 2
,( 0 <t <1 )
所以
0<t臆
1 2
,
所以渍 (Biblioteka t)的最小值为渍(
1 2
)
=
3 4
-ln2,即
此时,F 为 DC 的中点,即 AF = 3 ,
所以
S吟PAF
=
1 2
PA·AF
=
1 2
伊2伊
3=
3,
所以
VP-AFE
= VE-PAF
=
1 3

3 伊1 =
3 3
.
20. 解:(1) 设 P( x,y) ,则PF寅1 = ( -c-x,-y) ,PF寅2 = ( c-x,-y) ,
所以PF寅1 ·PF寅2
所以 f( x) min = | a-1 | 要使 f( x) 逸4 对 a沂R 恒成立,则 | a-1 | 逸4 即可,

2020年四川省南充市高考数学二诊试卷(文科)(含答案解析)

2020年四川省南充市高考数学二诊试卷(文科)(含答案解析)

2020年四川省南充市高考数学二诊试卷(文科)一、选择题(本大题共12小题,共60.0分)1.复数i+1i=()A. −2iB. 0C. 12i D. 2i2.已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A. 0或√3B. 0或3C. 1或√3D. 1或33.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. 12B. 14C. 15D. 1104.已知tanα=−12,π2<α<π,则sinα=()A. 2√55B. −√55C. −2√55D. √555.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子三尺远,问折断处离地面的高?()A. 4.55尺B. 5.45尺C. 4.2尺D. 5.8尺6.若函数y=2sin(2x+φ)的图象过点(π6,1),则它的一条对称轴方程可能是()A. x=π6B. x=π3C. x=π12D. x=5π127.过圆x2+y2=4外一点M(4,−1)引圆的两条切线,则经过两切点的直线方程是()A. 4x−y−4=0B. 4x+y−4=0C. 4x+y+4=0D. 4x−y+4=08.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)<1,则b+1a+1的取值范围是()A. (15,13) B. (−∞,13)∪(5,+∞)C. (13,5) D. (−∞,3)9.一个空间几何体的正视图是长为4,宽为√3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. 4√33B. 4√3 C. 2√33D.2√310. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若(2a −b)cosC =ccosB ,则内角C =( )A. π6B. π4C. π3D. π2 11. 正三棱锥底面边长为3,侧棱与底面成60°角,则正三棱锥的外接球的体积为( )A. 4πB. 16πC. 16π3D.32π312. 设F 1,F 2分别是双曲线x 2a 2−y 2b 2=1的左、右焦点.若双曲线上存在点M ,使∠F 1MF 2=60°,且|MF 1|=2|MF 2|,则双曲线离心率为( )A. √2B. √3C. 2D. √5二、填空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ ,b ⃗ 满足(a ⃗ +2b ⃗ )⋅(a ⃗ −b ⃗ )=−6,且|a ⃗ |=1,|b ⃗ |=2,则cos <a ⃗ ,b ⃗ >=______.14. 一次考试后,某班全班50个人数学成绩的平均分为正数M ,若把M 当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为N ,则MN =______.15. 已知函数f(x)=alnx −bx 2图象上一点(2,f(2))处的切线方程为y =−3x +2ln2+2,则a +b =______.16. 已知F 是抛物线C :y 2=2px(p >0)的焦点,过F 作直线与C 相交于P ,Q 两点,且Q 在第一象限,若2PF ⃗⃗⃗⃗⃗ =FQ ⃗⃗⃗⃗⃗ ,则直线PQ 的斜率是______.三、解答题(本大题共7小题,共82.0分) 17. 等差数列{a n }中,a 1=1,a 6=2a 3.(1)求{a n }的通项公式;(2)设b n =2a n ,记S n 为数列{b n }前n 项的和,若S m =62,求m .18. 为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米. (1)求出易倒伏玉米茎高的中位数m ;的前提下,认为抗倒伏与玉米矮茎有关?附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),K 3.841 6.635 10.82819. 在四棱锥P −ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =120°,PA =2,PB =PC =PD ,E 是PB 的中点. (1)证明:PD//平面AEC ;(2)设F 是线段DC 上的动点,当点E 到平面PAF 距离最大时,求三棱锥P −AFE 的体积.20. 设点F 1(−c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 24=1(a >2)的左,右焦点,P 为椭圆C 上任意一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的最小值为3.(1)求椭圆C 的方程;(2)如图,直线l :x =5与x 轴交于点E ,过点F 2且斜率k ≠0的直线l 1与椭圆交于A ,B 两点,M 为线段EF 2的中点,直线AM 交直线l 于点N ,证明:直线BN ⊥l .21. 已知两数f(x)=lnx +kx .(1)当k =−1时,求函数f(x)的极值点;(2)当k =0时,若f(x)+bx −a ≥0(a,b ∈R)恒成立,求e a−1−b +1的最大值.22. 在平面直角坐标系xOy 中,直线l 的参数方程为{x =3−√22ty =√5+√22t(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标中,圆C 的方程为ρ=2√5sinθ. (Ⅰ)写出直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若点P 坐标为(3,√5),圆C 与直线l 交于A ,B 两点,求|PA|+|PB|的值.23. 设函数f(x)=|x −1|+|x −a|,a ∈R .(1)当a =4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x ∈R 恒成立,求a 的取值范围.-------- 答案与解析 --------1.答案:B解析:解:i+1i =i+ii⋅i=i−i=0故选:B.直接对复数的分母、分子同乘i,然后化简即可求出所求.本题主要考查了复数代数形式的混合运算,解题的关键i2=−1,属于容易题.2.答案:B解析:解:A∪B=A⇔B⊆A.∴{1,m}⊆{1,3,√m},∴m=3或m=√m,解得m=0或m=1(与集合中元素的互异性矛盾,舍去).综上所述,m=0或m=3.故选:B.由两集合的并集为A,得到B为A的子集,转化为集合间的基本关系,再利用子集的定义,转化为元素与集合,元素与元素的关系.此题考查了并集及其运算,以及集合间的包含关系,是一道基础题.3.答案:D解析:解:从中任意取出2本共有10种,取出的书恰好都是数学书有1种,从中任意取出2本,取出的书恰好都是数学书的概率为110,故选:D.求出总的事件个数,再求出符合题意的事件,求出概率.本题考查概率,属于基础题.4.答案:D解析:解:已知tanα=−12,∴cos2α=11+tan2α=45,∴sin2α=15.又π2<α<π,∴sinα=√55,故选:D.利用同角三角函数的基本关系,求出cos2α和sin2α的值,再由π2<α<π,求出sinα的值.本题考查同角三角函数的基本关系的应用,是一道基础题.5.答案:A解析:解:如图,已知AC+AB=10(尺),BC=3(尺),AB2−AC2=BC2=9,所以(AB+AC)(AB−AC)=9,解得AB−AC=0.9,因此{AB +AC =10AB −AC =0.9,解得{AB =5.45AC =4.55,故折断后的竹干高为4.55尺, 故选:A .由题意可得AC +AB =10(尺),BC =3(尺),运用勾股定理和解方程可得AB ,AC ,即可得到所求值.本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题. 6.答案:B解析:解:∵函数y =2sin(2x +φ)的图象过点(π6,1),∴1=2sin(2×π6+φ),∴φ=2kπ+π6或2kπ+5π6(k ∈z)①.又∵对称轴方程为:2x +φ=k′π+π2,∴x =k′π2+π2−φ(k′∈z)②.将①代入②得 x =k′π2−kπ+π3(,k′∈z,k ∈z).当k′=0,k =0时,x =π3. 故选:B .由于函数过点(π6,1),代入函数得φ=2kπ+π6或2kπ+5π6,又可知对称轴方程为x =k′π2+π2−φ,将φ代入对称轴方程,对k ,k′赋值即可得出答案.本题考察三角函数图象和性质,属于中档题. 7.答案:A解析:解:设切点是P(x 1,y 1)、Q(x 2,y 2), 则以P 为切点的切线方程是:x 1x +y 1y =4, 以Q 为切点的切线方程是:x 2x +y 2y =4,∵点M(4,−1)在两条切线上,则4x 1−y 1=4,4x 2−y 2=4 ∴点P 、Q 的坐标满足方程:4x −y =4∴过两切点P 、Q 的直线方程是:4x −y −4=0. 故选:A .设切点是P(x 1,y 1)、Q(x 2,y 2),则以P 为切点的切线方程是:x 1x +y 1y =4,以Q 为切点的切线方程是:x 2x +y 2y =4,由此能求出过两切点P 、Q 的直线方程.本题考查经过两个切点的直线方程的求法,是中档题,解题时要认真审题,注意圆的切线方程的性质的合理运用.8.答案:C解析:解:由图可知,当x >0时,导函数f′(x)>0,原函数单调递增∵两正数a,b满足f(2a+b)<1,∴0<2a+b<4,∴b<4−2a,由0<b<4−2a,可得0<a<2,画出可行域如图.k=b+1表示点Q(−1,−1)与点P(x,y)连线的斜率,a+1当P点在A(2,0)时,k最小,最小值为:1;3当P点在B(0,4)时,k最大,最大值为:5.取值范围是C.故选C.先根据导函数的图象判断原函数的单调性,从而确定a、b的范围得到答案.本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.9.答案:B解析:解:由题意可知,三视图复原的几何体是放倒的正三棱柱,如图所示:,正三角形的边长为2,高为√3,正三棱柱的高为4,×2×√3×4=4√3,所以正三棱柱的体积为:12故选:B.通过三视图复原的几何体的特征,结合三视图的数据,求出几何体的体积即可.本题主要考查了根据三视图还原实物图,考查了几何体体积的求法,是基础题.10.答案:C解析:解:由正弦定理得:2sinAcosC−sinBcosC=sinCcosB,即2sinAcosC=sinBcosC+sinCcosB,即2sinAcosC=sin(B+C)=sinA,由于sinA≠0,,故cosC=12又0<C<π,.所以C=π3故选:C.由已知及正弦定理,三角函数恒等变换的应用可得2sinAcosC=sinA,结合sinA≠0,可求cos C,根据范围0<C<π,可求C的值.本题主要考查了正弦定理,三角函数恒等变换的应用,考查了运算求解能力和转化思想,属于基础题.11.答案:D解析:解:如图所示,过A作AE⊥平面BCD,垂足为E,则E为三角形BCD的外心,由题意可知,BE=√3,因为侧棱与底面成60°角,即∠ABE=60°,所以AE=3,Rt△OBE中,R2=3+(3−R)2,解可得R=2,则正三棱锥的外接球的体积V=4πR33=32π3.故选:D.由已知及线面角可求BE,AE,然后结合球的性质可求R,结合球体积公式可求.本题主要考查了三棱锥的外接球的体积的求解,解题的关键是球心的确定,属于中档试题.12.答案:B解析:【分析】本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.由双曲线的定义知|MF1|=4a,|MF2|=2a,由余弦定理得c=√3a,由此能求出双曲线的离心率.【解答】解:∵点M在双曲线x2a2−y2b2=1上,且|MF1|=2|MF2|,∴由双曲线的定义知|MF1|=4a,|MF2|=2a,又∵∠F1MF2=60°,∴在△MF1F2中,由余弦定理得:16a2+4a2−2⋅4a⋅2a⋅cos60°=4c2,解得c=√3a,∴e=ca=√3.故选:B.13.答案:12解析:解:根据题意,向量a⃗,b⃗ 满足(a⃗+2b⃗ )⋅(a⃗−b⃗ )=−6,且|a⃗|=1,|b⃗ |=2,则有(a⃗+2b⃗ )⋅(a⃗−b⃗ )=a⃗2+a⃗⋅b⃗ −2b⃗ 2=−7+2cos<a⃗,b⃗ >=−6,解可得:cos<a⃗,b⃗ >=12;故答案为:12根据题意,由数量积的计算公式可得(a⃗+2b⃗ )⋅(a⃗−b⃗ )=a⃗2+a⃗⋅b⃗ −2b⃗ 2=−7+2cos<a⃗,b⃗ >=−6,变形分析可得答案.本题考查向量数量积的计算,涉及向量夹角的计算,属于基础题. 14.答案:1解析:解:全班50个人数学成绩的平均分为正数M , 把M 当成一个同学的分数,则班中有51名同学,总成绩为51M , 这51人的平均分为N =51M 51=M ,所以MN =1.故答案为:1.全班50个人的平均分为M ,把M 当成一个同学的分数,则班中有51人,计算这51人的平均值N ,求出M N 的值即可.本题考查了平均数的计算问题,也考查了运算求解能力,是基础题. 15.答案:3解析:解:将x =2代入切线得f(2)=2ln2−4. 所以2ln2−4=aln2−4b①, 又f′(x)=ax −2bx , ∴f′(2)=a 2−4b =−3②,联立①②解得a =2,b =1. 所以a +b =3. 故答案为:3.将(2,f(2))代入切线求出f(2),再将切点坐标代入f(x)得方程①,再对原函数求导,进一步求出切点处导数并令其为−3,得方程②,联立①②求出a ,b 即可解决问题.本题考查了导数的几何意义,本题的关键在于利用切点满足曲线与切线方程,切点处的导数等于切线斜率列方程求解,注意计算要准确.属于基础题. 16.答案:2√2解析:解:过点P ,Q 分别作抛物线的准线l :x =−1的垂线,垂足分别是P 1、Q 1,由抛物线的定义可知,|Q 1Q|=|QF|,|P 1P|=|FP|, 设|PF|=k(k >0),2PF ⃗⃗⃗⃗⃗ =FQ ⃗⃗⃗⃗⃗ ,则|FQ|=2k ,|PQ|=3k ,又过点Q 作QR ⊥P 1P 于点R , 则在直角△PRQ 中,|RR|=k ,|PQ|=3k , |QR|=2√2k ,由∠PQR 与直线QP 的倾斜角相等,则直线PQ 的斜率k =tan∠QPR =2√2, ∴直线PQ 的斜率是2√2, 故答案为:2√2.过点P,Q分别作抛物线的准线l:x=−p的垂线,垂足分别是P1、Q1,由抛物线的|Q1Q|=|QF|定2义可知,|P1P|=|FP|,设|QF|=k(k>0),则|FP|=2k,在直角△PRQ中求解直线PQ的倾斜角即可求得直线PQ斜率.本题考查抛物线的简单几何性质及抛物线定义的应用,考查数形结合思想以及计算能力,属于中档题.17.答案:解:(1)由题意,设等差数列{a n}的公差为d,则a n=1+(n−1)d,∵a6=2a3,∴1+5d=2(1+2d),解得d=1,∴a n=n,n∈N∗.(2)由(1)知,b n=2n=2⋅2n−1,∴数列{b n}是以2为首项,2为公比的等比数列,=2n+1−2,∴S n=2−2n+11−2由S m=62,可得2m+1−2=62,解得m=5.解析:本题第(1)题先设等差数列{a n}的公差为d,然后根据等差数列的通项公式代入a6=2a3,可得关于公差d的方程,解出d的值,即可得到数列{a n}的通项公式;第(2)题先根据第(1)题的结果计算出数列{b n}的通项公式,可发现数列{b n}是以2为首项,2为公比的等比数列,根据等比数列的求和公式可得S n的表达式,代入S m=62进行计算可得m的值.本题主要考查等差数列和等比数列基本量的计算.考查了转化思想,方程思想,指数的运算,逻辑思维能力和数学运算能力.本题属中档题.=190;18.答案:解:(1)m=190+1902(2)抗倒伏易倒伏矮茎154高茎1016(3)由于k2=45×(15×16−4×10)2=7.287>6.635,19×26×25×20因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.解析:(1)根据茎叶图可求易倒伏玉米茎高的中位数;(2)根据茎叶图的数据,即可完成列联表:(3)计算K的观测值K2,对照题目中的表格,得出统计结论.本题主要考查了中位数的求法,考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目.19.答案:(1)证明:连接DB与AC交于O,连接OE,∵ABCD是菱形,∴O为DB的中点,又∵E为PB的中点,∴PD//OE,∵PD⊄平面AEC,OE⊂平面AEC,∴PD//平面AEC ;(2)解:取BC 中点M ,连接AM ,PM ,∵四边形ABCD 是菱形,∠BAD =120°,且PC =PB ,∴BC ⊥AM ,BC ⊥PM ,又AM ∩PM =M ,∴BC ⊥平面APM ,又AP ⊂平面APM ,∴C ⊥PA .同理可证:DC ⊥PA ,又BC ∩DC =C ,∴PA ⊥平面ABCD ,则平面PAF ⊥平面ABCD ,又平面PAF ∩平面ABCD =AF ,∴点B 到直线AF 的距离即为点B 到平面PAF 的距离,过B 作直线AF 的垂线段,在所有垂线段中长度最大为AB =2,∵E 为PB 的中点,故点E 到平面PAF 的最大距离为1,此时,F 为DC 的中点,即AF =√3,∴S △PAF =12PA ⋅AF =12×2×√3=√3, ∴V p−AFE =V E−PAF =13×√3×1=√33.解析:(1)连接DB 与AC 交于O ,连接OE ,由三角形中位线定理证明PD//OE ,再由线面平行的判定可得PD//平面AEC ;(2)取BC 中点M ,连接AM ,PM ,证明PA ⊥平面ABCD ,则平面PAF ⊥平面ABCD ,又平面PAF ∩平面ABCD =AF ,可得点B 到直线AF 的距离即为点B 到平面PAF 的距离,过B 作直线AF 的垂线段,在所有垂线段中长度最大为AB =2,由此可得点E 到平面PAF 的最大距离为1,求得AF ,则三棱锥P −AFE 的体积可求.本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.20.答案:解:(1)设P(x,y),则PF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −x,−y),PF 2⃗⃗⃗⃗⃗⃗⃗ =(c −x,−y),所以PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =x 2+y 2−c 2=a 2−4a 2x 2+4−c 2, 因为a >2,x ∈[−a,a].所以当x =0时,PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 值最小,所以4−c 2=3,解得c =1,(舍负)所以a 2=5,所以椭圆C 的方程为x 25+y 24=1,(2)设直线l 1的方程为y =k(x −1),k ≠0,联立{y =k(x −1)x 25+y 24=1,得(4+5k 2)x 2−10k 2x +5k 2−20=0. 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2−204+5k 2, 设N(5,y 0),因为A ,M ,N 三点共线,又M(3,0)所以−y 13−x 1=y 02,解得y 0=2y 1x 1−3.而y 0−y 2=2y 1x 1−3−y 2=2k(x 1−1)x 1−3−k(x 2−1)=3k(x 1+x 2)−kx 1x 2−5kx 1−3=3k⋅10k 24+5k 2−k⋅5k 2−204+5k 2−5k x 1−3=0所以直线BN//x 轴,即BN ⊥l .解析:(1)设P(x,y),求出PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的表达式,利用最小值,转化求解即可.(2)设直线l 1的方程为y =k(x −1),k ≠0,联立{y =k(x −1)x 25+y 24=1,得(4+5k 2)x 2−10k 2x +5k 2−20=0.设A(x 1,y 1),B(x 2,y 2),通过韦达定理,设N(5,y 0),因结合A ,M ,N 三点共线,解得y 0=2y 1x 1−3.计算y 0−y 2=0,即可说明直线BN//x 轴,即BN ⊥l .本题考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题. 21.答案:解:(1)f′(x)定义域为(0,+∞),当k =−1时,f(x)=lnx −x,f′(x)=1x −1, 令f′(x)=0得x =1,所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以f(x)有唯一的极大值点x =1,无极小值点.(2)当k =0时,f(x)+b x −a =lnx +b x −a .若f(x)+b x −a ≥0,(a,b ∈R)恒成立,则lnx +b x −a ≥0(a,b ∈R)恒成立,所以a ≤lnx +b x 恒成立,令y =lnx +b x ,则y′=x−bx 2,由题意b >0,函数在(0,b)上单调递减,在(b,+∞)上单调递增,所以a ≤lnb +1,所以a −1≤lnb所以e a−1≤b ,所以e a−1−b +1≤1,故e a−1−b +1的最大值为1.解析:(1)把k =−1代入后对函数求导,然后结合导数与单调性及极值关系即可求解;(2)由已知不等式恒成立,分离参数a 可得a ≤lnx +b x 恒成立,构造函数,转化为求解相应函数的范围,结合导数可求.本题主要考查了利用导数求解函数的极值,证明不等式,体现了转化思想的应用,属于中档试题.22.答案:解:(Ⅰ)由{x =3−√22t y =√5+√22t得直线l 的普通方程为x +y −3−√5=0--------2分 又由ρ=2√5sinθ得ρ2=2√5ρsinθ,化为直角坐标方程为x 2+(y −√5)2=5;---------5分 (Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,得(3−√22t)2+(√22t)2=5,即t 2−3√2t +4=0 设t 1,t 2是上述方程的两实数根,所以t 1+t 2=3√2又直线l 过点P(3,√5),A 、B 两点对应的参数分别为t 1,t 2,所以|PA|+|PB|=|t 1|+|t 2|=t 1+t 2=3√2.------------------10分.解析:(Ⅰ)先利用两方程相加,消去参数t 即可得到l 的普通方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x ,ρsinθ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程. (Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,利用参数的几何意义,求|PA|+|PB|的值. 本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.23.答案:解:(1)当a =4时,不等式f(x)≥5,即|x −1|+|x −4|≥5,等价于{x <1−2x +5≥5,或{1≤x ≤43≥5,或 {x >42x −5≥5, 解得:x ≤0或x ≥5.故不等式f(x)≥5的解集为{x|x ≤0,或x ≥5 }. …(5分)(2)因为f(x)=|x −1|+|x −a|≥|(x −1)−(x −a)|=|a −1|.(当x =1时等号成立)所以:f(x)min =|a −1|.…(8分)由题意得:|a −1|≥4,解得 a ≤−3,或a ≥5. …(10分)解析:(1)不等式即|x −1|+|x −4|≥5,等价于{x <1−2x +5≥5,或{1≤x ≤43≥5,或 {x >42x −5≥5,分别求出每个不等式组的解集,再取并集即得所求.(2)因为f(x)=|x −1|+|x −a|≥|a −1|,由题意可得|a −1|≥4,与偶此解得 a 的值. 本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题。

2020年四川省大数据精准教学高考数学第二次监测试卷(理科) (解析版)

2020年四川省大数据精准教学高考数学第二次监测试卷(理科) (解析版)

2020年高考数学第二次监测试卷(理科)一、选择题(共12小题).1.已知全集U=R,集合A={x|x2﹣4x+3>0},B={x|﹣1<x<2},则(∁U A)∪B=()A.(﹣1,1]B.[1,2)C.[1,3]D.(﹣1,3]2.若复数z在复平面内对应的点的坐标为(1,2),则=()A.B.C.1+3i D.﹣1﹣3i3.已知向量=(1+λ,2),=(3,4),若∥,则实数λ=()A.B.C.D.4.若,则sin2α=()A.B.C.D.5.函数f(x)=的大致图象是()A.B.C.D.6.若(2x+)6展开式的常数项为160,则a=()A.1B.2C.4D.87.若过点P(,1)的直线l是圆C:(x﹣2)2+y2=4的一条对称轴,将直线l绕点P旋转30°得到直线l',则直线l'被圆C截得的弦长为()A.4B.C.2D.18.如图,已知圆锥底面圆的直径AB与侧棱SA,SB构成边长为的正三角形,点C是底面圆上异于A,B的动点,则S,A,B,C四点所在球面的面积是()A.4πB.C.16πD.与点C的位置有关9.甲、乙、丙、丁4名学生参加体育锻炼,每人在A,B,C三个锻炼项目中恰好选择一项进行锻炼,则甲不选A项、乙不选B项的概率为()A.B.C.D.10.若函数y=A sinωx(A>0,ω>0,x>0)的图象上相邻三个最值点为顶点的三角形是直角三角形,则A•ω=()A.4πB.2πC.πD.11.若函数,且f(2a)+f(a﹣1)>0,则a的取值范围是()A.(﹣∞,)B.C.D.12.已知O为直角坐标系的原点,矩形OABC的顶点A,C在抛物线x2=4y上,则直线OB的斜率的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣4]∪[4,+∞)C.D.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x,y满足,则z=2x+y的最小值为.14.已知平面α⊥平面β,直线l⊂α,且l不是平面α,β的交线.给出下列结论:①平面β内一定存在直线平行于平面α;②平面β内一定存在直线垂直于平面α;③平面β内一定存在直线与直线l平行;④平面β内一定存在直线与直线l异面.其中所有正确结论的序号是.15.阿波罗尼奥斯是古希腊时期与阿基米德、欧几里得齐名的数学家,以其姓氏命名的“阿氏圆”,是指“平面内到两定点的距离的比值为常数λ(λ>0,λ≠1)的动点轨迹”.设△ABC的角A,B,C所对的边分别为a,b,c,顶点C在以A,B为定点,λ=2的一个阿氏圆上,且,△ABC的面积为,则c=.16.若关于x的不等式lnx≤﹣bx+1恒成立,则ab的最大值是.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和是S n,且S n=2a n﹣2,等差数列{b n}中,b1=20,b3=16.(1)求数列{a n}和{b n}的通项公式;(2)定义:a*b=.记c n=a n*b n,求数列{c n}的前10项的和T10.18.某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量y(cm)与月平均气温x(℃)的8组数据,并制成如图1所示的散点图.根据收集到的数据,计算得到如表值:(x i﹣)21812.325224.04235.96(1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;(2)根据y关于x的回归方程,得到残差图如图2所示,分析该回归方程的拟合效果.附:对于一组数据(ω,v1),(ω2,v2),…,(ωn,v n),其回归直线的斜率和截距的最小二乘估计分别为,=﹣.19.如图,在四边形ABCD中,AD∥BC,AB⊥AD,∠ABE=30°,∠BEC=90°,AD =2,E是AD的中点.现将△ABE沿BE翻折,使点A移动至平面BCDE外的点P.(1)若,求证:DF∥平面PBE;(2)若平面PBE⊥平面BCDE,求平面PBE与平面PCD所成锐二面角的余弦值.20.在直角坐标系内,点A,B的坐标分别为(﹣2,0),(2,0),P是坐标平面内的动点,且直线PA,PB的斜率之积等于.设点P的轨迹为C.(1)求轨迹C的方程;(2)某同学对轨迹C的性质进行探究后发现:若过点(1,0)且倾斜角不为0的直线l 与轨迹C相交于M,N两点,则直线AM,BN的交点Q在一条定直线上.此结论是否正确?若正确,请给予证明,并求出定直线方程;若不正确,请说明理由.21.已知函数f(x)=.(1)若曲线y=f(x)在x=﹣1处切线的斜率为e﹣1,判断函数f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明x1+x2>0,并指出a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1:(t为参数),曲线C2:,(θ为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线y=x tanα(x≥0,0<α<)分别交C1,C2于A,B两点,求的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+3|+2|x|.(1)求f(x)的值域;(2)记函数f(x)的最小值为M.设a,b,c均为正数,且a+b+c=M,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|x2﹣4x+3>0},B={x|﹣1<x<2},则(∁U A)∪B=()A.(﹣1,1]B.[1,2)C.[1,3]D.(﹣1,3]【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.解:由x2﹣4x+3>0解得x<1或x>3,则A=(﹣∞,1)∪(3,+∞),所以(∁U A)∪B=[1,3]∪(﹣1,2)=(﹣1,3].故选:D.2.若复数z在复平面内对应的点的坐标为(1,2),则=()A.B.C.1+3i D.﹣1﹣3i【分析】由已知求得z,代入,再由复数代数形式的乘除运算化简得答案.解:由z=1+2i,得.故选:B.3.已知向量=(1+λ,2),=(3,4),若∥,则实数λ=()A.B.C.D.【分析】根据即可得出4(1+λ)﹣2×3=0,然后解出λ即可.解:∵,∴4(1+λ)﹣2×3=0,解得.故选:C.4.若,则sin2α=()A.B.C.D.【分析】法一:结合诱导公式及二倍角的余弦公式即可求解;法二:由已知结合两角差的余弦公式展开后,利用同角平方关系即可求解.解:法一:根据已知,有.法二:由得,两边平方得,所以,即.故选:A.5.函数f(x)=的大致图象是()A.B.C.D.【分析】先根据函数奇偶性的概念可知f(﹣x)=﹣f(x),所以f(x)为奇函数,排除选项A和B;再对比选项C和D,比较f(x)与x的大小即可作出选择.解:因为f(﹣x)==﹣f(x),所以f(x)为奇函数,排除选项A和B;当x>0时,,排除选项C.故选:D.6.若(2x+)6展开式的常数项为160,则a=()A.1B.2C.4D.8【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于160求得实数a的值.解:二项式(2x+)6的展开式的通项公式为T r+1=•26﹣r•a r•x6﹣2r,令6﹣2r=0,可得r=3;故二项式展开式的常数项为,解得a=1.故选:A.7.若过点P(,1)的直线l是圆C:(x﹣2)2+y2=4的一条对称轴,将直线l绕点P旋转30°得到直线l',则直线l'被圆C截得的弦长为()A.4B.C.2D.1【分析】由已知可得点P在圆C上,且圆心C在直线l上,求得PC=2.画出图形,利用勾股定理求得半弦长,则直线l'被圆C截得的弦长可求.解:由题意知,点P在圆C上,且圆心C在直线l上,∴PC=2.如图,设l'与圆交于P,Q两点,线段PQ的中点为H,则在Rt△PHC中,,故直线l'被圆C截得的弦长.故选:B.8.如图,已知圆锥底面圆的直径AB与侧棱SA,SB构成边长为的正三角形,点C是底面圆上异于A,B的动点,则S,A,B,C四点所在球面的面积是()A.4πB.C.16πD.与点C的位置有关【分析】如图,设底面圆的圆心为O,S,A,B,C四点所在球面的球心为O1,连接SO,可得SO⊥平面ABC,且O1在线段SO上.设球O1的半径为R,在Rt△O1AO中,由勾股定理可得R.解:如图,设底面圆的圆心为O,S,A,B,C四点所在球面的球心为O1,连接SO,则SO⊥平面ABC,且O1在线段SO上.易知SO=3,.设球O1的半径为R,在Rt△O1AO中,由勾股定理得(3﹣R)2+=R2,解得R =2.故球面面积为4πR2=16π.故选:C.9.甲、乙、丙、丁4名学生参加体育锻炼,每人在A,B,C三个锻炼项目中恰好选择一项进行锻炼,则甲不选A项、乙不选B项的概率为()A.B.C.D.【分析】根据题意,可得每位学生选择三个锻炼项目有种,则总的选择方式有种,其中甲、乙的选择方式有种,故甲不选A、乙不选B项目的概率为或.解:法一:每位学生选择三个锻炼项目有种,则4人总的选择方式共有种,其中甲、乙的选择方式有种,其余两人仍有种,故甲不选A、乙不选B项目的概率为.法二:只考虑甲、乙的选择,不加限制均为3种,受到限制后均为2种,而甲乙的选择相互独立,故甲不选A、乙不选B项目的概率为.故选:B.10.若函数y=A sinωx(A>0,ω>0,x>0)的图象上相邻三个最值点为顶点的三角形是直角三角形,则A•ω=()A.4πB.2πC.πD.【分析】作出函数y=A sinωx(A>0,ω>0,x>0)的大致图象,结合图象求出△MNP 为等腰直角三角形,即可求解结论.解:作出函数y=A sinωx(A>0,ω>0,x>0)的大致图象,不妨取如图的相邻三个最值点.设其中两个最大值点为M,N,最小值点为P.根据正弦函数图象的对称性,易知△MNP为等腰直角三角形,且斜边上的高PQ=2A,所以斜边MN=4A,则y=A sinωx周期T=4A.由,有,所以.故选:D.11.若函数,且f(2a)+f(a﹣1)>0,则a的取值范围是()A.(﹣∞,)B.C.D.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.解:由题知f(x)的定义域为(﹣1,1),且,所以f(﹣x)=ln=﹣ln+x=﹣f(x),所以f(x)为奇函数且在(﹣1,1)上单调递减.由f(2a)+f(a﹣1)>0,可知f(2a)>﹣f(a﹣1)=f(1﹣a),于是有,解得.故选:C.12.已知O为直角坐标系的原点,矩形OABC的顶点A,C在抛物线x2=4y上,则直线OB的斜率的取值范围是()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣4]∪[4,+∞)C.D.【分析】画出图形,设A(x1,y1),C(x2,y2),则B(x1+x2,y1+y2),通过,推出直线OB的斜率的表达式,利用基本不等式求解即可.解:如图,设A(x1,y1),C(x2,y2),则B(x1+x2,y1+y2),依题意,四边形OABC为矩形,则,即x1x2+y1y2=0,所以,即x1x2=﹣16,从而,直线OB的斜率=,.当且仅当,即时等号成立,故.故选:D.二、填空题:本题共4小题,每小题5分,共20分.13.若实数x,y满足,则z=2x+y的最小值为3.【分析】画出约束条件的可行域,利用目标函数的几何意义,求解真假,得到目标函数的最小值即可.解:不等式组表示的可行域是以(2,0),A(1,1),(3,1)为顶点的三角形及其内部,如图:当目标函数z=2x+y过点A(1,1)时,目标函数在y轴是的的截距取得最小值,此时z取得最小值,z取得最小值3.故答案为:3.14.已知平面α⊥平面β,直线l⊂α,且l不是平面α,β的交线.给出下列结论:①平面β内一定存在直线平行于平面α;②平面β内一定存在直线垂直于平面α;③平面β内一定存在直线与直线l平行;④平面β内一定存在直线与直线l异面.其中所有正确结论的序号是①②④.【分析】利用直线与平面的位置关系结合图形、逐个判断,即可得出答案.解:设平面α∩β=a,①存在b⊂平面β,且b∥a,所以a∥平面α,故正确,②存在c⊂平面β,且c⊥a,所以c⊥平面α,故正确,③若l与两平面的交线相交,则平面β内不存在直线与直线l平行,则③错误;④由以上图可知存在平面β内一定存在直线与直线l异面.故④正确,故答案:①②④.15.阿波罗尼奥斯是古希腊时期与阿基米德、欧几里得齐名的数学家,以其姓氏命名的“阿氏圆”,是指“平面内到两定点的距离的比值为常数λ(λ>0,λ≠1)的动点轨迹”.设△ABC的角A,B,C所对的边分别为a,b,c,顶点C在以A,B为定点,λ=2的一个阿氏圆上,且,△ABC的面积为,则c=.【分析】直接利用余弦定理和三角形的面积公式的应用求出结果.解:由已知,不妨设b=2a,由,,解得a=1,则b=2,据余弦定理有,所以.故答案为:16.若关于x的不等式lnx≤﹣bx+1恒成立,则ab的最大值是e.【分析】由不等式lnx≤﹣bx+1恒成立,且x>0,可化为.设,求导可得f'(x)=,令f'(x)=0可得x=e2,可得在(0,e2)和(e2,+∞)函数f(x)的单调性,求出函数f(x)的最大值.结合图象可得f(x)在的图象的下面恒成立,则的图象与函数f(x)的图象相切时,ab取到最大值,进而求出ab的最大值.解:由a≠0,x>0,原不等式可化为恒成立,设,则,当x∈(0,e2)时,f'(x)>0,f(x)递增;x∈(e2,+∞),f'(x)<0,f(x)递减.所以,f(x)在x=e2处取得极大值,且为最大值;且x>e时,f(x)>0.结合图象可知,的图象恒在f(x)的图象的上方,显然a<0不符题意;当a>0时,ab为直线的横截距,其最大值为f(x)的横截距,再令f(x)=0,可得x=e,所以ab取得最大值为e.此时a=e2,,直线与f(x)在点(e,0)处相切,ab的最大值为e.故答案为:e.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列{a n}的前n项和是S n,且S n=2a n﹣2,等差数列{b n}中,b1=20,b3=16.(1)求数列{a n}和{b n}的通项公式;(2)定义:a*b=.记c n=a n*b n,求数列{c n}的前10项的和T10.【分析】(1)对于数列{a n}:当n=1时,由题设条件求出a1,再由当n≥2时,由S n =2a n﹣2,S n﹣1=2a n﹣1﹣2两式相减整理得a n=2a n﹣1,进而说明数列{a n}是首项为2,公比也为2的等比数列,从而求得a n;对于数列{b n}:先设出等差数列{b n}的公差d,再由题设条件求出d,即可求得b n.(2)先由(1)求得c n,再求出T10即可.解:(1)对于数列{a n},当n=1时,由S n=2a n﹣2得a1=2;当n≥2时,由S n=2a n﹣2,S n﹣1=2a n﹣1﹣2两式相减整理得a n=2a n﹣1,所以数列{a n}是首项为2,公比也为2的等比数列,所以数列{a n}的通项公式.设等差数列{b n}的公差为d,则b3﹣b1=16﹣20=4=2d,解得d=﹣2,所以数列{b n}的通项公式b n=22﹣2n.综合以上知:a n=2n,b n=22﹣2n;(2)由(1)知:c n=a n*b n==,所以T10=a1+a2+a3+b4+b5+b6+…+b10==.18.某学校课外兴趣小组利用假期到植物园开展社会实践活动,研究某种植物生长情况与温度的关系.现收集了该种植物月生长量y(cm)与月平均气温x(℃)的8组数据,并制成如图1所示的散点图.根据收集到的数据,计算得到如表值:(x i﹣)21812.325224.04235.96(1)求出y关于x的线性回归方程(最终结果的系数精确到0.01),并求温度为28℃时月生长量y的预报值;(2)根据y关于x的回归方程,得到残差图如图2所示,分析该回归方程的拟合效果.附:对于一组数据(ω,v1),(ω2,v2),…,(ωn,v n),其回归直线的斜率和截距的最小二乘估计分别为,=﹣.【分析】(1)根据表中数据求出线性回归方程的系数,写出线性回归方程,利用回归方程计算x=28时的值;(2)根据残差图中对应点分布情况判断该回归方程的拟合效果.解:(1)设月生长量y与月平均气温x之间的线性回归方程为,计算,所以,所以y关于x的线性回归方程为;当x=28时,=1.05×28﹣6.63=22.77(cm),所以,在气温在28℃时,该植物月生长量的预报值为22.77cm.(2)根据残差图,残差对应的点比较均匀地落在水平的带状区域中,且带状区域的宽度窄,所以该回归方程的预报精度相应会较高,说明拟合效果较好.19.如图,在四边形ABCD中,AD∥BC,AB⊥AD,∠ABE=30°,∠BEC=90°,AD=2,E是AD的中点.现将△ABE沿BE翻折,使点A移动至平面BCDE外的点P.(1)若,求证:DF∥平面PBE;(2)若平面PBE⊥平面BCDE,求平面PBE与平面PCD所成锐二面角的余弦值.【分析】(1)法一:在线段PB上取靠近点P的四等分点G,可得,由此证明四边形DEGF为平行四边形,可得DF∥EG,进而得证;法二:在线段BC上取靠近点B的四等分点H,可得HF∥PB,由此证明HF∥平面PBE,再证明四边形DEBH为平行四边形,可得DH∥平面PBE,综合可得平面DFH∥平面PBE,再利用面面平行的性质定理得证;(2)建立空间直角坐标系,求出平面PBE及平面PCD的法向量,利用向量的夹角公式直接求解即可.解:(1)法一:依题意得BE=2,BC=4,.…………………………(1分)如图,在线段PB上取靠近点P的四等分点G,连接FG,EG,因为,所以.所以.……………………………………所以四边形DEGF为平行四边形,可得DF∥EG.…………………………又DF⊄平面PBE,EG⊂平面PBE,.………………………………所以DF∥平面PBE.………………………………法二:如图,在线段BC上取靠近点B的四等分点H,连接FH,DH,因为,所以HF∥PB.又HF⊄平面PBE,PB⊂平面PBE,所以HF∥平面PBE.……………………………………依题意得BE=2,BC=4,,而,所以.所以四边形DEBH为平行四边形.所以DH∥EB.又DH⊄平面PBE,EB⊂平面PBE,所以DH∥平面PBE.………………………………而DH⊂平面DFH,FH⊂平面DFH,DH∩FH=H,所以平面DFH∥平面PBE.因为DF⊂平面DFH,所以DF∥平面PBE.………………………………(2)由∠BEC=90°,得BE⊥EC.又因为平面PBE⊥平面BCDE,平面PBE∩平面BCDE=BE,所以EC⊥平面PBE.……………………………………以E为原点,建立如图所示空间直角坐标系E﹣xyz,则E(0,0,0),,,B(2,0,0),由,得.…………………………………………则,.设平面PCD的法向量为,则,令y=1,则,故可取.………………………………又EC⊥平面PBE,可取平面PBE的一个法向量为,.…………………………则=.所以,平面PBE与平面PCD所成锐二面角的余弦值为.………………………………20.在直角坐标系内,点A,B的坐标分别为(﹣2,0),(2,0),P是坐标平面内的动点,且直线PA,PB的斜率之积等于.设点P的轨迹为C.(1)求轨迹C的方程;(2)某同学对轨迹C的性质进行探究后发现:若过点(1,0)且倾斜角不为0的直线l 与轨迹C相交于M,N两点,则直线AM,BN的交点Q在一条定直线上.此结论是否正确?若正确,请给予证明,并求出定直线方程;若不正确,请说明理由.【分析】(1)利用,求解轨迹方程即可.(2)设直线MN的方程为:x=my+1,联立直线与椭圆方程,M(x1,y1),N(x2,y2),结合韦达定理,通过直线AM,BN的交点Q(x0,y0)的坐标满足:.转化求解即可.解:(1)由,得4y2=4﹣x2,即.故轨迹C的方程为:.(2)根据题意,可设直线MN的方程为:x=my+1,由,消去x并整理得(m2+4)y2+2my﹣3=0.其中,△=4m2+12(m2+4)=16m2+48>0.设M(x1,y1),N(x2,y2),则,.因直线l的倾斜角不为0,故x1,x2不等于±2(y1,y2不为0),从而可设直线AM的方程为①,直线BN的方程为②,所以,直线AM,BN的交点Q(x0,y0)的坐标满足:.而=,因此,x0=4,即点Q在直线x=4上.所以,探究发现的结论是正确的.21.已知函数f(x)=.(1)若曲线y=f(x)在x=﹣1处切线的斜率为e﹣1,判断函数f(x)的单调性;(2)若函数f(x)有两个零点x1,x2,证明x1+x2>0,并指出a的取值范围.【分析】(1)求出原函数的导函数,得到f'(﹣1)=ea﹣1由已知列式求得a值,求出导函数的零点,再由导函数的零点对定义域分段,关键导函数在本题区间段内的符号,可得原函数的单调性;(2)当a>0时,若a=1,由(1)知,f(x)为R上的增函数.结合f(﹣1)>0,f (﹣2)<0,可得f(x)只有一个零点,不符合题意.若0<a<1,利用导数研究其单调性可知f(x)最多只有一个零点,不符合题意.若a>1时,利用导数求其极小值,根据极小值大于0,可得f(x)最多只有一个零点,不符合题意.当a<0时,利用导数证明f(x)始终有两个零点x1,x2,不妨令x1<0,x2>0,构造函数F(x)=f(x)﹣f (﹣x),再求导数证明f(x1)<f(﹣x2).结合f(x)的单调性得x1>﹣x2,即x1+x2>0.解:(1)由题,则f'(﹣1)=ea﹣1=e﹣1,得a=1,此时,由f'(x)=0,得x=0.则x<0时,f'(x)>0,f(x)为增函数;x>0时,f'(x)>0,f(x)为增函数,且f'(0)=0,所以f(x)为R上的增函数;证明:(2)①当a>0时,由f'(x)=0,得x=0或x=lna,若a=1,由(1)知,f(x)为R上的增函数.由,f(﹣2)=﹣e2+2<0,∴f(x)只有一个零点,不符合题意.若0<a<1,则x<lna时,f'(x)>0,f(x)为增函数;lna<x<0时,f'(x)<0,f (x)为减函数;x>0时,f'(x)>0,f(x)为增函数.而f(x)极小=f(0)=a>0,故f(x)最多只有一个零点,不符合题意.若a>1时,则x<0时,f'(x)>0,f(x)为增函数;0<x<lna时,f'(x)<0,f(x)为减函数;x>lna时,f'(x)>0,f(x)为增函数,得,故f(x)最多只有一个零点,不符合题意.②当a<0时,由f'(x)=0,得x=0,由x≤0,得f'(x)≤0,f(x)为减函数,由x>0,得f'(x)>0,f(x)为增函数,则f(x)极小=f(0)=a<0.又x→﹣∞时,f(x)>0,x→+∞时,f(x)>0,∴当a<0时,f(x)始终有两个零点x1,x2,不妨令x1<0,x2>0,构造函数F(x)=f(x)﹣f(﹣x),∴,由于x>0时,e x﹣e﹣x>0,又a<0,则F'(x)=ax(e x﹣e﹣x)<0恒成立,∴F(x)为(0,+∞)的减函数,则F(x)<F(0)=f(0)﹣f(0)=0,即f(x)<f(﹣x),故有f(x2)<f(﹣x2).又x1,x2是f(x)的两个零点,则f(x1)=f(x2),∴f(x1)<f(﹣x2).结合f(x)的单调性得x1>﹣x2,∴x1+x2>0,且a的取值范围是(﹣∞,0).(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C1:(t为参数),曲线C2:,(θ为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)射线y=x tanα(x≥0,0<α<)分别交C1,C2于A,B两点,求的最大值.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用极径的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)消去参数t,得曲线C1的直角坐标方程为,则曲线C1的极坐标方程为.消去参数θ,得曲线C2的直角坐标方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0,所以曲线C2的极坐标方程为ρ2﹣2ρcosθ=0,即ρ=2cosθ.(2)射线的极坐标方程为,.联立,得,所以;由,得ρB=2cosα,则|OB|=2cosα,因此=.由,得.所以,当,即时,.故的最大值为.[选修4-5:不等式选讲]23.已知函数f(x)=|x+3|+2|x|.(1)求f(x)的值域;(2)记函数f(x)的最小值为M.设a,b,c均为正数,且a+b+c=M,求证:.【分析】(1)化分段函数,求出每段的值域即可求出函数f(x)的值域;(2)根据(1)求出M=3,再根据基本不等式即可证明.解:(1)当x<﹣3时,f(x)=﹣x﹣3﹣2x=﹣3x﹣3,此时f(x)∈(6,+∞);当﹣3≤x≤0时,f(x)=x+3﹣2x=﹣x+3,此时f(x)∈[3,6];.当x>0时,f(x)=x+3+2x=3x+3,此时f(x)∈(3,+∞),综上,函数f(x)的值域为[3,+∞).(2)由(1)知,函数f(x)的最小值为3,则M=3,即a+b+c=3.因为≥36.其中,当且仅当,b=1,取“=”.又因为a+b+c=3,所以.。

四川省南充市高考数学二诊试卷(理科)含答案解析

四川省南充市高考数学二诊试卷(理科)含答案解析

四川省南充市高考数学二诊试卷(理科)(解析版)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.当<m<1时,复数z=(3m﹣2)+(m﹣1)i在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.满足条件{1,3}∪A={1,3,5}所有集合A的个数是()A.4 B.3 C.2 D.13.秦九韶是我国古代数学家的杰出代表之一,他的《数学九章》概括了宋元时期中国传统数学的主要成就.由他提出的一种多项式简化算法称为秦九韶算法:它是一种将n次多项式的求值问题转化为n个一次式的算法.即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.用秦九韶算法求多项式f(x)=4x5﹣x2+2,当x=3时的值时,需要进行的乘法运算和加法运算的次数分别为()A.4,2 B.5,2 C.5,3 D.6,24.如图所示的程序框图中,输出的B是()A. B.0 C.﹣D.﹣5.某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价()%;方案(Ⅳ)一次性提价(m+n)%,已知m>n>0,那么四种提价方案中,提价最多的是()A.ⅠB.ⅡC.ⅢD.Ⅳ6.函数y=sin(2x+)﹣sinxcosx的单调减区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ﹣,kπ﹣](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)7.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有()A.330种B.420种C.510种D.600种8.一个多面体的三视图和直观图如图所示,M是AB的中点,一只蜻蜓在几何体ADF﹣BCE内自由飞翔,则它飞入几何体F﹣AMCD内的概率为()A.B.C.D.9.已知函数f(x)是定义在R上的偶函数,且f (2﹣x)=f(x)当x∈[0,1]时,f (x)=e﹣x,若函数y=[f (x)]2+(m+l)f(x)+n在区间[﹣k,k](k>0)内有奇数个零点,则m+n=()A.﹣2 B.0 C.1 D.210.在△ABC中,内角A,B,C的对边分别为a,b,c,若=,则这个三角形必含有()A.90°的内角B.60°的内角C.45°的内角 D.30°的内角11.锥体中,平行于底面的两个平面把锥体的体积三等分,这时高被分成三段的长自上而下的比为()A.1::B.1:2:3 C.1:(﹣1):(﹣)D.1:(﹣1):(﹣)12.F是抛物线C:y2=4x的焦点,过F作两条斜率都存在且互相垂直的直线l1,l2,l1交抛物线C于点A,B,l2交抛物线C于点G,H,则•的最小值是()A.8 B.8C.16 D.16二、填空题:本大题共4小题,每小题5分,共20分).13.满足不等式组的点(x,y)组成的图形的面积为.14.渔场中鱼群的最大养殖量为m,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须流出适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0),则鱼群年增长量的最大值是.15.若直线2ax﹣by+2=0(a,b∈R)始终平分圆x2+y2+2x﹣4y+1=0的周长,则ab的取值范围是.16.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=,•=,则b=.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)设各项均为正数的数列{a n}和{b n}满足:对任意n∈N*,a n,b n,a n成等差数列,b n,a n+1,b n+1成等比数列,且a1=1,b1=2,a2=3.+1(Ⅰ)证明数列{}是等差数列;(Ⅱ)求数列{}前n项的和.18.(12分)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:组别理科文科性别男生女生男生女生人数4431学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB 的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(Ⅰ)若DE∥平面A1MC1,求;(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.20.(12分)已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C: =1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等.(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.21.(12分)已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然对数的底数,a∈R.(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.[选修4-4:坐标系与参数方程选讲]22.(10分)在极坐标系中,已知直线l的极坐标方程为ρsin(θ+)=1,圆C的圆心是C(1,),半径为1,求:(1)圆C的极坐标方程;(2)直线l被圆C所截得的弦长.[选修4-5:不等式选讲]23.若关于x的不等式x+|x﹣1|≤a有解,求实数a的取值范围.四川省南充市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.当<m<1时,复数z=(3m﹣2)+(m﹣1)i在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义.【分析】当<m<1时,复数z的实部3m﹣2∈(0,1),虚部m﹣1∈.即可得出.【解答】解:当<m<1时,复数z的实部3m﹣2∈(0,1),虚部m﹣1∈.复数z=(3m﹣2)+(m﹣1)i在复平面上对应的点(3m﹣2,m﹣1)位于第四象限.故选:D.【点评】本题考查了复数的运算法则、不等式的性质、复数的几何意义,考查了推理能力与计算能力,属于基础题.2.满足条件{1,3}∪A={1,3,5}所有集合A的个数是()A.4 B.3 C.2 D.1【考点】并集及其运算.【分析】由题意知满足条件的集合A中必有元素{5},元素1,3可以没有,或有1个,或有2个,由此能求出满足条件{1,3}∪A={1,3,5}所有集合A的个数.【解答】解:∵满足条件{1,3}∪A={1,3,5},∴满足条件的集合A有:{5},{1,5},{3,5},{1,3,5},∴满足条件{1,3}∪A={1,3,5}所有集合A的个数是4.故选:A.【点评】本题考查满足条件的集合A的个数的求法,是基础题,注意并集性质的合理运用.3.秦九韶是我国古代数学家的杰出代表之一,他的《数学九章》概括了宋元时期中国传统数学的主要成就.由他提出的一种多项式简化算法称为秦九韶算法:它是一种将n次多项式的求值问题转化为n个一次式的算法.即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.用秦九韶算法求多项式f(x)=4x5﹣x2+2,当x=3时的值时,需要进行的乘法运算和加法运算的次数分别为()A.4,2 B.5,2 C.5,3 D.6,2【考点】秦九韶算法.【分析】由秦九韶算法的原理,可以把多项式f(x)=4x5﹣x2+2变形计算出乘法与加法的运算次数.【解答】解:∵f(x)=((((4x)x)x﹣1)x)x+2,∴乘法要运算5次,加减法要运算2次.故选B.【点评】本题考查秦九韶算法,考查在用秦九韶算法解题时一共会进行多少次加法和乘法运算,是一个基础题.4.如图所示的程序框图中,输出的B是()A. B.0 C.﹣D.﹣【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的i,A,B的值,当i=时不满足条件i≤,退出循环,输出B的值为﹣,即可得解.【解答】解:模拟程序的运行,可得A=,i=1,A=,B=﹣,i=2,满足条件i≤,执行循环体,A=π,B=0,i=3,满足条件i≤,执行循环体,A=,B=,i=4,满足条件i≤,执行循环体,A=,B=﹣,…观察规律可知,可得:i=,满足条件i≤,执行循环体,A=,B=sin=sin=﹣,i=,不满足条件i≤,退出循环,输出B的值为﹣.故选:D.【点评】本题考查了求程序框图运行结果的问题,解题时应模拟程序框图运行过程,总结规律,得出结论,属于基础题.5.某种商品计划提价,现有四种方案,方案(Ⅰ)先提价m%,再提价n%;方案(Ⅱ)先提价n%,再提价m%;方案(Ⅲ)分两次提价,每次提价()%;方案(Ⅳ)一次性提价(m+n)%,已知m>n>0,那么四种提价方案中,提价最多的是()A.ⅠB.ⅡC.ⅢD.Ⅳ【考点】等比数列的性质;等差数列的性质.【分析】设单价为1,那么方案(Ⅰ)售价为:1×(1+m%)(1+n%)=(1+m%)(1+n%);方案(Ⅱ)提价后的价格是:(1+n%)(1+m%));(Ⅲ)提价方案提价后的价格是:(1+%)2;方案(Ⅳ)提价后的价格是1+(m+n)%显然甲、乙两种方案最终价格是一致的,因而只需比较(1+m%)(1+n%)与(1+%)2的大小.【解答】解:依题意得:设单价为1,那么方案(Ⅰ)售价为:1×(1+m%)(1+n%)=(1+m%)(1+n%);方案(Ⅱ)提价后的价格是:(1+n%)(1+m%));(1+m%)(1+n%)=1+m%+n%+m%•n%=1+(m+n)%+m%•n%;(Ⅲ)提价后的价格是(1+%)2=1+(m+n)%+(%)2;方案(Ⅳ)提价后的价格是1+(m+n)%所以只要比较m%•n%与(%)2的大小即可∵(%)2﹣m%•n%=(%)2≥0∴(%)2≥m%•n%即(1+%)2>(1+m%)(1+n%)因此,方案(Ⅲ)提价最多.故选C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.需用到的知识点为:(a﹣b)2≥0.6.函数y=sin(2x+)﹣sinxcosx的单调减区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ﹣,kπ﹣](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)【考点】正弦函数的单调性.【分析】y=sin2x+cos2x﹣sin2x=﹣sin(2x﹣),利用正弦函数的单调增区间,求出函数y=sin(2x+)﹣sinxcosx的单调减区间.【解答】解:y=sin2x+cos2x﹣sin2x=﹣sin(2x﹣),由﹣+2kπ≤2x﹣≤+2kπ,则x∈[kπ﹣,kπ+](k∈Z),即函数y=sin(2x+)﹣sinxcosx的单调减区间是[kπ﹣,kπ+](k∈Z),故选:A.【点评】本题考查三角函数的化简,考查三角函数的图象与性质,正确化简函数是关键.7.某校开设5门不同的数学选修课,每位同学可以从中任选1门或2门课学习,甲、乙、丙三位同学选择的课没有一门是相同的,则不同的选法共有()A.330种B.420种C.510种D.600种【考点】排列、组合及简单计数问题.【分析】分类讨论,利用排列组合知识,即可得出结论.【解答】解:由题意,若都选1门,有=60种;若有1人选2门,则有=180种,若有2人选2门,则有=90种,故共有60+180+90=330种,故选:A.【点评】本题考查利用数学知识解决实际问题,考查排列组合知识的运用,属于中档题.8.一个多面体的三视图和直观图如图所示,M 是AB 的中点,一只蜻蜓在几何体ADF ﹣BCE 内自由飞翔,则它飞入几何体F ﹣AMCD 内的概率为( )A .B .C .D . 【考点】几何概型.【分析】先根据三棱锥的体积公式求出F ﹣AMCD 的体积与三棱锥的体积公式求出ADF ﹣BCE 的体积,最后根据几何概型的概率公式解之即可. 【解答】解:因为V F ﹣AMCD ==,V ADF ﹣BCE =,所以它飞入几何体F ﹣AMCD 内的概率为=,故选:D .【点评】本题主要考查空间几何体的体积公式,以及几何概型的应用,同时考查了空间想象能力和计算能力,属于中档题.9.已知函数f (x )是定义在R 上的偶函数,且f (2﹣x )=f (x )当x ∈[0,1]时,f (x )=e ﹣x ,若函数y=[f (x )]2+(m +l )f (x )+n 在区间[﹣k ,k ](k >0)内有奇数个零点,则m +n=( ) A .﹣2B .0C .1D .2【考点】函数奇偶性的性质;函数零点的判定定理.【分析】根据已知条件,f(x)为偶函数,再结合零点的定义可知,函数y=[f (x)]2+(m+1)f(x)+n在区间[﹣k,0)和区间(0,k]上的零点个数相同,所以便知k=0是该函数的一个零点,所以可得到0=1+m+1+n,所以m+n=﹣2.【解答】解:∵y=f(x)是偶函数;又∵函数y=[f(x)]2+(m+1)f(x)+n在区间[﹣k,k]内有奇数个零点;∴若该函数在[﹣k,0)有零点,则对应在(0,k]有相同的零点;∵零点个数为奇数,∴x=0时该函数有零点;∴0=1+m+1+n;∴m+n=﹣2.故选:A.【点评】考查偶函数的定义:f(﹣x)=f(x),零点的定义,以及对于零点定义的运用.10.在△ABC中,内角A,B,C的对边分别为a,b,c,若=,则这个三角形必含有()A.90°的内角B.60°的内角C.45°的内角 D.30°的内角【考点】正弦定理.【分析】先把已知条件等号左边的分子分母利用同角三角函数间的基本关系切化弦后,分子分母都乘以cosAcosB后,利用两角和与差的正弦函数公式化简,右边利用正弦定理化简后,根据三角形的内角和定理及诱导公式,得到2cosA=1,然后在等号两边都乘以sinA后,利用二倍角的正弦函数公式及诱导公式化简后,即可得到2A=B+C,由A+B+C=180°,即可解得:A=60°.【解答】解:=====,因为sin(A+B)=sin(π﹣C)=sinC,得到sin(A﹣B)=sinC﹣sinB,即sinB=sin(A+B)﹣sin(A﹣B)=2cosAsinB,得到2cosA=1,即2sinAcosA=sinA,即sin2A=sinA=sin(B+C),由2A+B+C≠π,得到2A=B+C,因为A+B+C=180°所以可解得:A=60°故选:B.【点评】此题考查学生灵活运用同角三角函数间的基本关系、两角和与差的正弦函数公式以及诱导公式化简求值,属于中档题.11.锥体中,平行于底面的两个平面把锥体的体积三等分,这时高被分成三段的长自上而下的比为()A.1::B.1:2:3 C.1:(﹣1):(﹣)D.1:(﹣1):(﹣)【考点】棱柱、棱锥、棱台的体积.【分析】锥体被平行于底面的两平面截得三部分的体积的比自上至下依次是1:2:3,则以分别以原来底面和两个截面为底面的锥体,是相似几何体,根据相似的性质三个锥体的体积比,从而求出相似比为1::,得到这三部分的相应的高的比.【解答】解:由题意,以分别以原来底面和两个截面为底面的锥体,是相似几何体,根据相似的性质三个锥体的体积比为1:2:3,相似比为1::,则h1:h2:h3=1:(﹣1):(﹣),故选D.【点评】本题考查的知识点是棱锥的体积,其中利用相似的性质,线之比等于相似比,面积之比等于相似比的平方,体积之比等于相似比的立方,求出三个锥体的体积之比是解答本题的关键.12.F是抛物线C:y2=4x的焦点,过F作两条斜率都存在且互相垂直的直线l1,l2,l1交抛物线C于点A,B,l2交抛物线C于点G,H,则•的最小值是()A.8 B.8C.16 D.16【考点】直线与抛物线的位置关系;平面向量数量积的运算.【分析】设l1的方程:y=k(x﹣1),l2的方程y=﹣(x﹣1),与抛物线方程联立,利用韦达定理,结合向量的数量积公式,利用基本不等式,即可求•的最小值.【解答】解:抛物线C:y2=4x的焦点F(1,0),设l1的方程:y=k(x﹣1),l2的方程y=﹣(x﹣1),A(x1,y1),B(x2,y2),G(x3,y3),H(x4,y4),由,消去y得:k2x2﹣(2k2+4)x+k2=0,∴x1+x2=2+,x1x2=1.由,消去y得:x2﹣(4k2+2)x+1=0,∴x3+x4=4k2+2,x3x4=1,…(9分)∴•=(+)(+)=||•||+||•||,=|x1+1|•|x2+1|+|x3+1|•|x4+1|=(x1x2+x1+x2+1)+(x3x4+x3+x4+1)=8++4k2≥8+2=16.当且仅当=4k2,即k=±1时,•有最小值16,…(12分)故选C.【点评】本题考查椭圆和抛物线的标准方程,考查直线与抛物线的位置关系,考查向量的数量积,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分).13.满足不等式组的点(x,y)组成的图形的面积为1.【考点】简单线性规划.【分析】由约束条件作出可行域,求出三角形的顶点坐标,代入三角形面积公式得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,2),联立,解得B(2,3),∴|BC|=2,A到BC所在直线的距离为1.∴可行域面积为S=.故答案为:1.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.14.渔场中鱼群的最大养殖量为m,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须流出适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0),则鱼群年增长量的最大值是.【考点】函数模型的选择与应用.【分析】由鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0).我们根据题意求出空闲率,即可得到y关于x的函数关系式,并指出这个函数的定义域,使用配方法,易分析出鱼群年增长量的最大值.【解答】解:由题意,空闲率为 1﹣,∴y=kx(1﹣),定义域为(0,m),y=kx(1﹣)=﹣,因为 x∈(0,m),k>0;所以当x=时,y max=.故答案为.【点评】函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.15.若直线2ax﹣by+2=0(a,b∈R)始终平分圆x2+y2+2x﹣4y+1=0的周长,则ab的取值范围是(﹣∞,] .【考点】直线与圆相交的性质.【分析】根据圆的性质,得圆心在直线2ax﹣by+2=0上,解得b=1﹣a,代入式子a•b并利用二次函数的图象与性质,即可算出a•b的取值范围.【解答】解:∵直线2ax﹣by+2=0(a、b∈R)始终平分x2+y2+2x﹣4y+1=0的周长,∴圆心(﹣1,2)在直线2ax﹣by+2=0上,可得﹣2a﹣2b+2=0解得b=1﹣a∴a•b=a(1﹣a)=﹣(a﹣)2+≤,当且仅当a=时等号成立因此a•b的取值范围为(﹣∞,].故答案为(﹣∞,].【点评】本题给出直线始终平分圆,求ab的取值范围.着重考查了直线的方程、圆的性质和二次函数的图象与性质等知识,属于基础题.16.在△ABC中,a,b,c分别是角A,B,C的对边,C=2A,cosA=,•=,则b=5.【考点】向量在几何中的应用.【分析】由C=2A,得到cosC=cos2A,cos2A利用二倍角的余弦函数公式化简,将cosA的值代入求出cosC的值,发现cosC的值大于0,由A和B为三角形的内角,得到A和B都为锐角,进而利用同角三角函数间的基本关系求出sinA和sinC的值,最后利用三角形的内角和定理及诱导公式化简cosB,再利用两角和与差的余弦函数公式化简,将各自的值代入即可求出cosB的值;利用平面向量的数量积运算法则化简已知的等式•=,由cosB的值,求出ac的值,由a,c,sinA和sinC,利用正弦定理列出关系式,将C=2A代入并利用二倍角的正弦函数公式化简,用c表示出a,代入ac=24中,求出c的值,进而得到a的值,最后由a,c及cosB的值,利用余弦定理即可求出b的值.【解答】解:∵C=2A,cosA=>0,∴cosC=cos2A=2cos2A﹣1=2×()2﹣1=>0,∵0<A<π,0<C<π,∴0<A<,0<C<,∴sinA==,sinC==,∴cosB=cos[π﹣(A+C)]=﹣cos(A+C)=﹣(cosAcosC﹣sinAsinC)=;∵•=,∴accosB=,∴ac=24,∵===,∴a==c,由解得,∴b2=a2+c2﹣2accosB=42+62﹣2×24×=25,∴b=5.故答案为:5.【点评】此题考查了正弦、余弦定理,二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及平面向量的数量积运算法则,熟练掌握定理及公式是解本题的关键.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.(12分)(•南充模拟)设各项均为正数的数列{a n}和{b n}满足:对任意n ∈N*,a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,且a1=1,b1=2,a2=3.(Ⅰ)证明数列{}是等差数列;(Ⅱ)求数列{}前n项的和.【考点】数列的求和.【分析】(I)对任意n∈N*,a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,可得2b n=a n+a n+1, =b n•b n+1,a n>0,a n+1=,代入即可证明.(II)a1=1,b1=2,a2=3.由(I)可得:32=2b2,解得:b2.公差=.可得=×.b n代入=b n•b n+1,a n+1>0.可得a n+1=,可得=.即可得出.【解答】(I)证明:∵对任意n∈N*,a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,∴2b n=a n+a n+1, =b n•b n+1,a n>0,=,∴a n+1∴2b n=+,∴=+.∴数列{}是等差数列.(II)解:a1=1,b1=2,a2=3.由(I)可得:32=2b2,解得:b2=.∴公差d===.=+(n﹣1)=×.∴b n=.∴=b n•b n+1=,a n+1>0.=,∴a n+1∴n≥2时,a n=.n=1时也成立.∴a n=.n∈N*.∴=.∴数列{}前n项的和=+…+=2=.【点评】本题考查了数列递推关系、等差数列与等比数列的定义通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.18.(12分)(•南充模拟)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:组别理科文科性别男生女生男生女生人数4431学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)要求被选出的4人中理科组、文科组的学生都有共有:.其中“理科组恰好记4分”的选法有两种情况:从理科组中选取2男1女,再从文科组中任选1人,可有方法;另一种是从理科组中选取2女,再从文科组中任选2人,可有方法.根据互斥事件的概率计算公式与古典概型的概率计算公式即可得出.(II)由题意可得ξ=0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=4)==,即可得出分布列与数学期望.【解答】解:(I)要求被选出的4人中理科组、文科组的学生都有共有: =424.其中“理科组恰好记4分”的选法有两种情况:从理科组中选取2男1女,再从文科组中任选1人,可有方法;另一种是从理科组中选取2女,再从文科组中任选2人,可有方法.∴P==.(II)由题意可得ξ=0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=4)==,由题意可得ξ=0,1,2,3.其分布列为:ξ0123P(ξ)ξ的数学期望Eξ=++=.【点评】本题考查了互斥事件的概率计算公式与古典概型的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.19.(12分)(•南充模拟)如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC 上一点.(Ⅰ)若DE∥平面A1MC1,求;(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取BC中点N,连结MN,C1N,由已知得A1,M,N,C1四点共面,由已知条件推导出DE∥C1N,从而求出.(Ⅱ)连结B1M,由已知条件得四边形ABB1A1为矩形,B1C1与平面A1MC1所成的角为∠B1C1M,由此能求出直线BC和平面A1MC1所成的角的余弦值.【解答】解:(Ⅰ)取BC中点N,连结MN,C1N,…(1分)∵M,N分别为AB,CB中点∴MN∥AC∥A1C1,∴A1,M,N,C1四点共面,…(3分)且平面BCC1B1∩平面A1MNC1=C1N,又DE∩平面BCC1B1,且DE∥平面A1MC1,∴DE∥C1N,∵D为CC1的中点,∴E是CN的中点,…∴=.…(6分)(Ⅱ)连结B1M,…(7分)因为三棱柱ABC﹣A1B1C1为直三棱柱,∴AA1⊥平面ABC,∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1,∵M是AB的中点,∴B1M⊥A1M,又A1C1⊥平面ABB1A1,∴A1C1⊥B1M,从而B1M⊥平面A1MC1,…(9分)∴MC1是B1C1在平面A1MC1内的射影,∴B1C1与平面A1MC1所成的角为∠B1C1M,又B1C1∥BC,∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角…(10分)设AB=2AA1=2,且三角形A1MC1是等腰三角形∴A1M=A1C1=,则MC1=2,B1C1=,∴cos∠B1C1M=,∴直线BC和平面A1MC1所成的角的余弦值为.…(12分)【点评】本题考查两条线段的比值的求法,考查角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.20.(12分)(•南充模拟)已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C: =1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等.(I)求椭圆C的方程;(II)过点(3,0)作直线l,与椭圆C交于A,B两点设(O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;直线与圆相交的性质;椭圆的标准方程.【分析】(Ⅰ)计算圆心O到直线l:x+y+8=0的距离,可得直线l被圆O截得的弦长,利用直线l被圆O截得的弦长与椭圆的长轴长相等,可求a的值,利用椭圆的离心率为e=,即可求得椭圆C的方程;(Ⅱ)由,可得四边形OASB是平行四边形.假设存在这样的直线l,使四边形OASB的对角线长相等,则四边形OASB为矩形,因此有,设直线方程代入椭圆方程,利用向量的数量积公式,即可求得结论.【解答】解:(Ⅰ)∵圆心O到直线l:x+y+8=0的距离为,∴直线l被圆O截得的弦长为,∵直线l被圆O截得的弦长与椭圆的长轴长相等,∴2a=4,∴a=2,∵椭圆的离心率为e=,∴c=∴b2=a2﹣c2=1∴椭圆C的方程为:;…(4分)(Ⅱ)∵,∴四边形OASB是平行四边形.假设存在这样的直线l,使四边形OASB的对角线长相等,则四边形OASB为矩形,因此有,设A(x1,y2),B(x2,y2),则x1x2+y1y2=0.…(7分)直线l的斜率显然存在,设过点(3,0)的直线l方程为:y=k(x﹣3),由,得(1+4k2)x2﹣24k2x+36k2﹣4=0,由△=(﹣24k2)2﹣4(1+4k2)(36k2﹣4)>0,可得﹣5k2+1>0,即.…(9分)∴=,由x1x2+y1y2=0得:,满足△>0.…(12分)故存在这样的直线l,其方程为.…(13分)【点评】本题考查椭圆的标准方程,考查直线与圆、直线与椭圆的位置关系,考查向量知识的运用,联立方程,利用向量的数量积公式、韦达定理是关键.21.(12分)(•南充模拟)已知f(x)=ax﹣lnx,x∈(0,e],g(x)=,其中e是自然对数的底数,a∈R.(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+;(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(Ⅱ)利用(Ⅰ)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(Ⅲ)利用导数求函数的最小值,让最小值等于3,解参数a.【解答】解:(Ⅰ)因为f(x)=x﹣lnx,f′(x)=1﹣=,所以当0<x<1时,f'(x)<0,此时函数f(x)单调递减,当1<x≤e时,f'(x)>0,此时函数f(x)单调递增,所以函数f(x)的极小值为f(1)=1.(Ⅱ)证明:因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.又g′(x)=,所以当0<x<e时,g'(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=<,所以f(x)min﹣g(x)max>,所以在(Ⅰ)的条件下,f(x)>g(x)+.(Ⅲ)假设存在实数a,使f(x)=ax﹣lnx,x∈(0,e],有最小值3,则f′(x)=a﹣=,①当a≤0时,f'(x)<0,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a=,(舍去),此时函数f(x)的最小值不是3.②当0<<e时,f(x)在(0,]上单调递减,f(x)在(,e]上单调递增.所以f(x)min=f()=1+lna=3,a=e2,满足条件.③当≥e时,f(x)在(0,e]上单调递减,f(x)min=f(e)=ae﹣1=3,a=,(舍去),此时函数f(x)的最小值是不是3,综上可知存在实数a=e2,使f(x)的最小值是3.【点评】本题主要考查利用函数的单调性研究函数的单调性问题,运算量较大,综合性较强.[选修4-4:坐标系与参数方程选讲]22.(10分)(•南充模拟)在极坐标系中,已知直线l的极坐标方程为ρsin (θ+)=1,圆C的圆心是C(1,),半径为1,求:(1)圆C的极坐标方程;(2)直线l被圆C所截得的弦长.【考点】简单曲线的极坐标方程;直线与圆相交的性质.【分析】(1)直接利用x2+y2=ρ2,ρcosθ=xρsinθ=y的关系式把直线的极坐标方程转化成直角坐标方程,及把圆的直角坐标方程转化成极坐标方程.(2)利用圆心和直线的关系求出直线被圆所截得的弦长.【解答】解:(1)已知直线l的极坐标方程为ρsin(θ+)=1,所以:即:x+y﹣=0.因为:圆C的圆心是C(1,),半径为1,所以转化成直角坐标为:C,半径为1,所以圆的方程为:转化成极坐标方程为:(2)直线l的方程为:x+y﹣=0,圆心C满足直线的方程,所以直线经过圆心,所以:直线所截得弦长为圆的直径.由于圆的半径为1,所以所截得弦长为2.【点评】本题考查的知识要点:直角坐标方程与极坐标方程的互化,直线与曲线的位置关系.属于基础题型.[选修4-5:不等式选讲]23.(•南充模拟)若关于x的不等式x+|x﹣1|≤a有解,求实数a的取值范围.【考点】绝对值不等式.【分析】首先分析题目已知关于x的不等式x+|x﹣1|≤a有解,求实数a的取值范围.即可先分类讨论x与1的大小关系,去绝对值号.然后根据恒成立分析a的范围,即可得到答案.【解答】解:关于x的不等式x+|x﹣1|≤a有解,先分类讨论x与1的大小关系,去绝对值号.当x≥1时,不等式化为x+x﹣1≤a,即x≤.此时不等式有解当且仅当1≤,即a≥1.≥1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年四川省南充市高考数学二诊试卷(理科)一、选择题(本大题共12小题,共60.0分)1.复数i+1i=()A. −2iB. 0C. 12i D. 2i2.已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A. 0或√3B. 0或3C. 1或√3D. 1或33.已知tanα=−12,π2<α<π,则sinα=()A. 2√55B. −√55C. −2√55D. √554.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子三尺远,问折断处离地面的高?()A. 4.55尺B. 5.45尺C. 4.2尺D. 5.8尺5.已知等式(1−x+x2)3⋅(1−2x2)4=a0+a1x+a2x2+⋯+a14x14成立,则a2+a4+⋯+a14=()A. 0B. 5C. 7D. 146.过圆x2+y2=4外一点M(4,−1)引圆的两条切线,则经过两切点的直线方程是()A. 4x−y−4=0B. 4x+y−4=0C. 4x+y+4=0D. 4x−y+4=07.定义在R上的函数f(x)满足f(4)=1,f′(x)为f(x)的导函数,已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)<1,则b+1a+1的取值范围是()A. (15,13) B. (−∞,13)∪(5,+∞)C. (13,5) D. (−∞,3)8.一个空间几何体的正视图是长为4,宽为√3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. 4√33B. 4√3 C. 2√33D.2√39.△ABC的内角A,B,C的对边分别为a,b,c,若(2a−b)cosC=ccosB,则内角C=()A. π6B. π4C. π3D. π210.正三棱锥底面边长为3,侧棱与底面成60°角,则正三棱锥的外接球的体积为()A. 4πB. 16πC.16π3D.32π311. 设双曲线C :x 29−y 216=1的右顶点为A ,右焦点为F ,过点F 作平行C 的一条渐近线的直线与C交于点B ,则△AFB 的面积为( )A. 15B. 3215C. 1532 D. 641512. 已知函数f(x)=x +e x−a ,g(x)=ln(x +2)−4e a−x ,其中e 为自然对数的底数,若存在实数x 0,使f(x 0)−g(x 0)=3成立,则实数a 的值为( ) A. −ln2−1 B. −1+ln2 C. −ln2 D. ln2 二、填空题(本大题共4小题,共20.0分)13. 已知向量a ⃗ ,b ⃗ 满足(a ⃗ +2b ⃗ )⋅(a ⃗ −b ⃗ )=−6,且|a ⃗ |=1,|b ⃗ |=2,则cos <a ⃗ ,b ⃗ >=______.14. 函数f(x)=cosx −√x 在[0,+∞)的零点个数为______.15. 已知函数f(x)=alnx −bx 2图象上一点(2,f(2))处的切线方程为y =−3x +2ln2+2,则a +b =______.16. 设F 为抛物线C :y 2=4x 的焦点,A ,B ,D 为C 上互相不重合的三点,且|AF ⃗⃗⃗⃗⃗ |、|BF ⃗⃗⃗⃗⃗ |、|DF⃗⃗⃗⃗⃗ |成等差数列,若线段AD 的垂直平分线与x 轴交于E(3,0),则B 的坐标为______. 三、解答题(本大题共7小题,共82.0分) 17. 等差数列{a n }中,a 1=1,a 6=2a 3.(1)求{a n }的通项公式;(2)设b n =2a n ,记S n 为数列{b n }前n 项的和,若S m =62,求m .18. 为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米. (1)求出易倒伏玉米茎高的中位数m ;的前提下,认为抗倒伏与玉米矮茎有关?附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),19. 在四棱锥P −ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =120°,PA =2,PB =PC =PD ,E 是PB 的中点. (1)证明:PA ⊥平面ABCD ; (2)设F 是直线BC 上的动点,当点E 到平面PAF 距离最大时,求面PAF 与面EAC 所成二面角的正弦值.20. 设点F 1(−c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点,P 为椭圆C 上任意一点,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,点M ,N 是直线l 上的两点,且F 1M ⊥l ,F 2N ⊥l ,求四边形F 1MNF 2面积S 的最大值.21. 已知函数f(x)=12x 2+mx +lnx .(1)若函数f(x)不存在单调递减区间,求实数m 的取值范围; (2)若y =f(x)的两个极值点为x 1,x 2(x 1<x 2),m ≤−3√22,求f(x 1)−f(x 2)的最小值.22. 在平面直角坐标系xOy 中,直线l 的参数方程为{x =3−√22ty =√5+√22t(t 为参数).在以原点O 为极点,x 轴正半轴为极轴的极坐标中,圆C 的方程为ρ=2√5sinθ. (Ⅰ)写出直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若点P 坐标为(3,√5),圆C 与直线l 交于A ,B 两点,求|PA|+|PB|的值.23. 设函数f(x)=|x −1|+|x −a|,a ∈R .(1)当a =4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值范围.-------- 答案与解析 --------1.答案:B解析:解:i +1i =i +ii⋅i =i −i =0故选:B .直接对复数的分母、分子同乘i ,然后化简即可求出所求.本题主要考查了复数代数形式的混合运算,解题的关键i 2=−1,属于容易题. 2.答案:B解析:解:A ∪B =A ⇔B ⊆A . ∴{1,m}⊆{1,3,√m},∴m =3或m =√m ,解得m =0或m =1(与集合中元素的互异性矛盾,舍去). 综上所述,m =0或m =3. 故选:B .由两集合的并集为A ,得到B 为A 的子集,转化为集合间的基本关系,再利用子集的定义,转化为元素与集合,元素与元素的关系.此题考查了并集及其运算,以及集合间的包含关系,是一道基础题. 3.答案:D解析:解:已知tanα=−12,∴cos 2α=11+tan 2α=45,∴sin 2α=15.又π2<α<π,∴sinα=√55,故选:D .利用同角三角函数的基本关系,求出cos 2α 和sin 2α的值,再由π2<α<π,求出sinα的值. 本题考查同角三角函数的基本关系的应用,是一道基础题. 4.答案:A解析:解:如图,已知AC +AB =10(尺),BC =3(尺),AB 2−AC 2=BC 2=9,所以(AB +AC)(AB −AC)=9,解得AB −AC =0.9, 因此{AB +AC =10AB −AC =0.9,解得{AB =5.45AC =4.55,故折断后的竹干高为4.55尺, 故选:A .由题意可得AC +AB =10(尺),BC =3(尺),运用勾股定理和解方程可得AB ,AC ,即可得到所求值.本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题. 5.答案:D解析:解:由(1−x+x2)3⋅(1−2x2)4=a0+a1x+a2x2+⋯+a14x14成立,令x=1,代入得1=a0+a1+a2+⋯+a14,令x=−1,代入得27=a0−a1+a2−⋯+a14,相加得28=2(a2+a4+⋯+a14),则a2+a4+⋯+a14=14故选:D.先令x=1,x=−1,联立可得.本题考查二项式赋值及其系数之间的关系,属于基础题.6.答案:A解析:解:设切点是P(x1,y1)、Q(x2,y2),则以P为切点的切线方程是:x1x+y1y=4,以Q为切点的切线方程是:x2x+y2y=4,∵点M(4,−1)在两条切线上,则4x1−y1=4,4x2−y2=4∴点P、Q的坐标满足方程:4x−y=4∴过两切点P、Q的直线方程是:4x−y−4=0.故选:A.设切点是P(x1,y1)、Q(x2,y2),则以P为切点的切线方程是:x1x+y1y=4,以Q为切点的切线方程是:x2x+y2y=4,由此能求出过两切点P、Q的直线方程.本题考查经过两个切点的直线方程的求法,是中档题,解题时要认真审题,注意圆的切线方程的性质的合理运用.7.答案:C解析:解:由图可知,当x>0时,导函数f′(x)>0,原函数单调递增∵两正数a,b满足f(2a+b)<1,∴0<2a+b<4,∴b<4−2a,由0<b<4−2a,可得0<a<2,画出可行域如图.k=b+1表示点Q(−1,−1)与点P(x,y)连线的斜率,a+1;当P点在A(2,0)时,k最小,最小值为:13当P点在B(0,4)时,k最大,最大值为:5.取值范围是C.故选C.先根据导函数的图象判断原函数的单调性,从而确定a、b的范围得到答案.本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.8.答案:B解析:解:由题意可知,三视图复原的几何体是放倒的正三棱柱,如图所示:,正三角形的边长为2,高为√3,正三棱柱的高为4,所以正三棱柱的体积为:12×2×√3×4=4√3,故选:B.通过三视图复原的几何体的特征,结合三视图的数据,求出几何体的体积即可.本题主要考查了根据三视图还原实物图,考查了几何体体积的求法,是基础题.9.答案:C解析:解:由正弦定理得:2sinAcosC−sinBcosC=sinCcosB,即2sinAcosC=sinBcosC+sinCcosB,即2sinAcosC=sin(B+C)=sinA,由于sinA≠0,故cosC=12,又0<C<π,所以C=π3.故选:C.由已知及正弦定理,三角函数恒等变换的应用可得2sinAcosC=sinA,结合sinA≠0,可求cos C,根据范围0<C<π,可求C的值.本题主要考查了正弦定理,三角函数恒等变换的应用,考查了运算求解能力和转化思想,属于基础题.10.答案:D解析:解:如图所示,过A作AE⊥平面BCD,垂足为E,则E为三角形BCD的外心,由题意可知,BE=√3,因为侧棱与底面成60°角,即∠ABE=60°,所以AE=3,Rt△OBE中,R2=3+(3−R)2,解可得R=2,则正三棱锥的外接球的体积V=4πR33=32π3.故选:D.由已知及线面角可求BE,AE,然后结合球的性质可求R,结合球体积公式可求.本题主要考查了三棱锥的外接球的体积的求解,解题的关键是球心的确定,属于中档试题.11.答案:B解析:解:a2=9,b2=16,故c=5,∴A(3,0),F(5,0),渐近线方程为y=±43x,不妨设BF的方程为y=43(x−5),代入双曲线x29−y216=1,解得:B(175,−3215).∴S△AFB=12|AF|⋅|y B|=12×2×3215=3215.故选:B.根据题意,由双曲线的方程可得a、b的值,进而可得c的值,可以确定A、F的坐标,设BF的方程为y=43(x−5),代入双曲线方程解得B的坐标,计算可得答案.本题考查双曲线方程的运用,注意关键在求出B的坐标;解此类面积的题目时,注意要使三角形的底或高与坐标轴平行或重合,以简化计算.12.答案:A解析:解:令f(x)−g(x)=x+e x−a−1n(x+2)+4e a−x,令y=x−ln(x+2),y′=1−1x+2=x+1x+2,故y=x−ln(x+2)在(−2,−1)上是减函数,(−1,+∞)上是增函数,故当x=−1时,y有最小值−1−0=−1,而e x−a+4e a−x≥4,(当且仅当e x−a=4e a−x,即x=a+ln2时,等号成立);故f(x)−g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln2=−1,即a=−1−ln2.故选:A.令f(x)−g(x)=x+e x−a−1n(x+2)+4e a−x,运用导数求出y=x−ln(x+2)的最小值;运用基本不等式可得e x−a+4e a−x≥4,从而可证明f(x)−g(x)≥3,由等号成立的条件,从而解得a.本题考查了导数的综合应用及基本不等式的应用,同时考查了方程的根与函数的零点的关系应用,属于中档题.13.答案:12解析:解:根据题意,向量a⃗,b⃗ 满足(a⃗+2b⃗ )⋅(a⃗−b⃗ )=−6,且|a⃗|=1,|b⃗ |=2,则有(a⃗+2b⃗ )⋅(a⃗−b⃗ )=a⃗2+a⃗⋅b⃗ −2b⃗ 2=−7+2cos<a⃗,b⃗ >=−6,解可得:cos<a⃗,b⃗ >=12;故答案为:12根据题意,由数量积的计算公式可得(a ⃗ +2b ⃗ )⋅(a ⃗ −b ⃗ )=a ⃗ 2+a ⃗ ⋅b ⃗ −2b ⃗ 2=−7+2cos <a ⃗ ,b ⃗>=−6,变形分析可得答案.本题考查向量数量积的计算,涉及向量夹角的计算,属于基础题. 14.答案:1解析:解:函数f(x)=cosx −√x 在[0,+∞)的零点的个数,即函数y =cosx 的图象(红线部分)和函数y =√x 的图象(蓝线部分)的交点个数, 如图所示:显然,函数y =cosx 的图象(红线部分)和函数y =√x 的图象(蓝线部分)在[0,+∞)的交点个数为1, 故答案为:1.方程转化为2个函数的图象的交点个数,数形结合可得结论.本题主要考查函数的两点个数的判断方法,体现了转化以及数形结合的数学思想,属于中档题. 15.答案:3解析:解:将x =2代入切线得f(2)=2ln2−4. 所以2ln2−4=aln2−4b①, 又f′(x)=ax −2bx , ∴f′(2)=a 2−4b =−3②,联立①②解得a =2,b =1. 所以a +b =3. 故答案为:3.将(2,f(2))代入切线求出f(2),再将切点坐标代入f(x)得方程①,再对原函数求导,进一步求出切点处导数并令其为−3,得方程②,联立①②求出a ,b 即可解决问题.本题考查了导数的几何意义,本题的关键在于利用切点满足曲线与切线方程,切点处的导数等于切线斜率列方程求解,注意计算要准确.属于基础题. 16.答案:(1,2)或(1,−2)解析:解:由抛物线的方程可得焦点F(1,0),准线方程为:x =−1设A(x 1,y 1),B(x 2,y 2),D(x 3,y 3),|AF|=x 1+1,|BF|=x 2+1,|DF|=x 3+1, 由|AF ⃗⃗⃗⃗⃗ |、|BF ⃗⃗⃗⃗⃗ |、|DF ⃗⃗⃗⃗⃗ |成等差数列可得2(x 2+1)=x 1+x 3+2,所以x 2=x 1+x 32,所以线段AD 的中点的坐标(x 1+x 32,y 1+y 32),因为线段AD 的垂直平分线与x 轴交于E(3,0), 所以线段AD 的垂直平分线的斜率为k =y 1+y 32x 1+x 22−3=y 1+y 3x 1+x 3−6,又k AD =y 3−y1x 3−x 1, 所以y 3−y 1x 3−x 1⋅y 1+y 3x 1+x 3−6=−1,即4x 3−4x 1(x3−x 1)2−6(x 3−x 1)=−1,因为x 1≠x 3,所以可得x 1+x 3=2,所以x 2=x 1+x 32=1,B 在抛物线上,代入抛物线的方程可得y 22=4×1,焦点y 2=±2,所以B 的坐标为:(1,2)或(1,−2). 故答案为:(1,−2)或(1,2).设A ,B ,D 的坐标,由|AF ⃗⃗⃗⃗⃗ |、|BF ⃗⃗⃗⃗⃗ |、|DF ⃗⃗⃗⃗⃗ |成等差数列可得三者的坐标之间的关系,进而可得线段AD 的中点坐标,由题意求出线段AD 的中垂线的斜率即AD 的斜率,由斜率之积为−1可得B 的横坐标代入抛物线的方程可得B 的纵坐标.本题考查等差数列的性质及抛物线的性质,属于中档题. 17.答案:解:(1)由题意,设等差数列{a n }的公差为d ,则 a n =1+(n −1)d , ∵a 6=2a 3,∴1+5d =2(1+2d), 解得d =1,∴a n =n ,n ∈N ∗.(2)由(1)知,b n =2n =2⋅2n−1,∴数列{b n }是以2为首项,2为公比的等比数列,∴S n =2−2n+11−2=2n+1−2,由S m =62,可得2m+1−2=62, 解得m =5.解析:本题第(1)题先设等差数列{a n }的公差为d ,然后根据等差数列的通项公式代入a 6=2a 3,可得关于公差d 的方程,解出d 的值,即可得到数列{a n }的通项公式;第(2)题先根据第(1)题的结果计算出数列{b n }的通项公式,可发现数列{b n }是以2为首项,2为公比的等比数列,根据等比数列的求和公式可得S n 的表达式,代入S m =62进行计算可得m 的值.本题主要考查等差数列和等比数列基本量的计算.考查了转化思想,方程思想,指数的运算,逻辑思维能力和数学运算能力.本题属中档题.18.答案:解:(1)m =190+1902=190;(3)由于k 2=45×(15×16−4×10)219×26×25×20=7.287>6.635,因此可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.解析:(1)根据茎叶图可求易倒伏玉米茎高的中位数; (2)根据茎叶图的数据,即可完成列联表:(3)计算K 的观测值K 2,对照题目中的表格,得出统计结论.本题主要考查了中位数的求法,考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目.19.答案:(1)证明:取BC 中点M ,连接PM ,AM , 因为四边形ABCD 为菱形且∠BAD =120°. 所以AM ⊥BC ,因为PB =PC ,所以PM ⊥BC , 又AM ∩PM =M ,所以BC ⊥平面PAM ,因为PA ⊂平面PAM , 所以PA ⊥BC .同理可证PA ⊥DC , 因为DC ∩BC =C , 所以PA ⊥平面ABCD .(2)解:由(1)得PA ⊥平面ABCD ,所以平面PAF ⊥平面ABCD ,平面PAF ∩平面ABCD =AF . 所以点B 到直线AF 的距离即为点B 到平面PAF 的距离.过B 作AF 的垂线段,在所有的垂线段中长度最大的为AB =2,此时AF 必过DC 的中点, 因为E 为PB 中点,所以此时,点E 到平面PAF 的距离最大,最大值为1.以A 为坐标原点,直线AF ,AB ,AP 分别为x ,y ,z 轴建立空间直角坐标系A −xyz . 则A(0,0,0),C(√3,1,0),E(0,1,1),B(0,2,0),所以AC ⃗⃗⃗⃗⃗ =(√3,1,0),AE ⃗⃗⃗⃗⃗ =(0,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0), 平面PAF 的一个法向量为AB ⃗⃗⃗⃗⃗ =(0,2,0),设平面AEC 的法向量为n⃗ =(x,y,z), 则{AC ⃗⃗⃗⃗⃗ ⋅n ⃗ =√3x +y =0AE ⃗⃗⃗⃗⃗ ⋅n ⃗ =y +z =0, 取y =1,则n ⃗ =(−√33,1,−1),cos <n ⃗ ,AB ⃗⃗⃗⃗⃗ >=n ⃗⃗ ⋅AB ⃗⃗⃗⃗⃗⃗ |n ⃗⃗ |⋅|AB ⃗⃗⃗⃗⃗⃗ |=√217, 所以sin <n ⃗ ,AB ⃗⃗⃗⃗⃗ >=2√77,所以面PAF 与面EAC 所成二面角的正弦值为2√77.解析:(1)先证明BC ⊥平面PAM ,可得PA ⊥BC ,同理可证PA ⊥DC ,进而可证PA ⊥平面ABCD ; (2)依题意,以A 为坐标原点,直线AF ,AB ,AP 分别为x ,y ,z 轴建立空间直角坐标系,求出两平面的法向量,利用向量公式即可得解.本题考查线面垂直的判定以及利用空间向量求解二面角的正弦值,考查推理能力及计算能力,属于中档题.20.答案:解:(1)设P(x,y),则F 1P ⃗⃗⃗⃗⃗⃗⃗ =(x +c,y),F 2P⃗⃗⃗⃗⃗⃗⃗ =(x −c,y),∴PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =x 2+y 2−c 2=a 2−1a 2x 2+1−c 2,x ∈[−a,a],由题意得,1−c 2=0⇒c =1⇒a 2=2, ∴椭圆C 的方程为x 22+y 2=1;(2)将直线l 的方程y =kx +m 代入椭圆C 的方程x 2+2y 2=2中,得(2k 2+1)x 2+4kmx +2m 2−2=0. 由直线l 与椭圆C 仅有一个公共点知,△=16k 2m 2−4(2k 2+1)(2m 2−2)=0,化简得:m 2=2k 2+1. 设d 1=|F 1M|=√k 2+1,d 2=|F 2N|=√k 2+1, 当k ≠0时,设直线l 的倾斜角为θ,则|d 1−d 2|=|MN|×|tanθ|, ∴|MN|=1|k|⋅|d 1−d 2|, ∴S =12⋅1|k|⋅d 1−d 2|⋅(d 1+d 2)=2|m|k 2+1=4|m|m 2+1=4|m|+1|m|,∵m 2=2k 2+1,∴当k ≠0时,|m|>1,|m|+1|m|>2, ∴S <2.当k =0时,四边形F 1MNF 2是矩形,S =2. 所以四边形F 1MNF 2面积S 的最大值为2.解析:(1)利用PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ 的最小值为0,可得PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =x 2+y 2−c 2=a 2−1a 2x 2+1−c 2,x ∈[−a,a],即可求椭圆C 的方程;(2)将直线l 的方程y =kx +m 代入椭圆C 的方程中,得到关于x 的一元二次方程,由直线l 与椭圆C仅有一个公共点知,△=0,即可得到m ,k 的关系式,利用点到直线的距离公式即可得到d 1=|F 1M|,d 2=|F 2N|.当k ≠0时,设直线l 的倾斜角为θ,则|d 1−d 2|=|MN|×|tanθ|,即可得到四边形F 1MNF 2面积S 的表达式,利用基本不等式的性质,结合当k =0时,四边形F 1MNF 2是矩形,即可得出S 的最大值.本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、向量知识、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.21.答案:解:(1)依题意,x >0,且f′(x)=x +m +1x =x 2+mx+1x,记g(x)=x 2+mx +1,①若△=m 2−4≤0,即−2≤m ≤2,则g(x)≥0恒成立,f′(x)≥0恒成立,符合题意; ②若△=m 2−4>0,即m >2或m <−2,当m >2时,x 2+mx +1=0有两个不等的负根,符合题意, 当m <−2时,x 2+mx +1=0有两个不等的正根, 则在两根之间函数f(x)单调递减,不符合题意. 综上可得m ≥−2.(2)由题意得x 1,x 2为g(x)=x 2+mx +1的两个零点,由(1)得x 1+x 2=−m ,x 1x 2=1,则f(x 1)−f(x 2)=12x 12+mx 1+ln x 1−(12x 22+mx 2+ln x 2) =12(x 12−x 22)+m(x 1−x 2)+ln x 1−ln x 2 =12(x 12−x 22)−(x 1+x 2)(x 1−x 2)+ln x 1−ln x 2 =lnx 1x 2−12(x 12−x 22) =ln x 1x 2−12⋅x 12⋅x 22x 1x 2 =ln x 1x 2−12(x 1x 2−x 2x 1).记x 1x 2=t ,由x 1<x 2且m ≤−3√22,知0<t <1,且f(x 1)−f(x 2)=ln t −12(t −1t ), 记φ(t)=ln t −12(t −1t ), 则φ′(t)=2t−t 2−12t 2=−(t−1)22t 2<0,故φ(t)在(0,1)上单调递减. 由m ≤−3√22,知(x 1+x 2)2≥92,从而x 12+x 22≥52,即x 12+x 22x1x 2≥52,故t +1t ≥52,结合0<t <1,解得0<t ≤12,从而φ(t)的最小值为φ(12)=34−ln2,即f(x 1)−f(x 2)的最小值为34−ln 2.解析:(1)先求出导数,再利用导数性质对m 分情况讨论来求解;(2)可先对f(x 1)−f(x 2)进行变形,再将问题转化为单变量函数问题来解决.本题考查导数知识的运用,考查函数的单调性、极值,导数在研究函数性质中的应用,正确求导,确定函数的最值是关键,考查运算求解能力,考查函数与方程思想,是中档题. 22.答案:解:(Ⅰ)由{x =3−√22ty =√5+√22t 得直线l 的普通方程为x +y −3−√5=0--------2分 又由ρ=2√5sinθ得ρ2=2√5ρsinθ,化为直角坐标方程为x 2+(y −√5)2=5;---------5分 (Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,得(3−√22t)2+(√22t)2=5,即t 2−3√2t +4=0设t 1,t 2是上述方程的两实数根,所以t 1+t 2=3√2又直线l 过点P(3,√5),A 、B 两点对应的参数分别为t 1,t 2,所以|PA|+|PB|=|t 1|+|t 2|=t 1+t 2=3√2.------------------10分.解析:(Ⅰ)先利用两方程相加,消去参数t 即可得到l 的普通方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x ,ρsinθ=y ,ρ2=x 2+y 2,进行代换即得圆C 的直角坐标方程.(Ⅱ)把直线l 的参数方程代入圆C 的直角坐标方程,利用参数的几何意义,求|PA|+|PB|的值. 本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化. 23.答案:解:(1)当a =4时,不等式f(x)≥5,即|x −1|+|x −4|≥5, 等价于{x <1−2x +5≥5,或{1≤x ≤43≥5,或 {x >42x −5≥5,解得:x ≤0或x ≥5.故不等式f(x)≥5的解集为{x|x ≤0,或x ≥5 }. …(5分)(2)因为f(x)=|x −1|+|x −a|≥|(x −1)−(x −a)|=|a −1|.(当x =1时等号成立) 所以:f(x)min =|a −1|.…(8分) 由题意得:|a −1|≥4,解得 a ≤−3,或a ≥5. …(10分)解析:(1)不等式即|x −1|+|x −4|≥5,等价于{x <1−2x +5≥5,或{1≤x ≤43≥5,或 {x >42x −5≥5,分别求出每个不等式组的解集,再取并集即得所求.(2)因为f(x)=|x −1|+|x −a|≥|a −1|,由题意可得|a −1|≥4,与偶此解得 a 的值. 本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题。

相关文档
最新文档