算法设计与分析---动态规划实验
算法设计与分析中的动态规划问题研究

算法设计与分析中的动态规划问题研究动态规划是一种常用的算法设计与分析方法,它在解决许多问题时具有较高的效率和准确度。
本文将结合实例,深入研究动态规划在算法设计与分析中的应用。
动态规划是一种通过分解问题,将大问题转换为小问题并求解小问题的方法。
它与分治法类似,但动态规划所分解的小问题可能重叠,因此可以将解决过的小问题保存起来,避免重复计算,提高效率。
动态规划常用于求解最优化问题,如寻找最大值或最小值。
一个经典的动态规划问题是背包问题。
背包问题是指给定一个背包以及一系列物品,每个物品都有自己的价值和重量。
背包的容量是有限的,我们的目标是在保持背包总重量不超过容量的情况下,选择一些物品放入背包,使得背包中物品的总价值最大。
假设我们有n个物品,背包的容量为W,我们可以使用一个二维数组dp[i][j]来表示前i个物品恰好放入容量为j的背包的最大价值。
dp[i][j]的值可以通过以下的状态转移方程得到:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
根据状态转移方程,我们可以通过填表的方式,自底向上地计算dp[n][W],即前n个物品放入容量为W的背包的最大价值。
除了背包问题,动态规划还可以用于求解其他类型的优化问题。
比如,在图论中,最短路径和最小生成树问题也可以使用动态规划来求解。
例如,最短路径问题可以通过定义一个二维数组dp[i][j]来表示从顶点i到顶点j的最短路径的长度。
通过状态转移方程dp[i][j] =min(dp[i][j], dp[i][k] + dp[k][j]),我们可以逐步更新dp数组,最终得到从起点到终点的最短路径长度。
对于最小生成树问题,可以先计算任意两个顶点之间的最短路径,然后通过Prim算法或Kruskal算法来生成最小生成树。
除了上述问题,动态规划还可以用于解决其他一些经典问题,如编辑距离、最长公共子序列等。
实验6 动态规划

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.1.3实验结论
要有截图,验证最后结果(图片分布要合理)。
输入/输出应与TEST文件夹测试用例一致。
3.1.4心得体会
xxxxxxxxxxxxxxxxxxxxxxxx
输入/输出应与TEST文件夹测试用例一致。
3.2.4心得体会
xxxxxxxxxxxxxxxx
4.教师批改意见
签字:
日期:
成绩
3.2最少硬币问题
3.2.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明
3.2.2程序源码
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
3.2.3实验结论
要有截图,验证最后结果(图片分布要合理)。
算法设计与分析实验报告
学号
姓名
班级
上课地点
教师
庄蔚蔚
上课时间
实验6动态规划
1.实验目的
1.1.理解动态规划算法的主要设计思想;
1.2.掌握用动态VC6.0
2.2 Window XP
3.实验内容
3.1石子合并问题
3.1.1算法设计思想
可文字描述,适当添加一些伪代码,或者流程图来进行补充说明
动态规划实验报告

动态规划实验报告动态规划实验报告一、引言动态规划是一种常用的算法设计方法,广泛应用于计算机科学和运筹学等领域。
本实验旨在通过实际案例,探究动态规划算法的原理和应用。
二、实验背景动态规划算法是一种通过将问题分解为子问题,并存储子问题的解来解决复杂问题的方法。
它通常适用于具有重叠子问题和最优子结构性质的问题。
三、实验目的1. 理解动态规划算法的基本原理;2. 掌握动态规划算法的实现方法;3. 分析动态规划算法在实际问题中的应用。
四、实验过程本实验选择了经典的背包问题作为案例进行分析。
背包问题是一个组合优化问题,给定一个背包的容量和一系列物品的重量和价值,如何选择物品放入背包,使得背包中物品的总价值最大化。
1. 确定状态在动态规划算法中,状态是问题的关键。
对于背包问题,我们可以将状态定义为背包的容量和可选择的物品。
2. 确定状态转移方程状态转移方程是动态规划算法的核心。
对于背包问题,我们可以定义一个二维数组dp[i][j],表示在背包容量为j的情况下,前i个物品的最大总价值。
则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
3. 初始化边界条件在动态规划算法中,边界条件是必不可少的。
对于背包问题,边界条件可以定义为当背包容量为0时,无论物品如何选择,总价值都为0。
4. 递推求解根据状态转移方程和边界条件,我们可以通过递推的方式求解问题。
具体步骤如下:- 初始化dp数组;- 逐行逐列计算dp数组的值,直到得到最终结果。
五、实验结果与分析通过实验,我们得到了背包问题的最优解。
同时,我们还可以通过分析dp数组的取值,了解到每个状态下的最优选择。
这为我们提供了在实际问题中应用动态规划算法的思路。
六、实验总结本实验通过对动态规划算法的实际案例进行分析,深入理解了动态规划算法的原理和应用。
实验报告:动态规划01背包问题)范文(最终五篇)

实验报告:动态规划01背包问题)范文(最终五篇)第一篇:实验报告:动态规划01背包问题)范文XXXX大学计算机学院实验报告计算机学院2017级软件工程专业班指导教师学号姓名2019年 10月 21日成绩课程名称算法分析与设计实验名称动态规划---0-1 背包问题①理解递归算法的概念实验目的②通过模仿0-1 背包问题,了解算法的思想③练习0-1 背包问题算法实验仪器电脑、jdk、eclipse 和器材实验:0-1 背包算法:给定N 种物品,每种物品都有对应的重量weight 和价值 value,一个容量为maxWeight 的背包,问:应该如何选择装入背包的物品,使得装入背包的物品的总价值最大。
(面对每个物品,我们只有拿或者不拿两种选择,不能选择装入物品的某一部分,也实验不能把同一个物品装入多次)代码如下所示:内 public classKnapsackProblem {容 /**、上 * @paramweight 物品重量机 * @paramvalue 物品价值调 * @parammaxweight背包最大重量试程 *@return maxvalue[i][j] 中,i 表示的是前 i 个物品数量,j 表示的是重量序 */、publicstaticint knapsack(int[]weight , int[]value , intmaxweight){程序运行结果实验内 intn =;包问题的算法思想:将前 i 个物品放入容量容为 w 的背包中的最大价值。
有如下两种情况:、①若当前物品的重量小于当前可放入的重量,便可考虑是上否要将本件物品放入背包中或者将背包中的某些物品拿出机来再将当前物品放进去;放进去前需要比较(不放这个物调品的价值)和(这个物品的价值放进去加上当前能放的总试重量减去当前物品重量时取i-1 个物品是的对应重量时候程的最高价值),如果超过之前的价值,可以直接放进去,反序之不放。
算法分析与设计实验报告--动态规划

算法分析与设计实验报告--动态规划《算法分析与设计》实验报告完成⽇期:20011.11.241、实验⽬的(1)掌握动态规划⽅法贪⼼算法思想(2)掌握最优⼦结构原理(3)了解动态规划⼀般问题2、实验内容(1)编写⼀个简单的程序,解决0-1背包问题。
设N=5,C=10,w={2,2,6,5,4},v={6,3,5,4,6}(2)合唱队形安排。
【问题描述】N位同学站成⼀排,⾳乐⽼师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。
合唱队形是指这样的⼀种队形:设K 位同学从左到右依次编号为1,2…,K,他们的⾝⾼分别为T1,T2,…,TK,则他们的⾝⾼满⾜T1<...Ti+1>…>TK(1<=i<=K)。
已知所有N位同学的⾝⾼,计算最少需要⼏位同学出列,可以使得剩下的同学排成合唱队形。
3、实验要求(1)写出源程序,并编译运⾏(2)详细记录程序调试及运⾏结果4、算法思想:利⽤动态规划的思想,解决诸如0—1背包问题,最⼤合唱队形问题等问题的最优解,能在最短的时间内,找到最好的解决⽅案的⼀种算法。
5、实验过程:1、0—1背包问题:源代码如下:#include#includeusing namespace std;#define N 5#define c 10int w[N+1]={0,2,2,6,5,4},v[N+1]={0,6,3,5,4,6};int m[N+1][c+1];int min(int x,int y){if(x<=y)return x;else return y;}int max(int x,int y){if(x>=y) return x;else return y;}void KnapSack(int v[],int w[]){int jMax=min(w[1],c);for (int j=1;j<=jMax;j++) //当0=m[1][j]=0;for (j=w[1];j<=c;j++) // 当j>=w[n]时, m(n,j)=v[n]m[1][j]=v[1];for (int i=2;i<=N;i++) //DP{ int jMax=min(w[i],c);for (j=1;jfor (j=jMax;j<=c;j++) //m(n,j)=v[n] 当j>=w[n] m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]); }}void main(){KnapSack(v,w);for(int i=1;i<=N;i++){for(int j=0;j<=c;j++)cout<cout<}}运⾏截图如下:合唱队形问题:代码如下:#include#includeusing namespace std;#define MAXN 200void main(){int n, a[MAXN], b[MAXN], c[MAXN], i, j, max,lab,pre[MAXN]; cout<<"输⼊数据个数:"; cin>>n;cout<<"\n输⼊"<for (i = 1; i <= n; i++) //O(n)cin>> a[i];memset(b, 0, sizeof(a));memset(c, 0, sizeof(c));b[1] = 1;pre[i]=0; //i=1->nfor (i = 2; i <= n; i++){max = 0;for (j = i - 1; j >= 1; j--) {if (a[j]max) {max = b[j];pre[i]=j;}}b[i] = max + 1;}//lab:max所对应a数组元素下标O(n)max = b[1];for (i = 2; i <= n; i++){ if (b[i] > max){max = b[i];lab=i;}}cout<<"Longest Increasing Subsequence is:"<i = lab;int num=max;j=max;while( num>0 ){c[j--]=a[i];i=pre[i];num--;}//输出数列O(n)for(i=1;i<=max;i++)cout<cout<}截图如下:6.实验过程分析本次实验做的是01背包和合唱队形,之前01背包也⽤贪⼼算法讨论过,但得不到最优解,这次实验⽤动态规划实现的,涉及到剪枝函数部分要考虑清楚,实验过程中通过画图,对理解有很⼤帮助;第⼆个实验其实是利⽤了两次LIS问题,再综合⼀下,总的来说,本次实验还是⽐较成功,对动态规划算法的思想理解得挺透彻的。
算法设计与分析实验2

算法设计与分析实验21. 实验背景算法设计与分析是计算机科学中重要的研究方向,涉及到算法的设计、分析和实现。
本次实验旨在帮助学生进一步理解和掌握常见的算法设计与分析方法,通过实践操作加深对算法原理的理解。
2. 实验目的本次实验的主要目的如下:- 理解动态规划算法设计思想;- 学习并掌握动态规划算法的实现方法; - 熟悉动态规划算法的时间复杂度分析方法。
3. 实验内容本次实验的主要内容是实现一个动态规划算法,并分析它的时间复杂度。
3.1 动态规划算法介绍动态规划算法是一种将问题分解成子问题并逐个求解的方法。
它通过存储子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法通常采用自底向上的方式来求解问题,即先求解小规模的子问题,再逐步扩大规模,直到解决原始问题。
3.2 实现一个动态规划算法在本次实验中,我们将实现一个动态规划算法来解决一个具体的问题。
具体步骤如下: 1. 确定子问题:将原问题分解为子问题; 2. 确定状态转移方程:定义一个状态转移方程,用于表示子问题与原问题之间的关系; 3. 确定边界条件:确定子问题的边界条件,即最简单的情况下的解; 4. 自底向上求解:根据状态转移方程和边界条件,逐步求解子问题,最终得到原问题的解。
3.3 时间复杂度分析完成动态规划算法的实现后,我们需要对算法的时间复杂度进行分析。
时间复杂度是衡量算法性能的重要指标,它反映了算法在处理输入规模增大时所需的时间。
在分析时间复杂度时,我们需要考虑算法的基本操作次数,并且基于不同输入规模的情况,推导出算法的大O表示法。
4. 实验结果完成实验后,我们得到了动态规划算法的实现代码,并对其进行了时间复杂度分析。
下面是实验结果的总结: - 实现了动态规划算法,并成功解决了一个具体的问题; - 分析了实现代码的时间复杂度,并得出了算法的大O表示法。
5. 总结与展望本次实验通过实现动态规划算法,深入了解了动态规划的设计与分析方法。
算法分析与设计课程设计动态规划

算法分析与设计课程设计动态规划一、课程目标知识目标:1. 理解动态规划的基本概念、原理和应用场景;2. 学会运用动态规划方法解决实际问题,如背包问题、最长公共子序列等;3. 掌握动态规划与其他算法(如贪心、分治等)的区别和联系;4. 了解动态规划在实际应用中的优化方法及策略。
技能目标:1. 能够运用动态规划思想分析和解决具体问题,提高编程实现能力;2. 培养逻辑思维能力和问题解决能力,通过案例分析和实践,掌握动态规划的核心技巧;3. 学会运用数学知识对动态规划问题进行建模和求解。
情感态度价值观目标:1. 培养学生对算法分析与设计的学习兴趣,激发学习动力;2. 培养学生的团队合作精神,学会与他人共同解决问题;3. 增强学生对我国在计算机科学领域取得成就的自豪感,培养创新意识和爱国情怀。
课程性质:本课程属于算法分析与设计领域,旨在帮助学生掌握动态规划的基本原理和方法,提高解决实际问题的能力。
学生特点:学生已具备一定的编程基础和算法知识,具有一定的逻辑思维能力和数学基础。
教学要求:注重理论与实践相结合,通过案例分析、实践操作和课后练习,使学生能够熟练掌握动态规划方法,并应用于实际问题解决。
同时,关注学生个体差异,因材施教,提高教学质量。
二、教学内容1. 动态规划基本概念:包括动态规划的定义、特点和应用场景,以及与分治、贪心算法的对比分析。
教材章节:第3章 动态规划基础2. 动态规划核心要素:状态、状态转移方程、边界条件和最优子结构。
教材章节:第3章 动态规划基础3. 典型动态规划问题:a. 背包问题:0-1背包、完全背包、多重背包等;b. 最长公共子序列、最长公共子串;c. 最短路径问题:Dijkstra算法、Floyd算法。
教材章节:第4章 动态规划典型问题4. 动态规划优化方法:记忆化搜索、自底向上与自顶向下、状态压缩等。
教材章节:第5章 动态规划优化方法5. 实际应用案例分析:介绍动态规划在计算机科学、运筹学等领域的应用案例,提高学生实际应用能力。
算法设计与分析实验报告——基于动态规划方法的0-1背包等问题

实验报告. 基于动态规划方法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),在针对0-1背包问题求解的实践中理解动态规划(Dynamic Programming, DP) 方法的思想、求解策略及步骤。
作为挑战:可以完成基于跳跃点的改进算法,以支持连续型物品重量/背包容量且提高算法的效率。
实验目的◆理解动态规划方法的核心思想以及动态规划方法的求解过程;◆从算法分析与设计的角度,对0-1背包问题的基于DP法求解有更进一步的理解。
环境要求对于环境没有特别要求。
对于算法实现,可以自由选择C, C++, Java,甚至于其他程序设计语言如Python等。
实验步骤步骤1:理解问题,给出问题的描述。
步骤2:算法设计,包括策略与数据结构的选择步骤3:描述算法。
希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。
需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。
附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。
说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。
实验结果步骤1:理解问题,给出问题的描述。
给定 n个物品,其中第 i 个物品的体积为 v i ,价值为 w i 。
有一容积为 m 的背包,要求选择一些物品放入背包,使得物品总体积不超过m的前提下,物品的价值总和最大。
0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。
0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定n>0,m>0,v,w (v i ,w i>0,1≤i≤n),找出一个 n 元0-1向量 x=( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑w i n i=1x i 最大,并且∑v i n i=1x i ≤m ,即:max x (∑w i ni=1x i ) s.t.∑v i ni=1x i ≤m, x i ∈{0,1},1≤i ≤n步骤2:算法设计,包括策略与数据结构的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法设计与分析》实验报告实验二递归与分治策略
Module 1: 免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 59327 Accepted Submission(s): 20813
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。
说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。
馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。
但由于小径两侧都不能站人,所以他只能在小径上接。
由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。
现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。
开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。
问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。
每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。
在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。
同一秒钟在同一点上可能掉下多个馅饼。
n=0时输入结束。
Output
每一组输入数据对应一行输出。
输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6
5 1
4 1
rollcake[time][pos]++;
if(time>maxTime)maxTime=time;
}
calAns();//求解过程
printf("%d\n",ans);
}
return 0;
}
运行结果:。