二阶系统瞬态响应和稳定性

合集下载

二阶瞬态响应特性与稳定性分析

二阶瞬态响应特性与稳定性分析

二阶瞬态响应特性与稳定性分析二阶系统是指具有两个自由度的动力学系统,广泛应用于控制系统、信号处理等领域。

瞬态响应特性与稳定性分析是评估一个二阶系统性能的重要指标。

本文将从瞬态响应特性和稳定性两个方面进行分析,以深入理解二阶系统的行为。

瞬态响应特性是指系统对于输入信号的临时响应过程。

对于一个二阶系统,其瞬态响应特性主要包括过渡过程、超调和振荡频率等。

过渡过程是指系统从初始状态到最终稳态的响应过程。

具体地说,对于一个二阶系统,过渡过程的特性由系统的自然频率和阻尼比决定。

自然频率是指系统在没有任何外部干扰的情况下自由振荡的频率。

阻尼比是指系统阻尼量与临界阻尼量之比,描述了系统的阻尼程度。

超调是指系统响应过程中达到的最大偏离稳态值的幅度。

超调的大小与系统的阻尼比有关,当系统的阻尼比增大时,超调量会减小。

振荡频率是指系统在过渡过程中振荡的频率,与系统的自然频率相关。

稳定性是评估系统的动态性能和可靠性的重要指标。

一个二阶系统是稳定的,当且仅当其系统的输入信号有界时,系统的输出信号也有界。

稳定性分析可以通过系统的传递函数进行。

传递函数是系统输入转换为输出的比例关系,在频域上可以用于确定系统的稳定性。

当传递函数的所有极点都位于左半平面时,系统是稳定的。

极点是指传递函数分母方程为零的点,也可以看作传递函数的零点。

对于一个二阶系统,其稳定性主要取决于极点的位置。

当极点的实部都小于零时,系统是稳定的。

当极点的实部大于等于零时,系统是不稳定的。

稳定性分析还可以通过系统的阶跃响应特性进行。

阶跃响应是指系统对于阶跃输入信号的响应。

稳定系统的阶跃响应的幅值会在一些临界值附近趋于稳定。

当系统是不稳定的时,系统的阶跃响应会无限增大或者振荡。

综上所述,瞬态响应特性和稳定性分析是评估一个二阶系统性能的重要指标。

瞬态响应特性包括过渡过程、超调和振荡频率等,可以通过自然频率和阻尼比进行调节。

稳定性分析可以通过传递函数的极点位置和阶跃响应特性进行评估。

二阶系统的瞬态响应

二阶系统的瞬态响应

二阶系统的瞬态响应二阶系统是指系统的传递函数中包含二次方项的系统,通常是指具有惯性元件和阻尼元件的系统。

二阶系统的瞬态响应是指系统在受到输入信号时,其输出信号的变化情况,通常是指系统的过渡过程。

二阶系统的瞬态响应对于系统的性能和稳定性具有重要意义,因此需要对其进行深入的分析和研究。

二阶系统的传递函数通常可以表示为:$$G(s)=\frac{K}{(s-a)(s-b)}$$其中,$K$ 为系统的增益,$a$ 和 $b$ 为系统的极点。

极点是指系统传递函数的分母为零时的根,它们决定了系统的稳定性和响应速度。

当极点为实数时,系统具有欠阻尼(underdamped)的响应特性;当极点为共轭复数时,系统具有过阻尼(overdamped)的响应特性;当极点为重根时,系统具有临界阻尼(critical damping)的响应特性。

为了研究二阶系统的瞬态响应,通常要采用步变函数作为输入信号,即:$$u(t)=\begin{cases}0&t<0\\u_0&t\geq 0\end{cases}$$其中,$u_0$ 表示步变后的幅值大小。

步变函数是一种理想的输入信号,因为它可以使得系统的响应变化更加直观和可观察。

在进行二阶系统的瞬态响应分析时,通常需要计算系统的单位阶跃响应或者单位冲击响应。

单位阶跃响应是指在输入信号为单位阶跃函数时,系统的输出信号的变化情况;单位冲击响应是指在输入信号为单位冲击函数时,系统的输出信号的变化情况。

这两种响应函数可以通过拉普拉斯变换求得,具体形式如下:$$h_{step}(t)=\mathcal{L}^{-1}\{\frac{1}{sG(s)}\}$$其中,$h_{step}(t)$ 表示单位阶跃响应函数,$h_{impulse}(t)$ 表示单位冲击响应函数。

$$y_{step}(t)=h_{step}(t)*u(t)$$其中,$y_{step}(t)$ 表示系统的阶跃响应。

二阶系统的瞬态响应

二阶系统的瞬态响应

3.3 二阶系统的瞬态响应凡用二阶微分方程描述的系统称为二阶系统。

标准形式的二阶系统的微分方程是(3.27)或(3.28)上两式中,T称为系统的时间常数。

称为系统的阻尼系数或阻尼比,称为系统的无阻尼自然振荡频率或自然频率。

K为放大系数。

图3.9是标准二阶系统的结构图。

图3.9 二阶系统的结构图标准形式二阶系统的闭环传递函数为(3.29)二阶系统的状态空间表达式为(3.30)(3.31)在式(3.30)和式(3.31)中,设K=1,u(t)为输入函数。

二阶系统是控制系统中应用最广泛、最具代表性的系统。

同时,二阶系统的分析方法也是分析高阶系统的基础。

3.3.1 二阶系统的单位跃阶响应二阶系统的特征方程为(3.32)特征方程的二个根为(3.33)这也是二阶系统的闭环极点。

从式(3.33)可以看出,二阶系统的参数,是变化的,取值不同,特征方程的根(即闭环极点)可能是复数,也可能是实数。

系统的响应形式也因此会有较大的区别。

在单位阶跃函数输入下,二阶系统的输出为(3.34)下面分几种不同的情况来讨论二阶系统的单位阶跃响应。

1. 无阻尼状态(=0)当二阶系统的阻尼比时,我们称二阶系统处于无阻尼状态或无阻尼情况。

时,二阶系统特征方程的根是共轭纯虚数根闭环极点在s平面上的分布如图3.10所示。

随变动,闭环极点的位置沿虚轴变化。

系统的单位阶跃响应为(3.35)响应的时域表达式为(3.36)这是一个等幅的正弦振荡。

这说明在无阻尼状态下系统不可能跟踪单位阶跃输入的变化。

的变化曲线如图3.15所示。

图3.10 时特征根分布图3.11 欠阻尼状态下的闭环极点2. 欠阻尼状态()当二阶系统的阻尼系数时,我们称二阶系统的单位阶跃响应是欠阻尼情况或者说二阶系统处于欠阻尼状态。

当时,二阶系统特征方程的根是一对共轭复数根:(3.37)闭环极点在s平面上的分布如图3.11所示。

特征方程的根具有相同的实部。

特征方程的根的虚部为,我们定义(3.38)称为阻尼频率。

二阶系统瞬态响应和稳定性

二阶系统瞬态响应和稳定性

3.1.2二阶系统瞬态响应和稳定性一. 实验目的1.了解和掌握典型二阶系统模拟电路的构成方法及I 型二阶闭 环系统的传递函数标准式。

2.研究I 型二阶闭环系统的结构参数 --无阻尼振荡频率3 n 阻 尼比E 对过渡过程的影响。

3.掌握欠阻尼I 型二阶闭环系统在阶跃信号输入时的动态性能 指标Mp tp 、ts 的计算。

4.观察和分析I 型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的 瞬态响应曲线,及在阶跃信号输入时的动态性能指标 Mp tp值,并与理论计算值作比对。

二. 实验原理及说明图3-1-13是典型I 型二阶单位反馈闭环系统。

图3-1-13 典型I 型二阶单位反馈闭环系统(3-1-1 )I 型二阶系统的开环传递函数G(S)TiS US 1)I 型二阶系统的闭环传递函数标准式:(s ) 0S _____________ 2()1 G (s )S2 2 n S 2(3-1-2 )自然频率(无阻尼振荡频率):n’KT?阻尼比:石(3-1-3)有二阶闭环系统模拟电路如图3-1-14所示。

它由积分环节(A2 单元)和惯性环节(A3单元)的构成,其积分时间常数 Ti=R1*C1 = 1 秒,惯性时间常数T=R2*C2=秒。

模拟电路的各环节参数代入式(3-1-1 ),该电路的开环传递函数 为:K G (S) K 其中 K R 2100kRRG (S)TiS US 1)S(0.1S 1)数为:2nS 2 2 n S模拟电路的各环节参数代入式 (3-1-3 ),阻尼比和开环增益K 的关系式为:模拟电路的开环传递函数代入式(3-1-2 ),该电路的闭环传递函10K S 2 10S 10K(s)图3-1-14 I 型二阶闭环系统模拟电路临界阻尼响应:E =1, K二,R=40k Q欠阻尼响应:0<E <1,设R=4k Q, K=25 E =过阻尼响应:E>1,设R=70k Q, K=E =>1计算欠阻尼二阶闭环系统在阶跃信号输入时的动态指标Mp tp、ts : (K=25 二、n =)超调量:M p ©厂100% 35.1% 峰t p j 20.21值时间:调节时间:ts —0.6n三.实验内容及步骤1. I型二阶闭环系统模拟电路见图3-1-14,改变A3单元中输入电阻R来调整系统的开环增益K,从而改变系统的结构参数,观察阻尼比E对该系统的过渡过程的影响。

控制工程基础实验指导书(答案) 2讲解

控制工程基础实验指导书(答案) 2讲解

实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。

2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。

3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。

4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。

5、学会使用Matlab软件来仿真二阶系统,并观察结果。

二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。

三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。

图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。

调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。

(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。

(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。

二阶瞬态响应特性与稳定性分析

二阶瞬态响应特性与稳定性分析

广西大学实验报告纸组长: 组员:指导老师: 成绩:学院:电气工程学院 专业:自动化 班级:163实验内容:实验五 二阶瞬态响应特性与稳定性分析 2018年5月11日【实验时间】 2018年 5月 11日 【实验地点】 综合808 【实验目的】1、以实际对象为基础,了解和掌握典型二阶系统的传递函数和模拟电路图。

2、观察和分析典型二阶系统在欠阻尼、临界阻尼、过阻尼的响应曲线。

3、学会用MATLAB 分析系统稳定性。

【实验设备与软件】1、Multisim 10电路设计与仿真软件2、labACT 试验台与虚拟示波器3、MATLAB 数值分析软件【实验原理】1、被模拟对象模型描述永磁他励电枢控制式直流电机如图1(a )所示。

根据Kirchhoff 定律和机电转换原理,可得如下方程u k Ri dtdiLe =++ω (1) l t T i k b dtd J-=+ωω(2) ωθ=dtd (3) 式中,各参数如图1(a )所示:L 、R 为电机和负载折合到电机轴上的转动惯量,Tl 是折合到电机轴上的总的负载转矩,b 是电机与负载折合到电机轴上的粘性摩擦系数;kt 是转矩系数(Nm/A ),ke 是反电动势系数(Vs/rad )。

令RL /e=τ(电磁时间常数),b J /m=τ(机械时间常数),于是可由这三个方程画出如图1(b )的线性模型框图。

将Tl 看成对控制系统的扰动,仅考虑先行模型框图中()()s s UΘ→的传递函数为()()()()()sRb k k s s Rb k s U s s G t e m e t 1/11/⋅+++=Θ=ττ (4) 考虑到电枢电感L 较小,在工程应用中常忽略不计,于是上式转化为()()())1(+=Θ=s T s K s U s s G em d (5)式中,()t e t dk k Rb k K +=/为传动函数,()t e em k k Rb JR T +=/为机电时间常数。

二阶系统瞬态响应和稳定性分析

二阶系统瞬态响应和稳定性分析

2020年第10期136信息技术与信息化电子与通信技术二阶系统瞬态响应和稳定性分析李明辉* LI Ming-hui摘 要 在控制工程中,二阶系统的应用极为普遍,其重要性不言而喻。

本文利用MATLAB 软件对二阶系统三种阻尼情况下的响应及稳定性情况进行分析,并结合磁盘驱动读取系统具体分析其在实际工程中的应用,仿真结果直观明了。

关键词 磁盘驱动读取系统;二阶系统;稳定性doi:10.3969/j.issn.1672-9528.2020.10.043* 泰州学院 江苏泰州 225300[基金项目] 泰州学院2020年大学生创新训练计划项目校级项目(项目编号:2020CXXL049)0 引言在现代科学技术的众多领域中,自动控制技术展现出愈加关键的作用。

如何对控制系统进行设计分析已得到广泛关注[1-3]。

实际工程之中有许多控制系统都可以建立起高阶系统[4-6],但在某些条件下,可以忽略一些次要因素,把高阶系统视为二阶系统来研究[7]。

因此,分析和理解二阶系统特点有着重要意义。

1 原理及说明典型Ⅰ型二阶单位反馈闭环系统如图1所示。

图1 典型Ⅰ型二阶单位反馈闭环系统Ⅰ型二阶系统的开环传递函数为:(1)Ⅰ型二阶系统的闭环传递函数标准式为:(2)其中,为自然频率(无阻尼振荡频率),为阻尼比。

2 二阶系统的单位阶跃响应令(2)式的分母为零,得到二阶系统的特征方程,可以发现值的大小决定了二阶系统的特征根。

当,说明方程有两个实部大于0的特征根,系统单位阶跃响应为:式中,。

或者因为阻尼比,指数部分为正,该系统的动态过程展现为发散正弦振荡或单调发散,说明系统是不稳定的。

当,那么方程有一对纯虚根,,与s 平面上一组共轭极点照应,系统的阶跃响应为等幅振荡,该系统对应无阻尼状态。

当,那么特征方程有一对共轭复根,,与s 平面左半部分的共轭复数极点照应,其阶跃响应是一个衰减的振荡过程,该系统对应欠阻尼状态。

当,特征方程有两个相等的负实根,,与s平面负实轴上的两个相等的实极点照应,其阶跃响应非周期地趋于稳态输出,系统处于临界阻尼状态。

二阶瞬态响应特性与稳定性分析

二阶瞬态响应特性与稳定性分析

广西大学实验报告纸组长: 组员:指导老师: 成绩:学院:电气工程学院 专业:自动化 班级:163实验内容:实验五 二阶瞬态响应特性与稳定性分析 2018年5月11日【实验时间】 2018年 5月 11日 【实验地点】 综合808【实验目的】1、以实际对象为基础,了解和掌握典型二阶系统的传递函数和模拟电路图。

2、观察和分析典型二阶系统在欠阻尼、临界阻尼、过阻尼的响应曲线。

3、学会用MATLAB 分析系统稳定性。

【实验设备与软件】1、Multisim 10电路设计与仿真软件2、labACT 试验台与虚拟示波器3、MATLAB 数值分析软件【实验原理】1、被模拟对象模型描述永磁他励电枢控制式直流电机如图1(a )所示。

根据Kirchhoff 定律和机电转换原理,可得如下方程u k Ri dtdiLe =++ω (1) l t T i k b dtd J-=+ωω(2) ωθ=dtd (3) 式中,各参数如图1(a )所示:L 、R 为电机和负载折合到电机轴上的转动惯量,Tl 是折合到电机轴上的总的负载转矩,b 是电机与负载折合到电机轴上的粘性摩擦系数;kt 是转矩系数(Nm/A ),ke 是反电动势系数(Vs/rad )。

令RL /e=τ(电磁时间常数),b J /m=τ(机械时间常数),于是可由这三个方程画出如图1(b )的线性模型框图。

将Tl 看成对控制系统的扰动,仅考虑先行模型框图中()()s s UΘ→的传递函数为()()()()()sRb k k s s Rb k s U s s G t e m e t 1/11/⋅+++=Θ=ττ (4) 考虑到电枢电感L 较小,在工程应用中常忽略不计,于是上式转化为()()())1(+=Θ=s T s K s U s s G em d (5)式中,()t e t dk k Rb k K +=/为传动函数,()t e em k k Rb JR T +=/为机电时间常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.实验目的
1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标
准式。

2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的
影响。

3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、t p 、t s 的计
算。

4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在
阶跃信号输入时的动态性能指标Mp 、t p 值,并与理论计算值作比对。

二.实验原理及说明
图3-1-13是典型Ⅰ型二阶单位反馈闭环系统。

图3-1-13 典型Ⅰ型二阶单位反馈闭环系统
Ⅰ型二阶系统的开环传递函数:)
1()(+=
TS TiS K S G (3-1-1) Ⅰ型二阶系统的闭环传递函数标准式:2222)
(1)()(n
n n S S S G S G s ωξωωφ++=
+= (3-1-2) 自然频率(无阻尼振荡频率):TiT K =n ω 阻尼比:KT Ti 2
1=ξ (3-1-3)
有二阶闭环系统模拟电路如图3-1-14所示。

它由积分环节(A2单元)和惯性环节(A3
单元)的构成,其积分时间常数Ti=R 1*C 1=1秒,惯性时间常数 T=R 2*C 2=秒。

图3-1-14 Ⅰ型二阶闭环系统模拟电路
模拟电路的各环节参数代入式(3-1-1),该电路的开环传递函数为:
R
k R R K S S K
TS TiS K S G 100)
11.0()1()(2==
+=
+=
其中 模拟电路的开环传递函数代入式(3-1-2),该电路的闭环传递函数为:
K S S K S S s n n n 1010102)(2
222++=++=ωξωωφ 模拟电路的各环节参数代入式(3-1-3),阻尼比和开环增益K 的关系式为:
临界阻尼响应:ξ=1,K=,R=40k Ω
欠阻尼响应:0<ξ<1 ,设R=4k Ω, K=25 ξ= 过阻尼响应:ξ>1,设R=70k Ω,K=ξ=>1
计算欠阻尼二阶闭环系统在阶跃信号输入时的动态指标Mp 、t p 、t s :(K=25、ξ=、n
ω=)
超调量 :%1.35%100M e
2
1P =⨯=
--
ξξπ 峰值时间: 调节时间 :
6.03==
n
s t ξω
三.实验内容及步骤
1.Ⅰ型二阶闭环系统模拟电路见图3-1-14,改变A3单元中输入电阻R 来调整系统的
开环增益K ,从而改变系统的结构参数,观察阻尼比ξ对该系统的过渡过程的影响。

2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K ,填入实验报告。

3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp ,峰值时间tp ,填入实验报告,並画出阶跃响应曲线。

实验步骤: 注:‘S ST’用“短路套”短接!
(1) 将函数发生器(B5)单元的矩形波输出作为系统输入R 。

(连续的正输出宽度足够大
的阶跃信号) ① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。

② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度≥3秒(D1单元左显示)。

③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 3V (D1单元右显示)。

(2)构造模拟电路:按图3-1-14安置短路套及测孔联线,表如下。

(b )测孔联线
(3)运行、观察、记录: ① 运行LABACT 程序,选择自动控制菜
单下的线性系统的时域分析下的二阶典型
系统瞬态响应和稳定性实验项目,就会弹出
虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

也可选用普通示波器观测实验结果。

② 分别将(A11)中的直读式可变电阻调整到4K 、40K 、70K ,等待完整波形出来后,点击停止,用示波器观察在三种增益K 下,A6输出端C(t)的系统阶跃响应,其实际响应曲线见图3-1-15.。

21
.012
=-=
ξ
ωπn p
t

a)0<ξ<1 欠阻尼阶跃响应曲线
(b)ξ=1临界阻尼阶跃响应曲线(c)ξ>1过阻尼阶跃响应曲线
图3-1-15 Ⅰ型二阶系统在三种情况下的阶跃响应曲线
示波器的截图详见虚拟示波器的使用。

四.实验报告要求:
按下表改变图3-1-13所示的实验被测系统,画出系统模拟电路图。

调整输入矩形波宽度≥3秒,电压幅度 = 3V。

⑴计算和观察被测对象的临界阻尼的增益K,填入实验报告。

积分常数Ti惯性常数T增益K计算值
1
10
5
5
2
⑵画出阶跃响应曲线,测量超调量Mp,峰值时间tp填入实验报告。

(计算值实验前必须计算出)
增益
K
(A3)
惯性常数
T
(A3)
积分常数
Ti
(A2)
自然频率
ωn
计算值
阻尼比
ξ
计算值
超调量Mp(%)峰值时间t P
计算值
测量值
计算值
测量值25(R=4)1
(R=40)
0 0
(R=70)0 0
注:在另行构建实验被测系统时,要仔细观察实验被测系统中各环节的输出,不能有限幅现象(-10V≤输出幅度≤+10V),防止产生非线性失真,影响实验效果。

例如:在图3-1-14的Ⅰ型二阶闭环系统模拟电路中,把惯性环节和积分环节的位置互换(跨接元件4K),从理论上说,对系统输出应没有影响。

实际上不然,这是由于在该被测系统的惯性环节的输出>10V,而本实验箱的被测系统电源电压为±12V,产生了限幅现象,影响了实验效果。

R=4K ,T=, Ti=1
R=4K ,T=, Ti=1
R=4K ,T=, Ti=1
R=40K ,T=, Ti=
R=40K ,T=, Ti=
R=70K ,T=, Ti=。

相关文档
最新文档