电力系统振荡的结果及处理方式

合集下载

【精选】电力系统低频振荡分析与抑制

【精选】电力系统低频振荡分析与抑制

电力系统低频振荡分析与抑制文献综述一.引言“西电东送、南北互供、全国联网、厂网分开”己成为21世纪前半叶我国电力工业发展的方向。

大型电力系统互联能够提高发电和输电的经济可靠性,但是多个地区之间的多重互联又引发了许多新的动态问题,使系统失去稳定性的可能性增大。

随着快速励磁系统的引入和电网规模的不断扩大,在提高系统静态稳定性和电压质量的同时,电力系统振荡失稳问题也变得越来越突出。

电力系统稳定可分为三类,即静态稳定、暂态稳定、动态稳定。

电力系统发展初期,静态稳定问题多表现为发电机与系统间的非周期失步.电力系统受到扰动时,会发生发电机转子间的相对摇摆,表现在输电线路上就会出现功率波动。

如果扰动是暂时性的,在扰动消失后,可能出现两种情况,一种情况是发电机转子间的摇摆很快平息,另一种情况是发电机转子间的摇摆平息得很慢甚至持续增大,若振荡幅值持续增长,以致破坏了互联系统之间的静态稳定,最终将使互联系统解列。

产生第二种情况的原因一般被认为是系统缺乏阻尼或者系统阻尼为负。

由系统缺乏阻尼或者系统阻尼为负引起的功率波动的振荡频率的范围一般为0。

2~2。

5Hz,故称为低频振荡。

随着电网的不断扩大,静态稳定问题越来越表现为发电机或发电机群之间的等幅或增幅性振荡,在互联系统的弱联络线上表现的尤为突出.由于主要涉及转子轴系的摆动和电气功率的波动,因此也称为机电振荡。

低频振荡严重影响了电力系统的稳定性和机组的运行安全。

如果系统稳定遭到破坏,就可能造成一个或几个区域停电,对人民的生活和国民经济造成严重的损失。

最早报道的互联电力系统低频振荡是20世纪60年代在北美WSCC成立前的西北联合系统和西南联合系统试行互联时观察到的,由于低频振荡,造成联络线过流跳闸,形成了西北联合系统0。

05Hz左右、西南联合系统0。

18Hz的振荡。

随着电网的日益扩大,大容量机组在网中的不断投运,快速、高放大倍数励磁系统的普遍使用,低频振荡现象在大型互联电网中时有发生,普遍出现在各国电力系统中,已经成为威胁电网安全的重要问题。

电力电子化电力系统的振荡问题及其抑制措施

电力电子化电力系统的振荡问题及其抑制措施

电力电子化电力系统的振荡问题及其抑制措施摘要:伴随着我国电力事业的不断发展以及相关技术的进步,电力电子化电力系统的发展中,所遇到的振荡问题也寻求到了有效的抑制措施。

基于此,本文针对电力电子装置引起振荡的原因分析进行分析,并且利用增加虚拟阻尼、改进控制目标、减小测量环节延时以及增加抑制振荡的电力电子装置关键词:电力电子化;电力系统;振荡问题引言:伴随着电力电子装置的应用,我国电力系统的整体质量不断提升,并且电力系统的电力电子化趋势越来越明显。

在电力电子设备应用时,会对整体的电力系统造成一定的振荡,这一现象产生已经有了较长的历史,并且直接影响到了电力系统的整体稳定。

为了保证电力电子装置以及电力系统的整体稳定,必须要能够针对电力电子装置引起振荡的原因进行分析,并保证寻求正确的抑制方法。

1.电力电子装置引起振荡的原因分析电力电子装置对于电力系统的建设以及使用具有十分重要的意义,在当前的电力半导体技术发展过程中,已经能够从单个电子开关发展到多个串并联的应用,适合在高压大电流的环境下进行应用。

电力电子装置连入到了电力系统之中以后,如果不能够安稳运行,就会产生电流的不稳定现象,电力电子装置实际应用时,由于以下的原因产生振荡,降低了整体的电力系统使用质量。

1.1振荡产生的数学机理当前较为常见的电力电子装置引发的振荡,其可以有效利用数学机理开展分析。

结合非线性动力学的理论针对电力电子装置进行分析,一般情况下非线性的系统振荡可以分为四个主要类型,分别为系统周期性振荡、准周期振荡、系统混沌解对应的非周期振荡以及平衡点附近运动轨迹对应的负/弱阻尼振荡。

在实践当中,周期性振荡的发生过程电流电压变化如图1所示。

图 1 振荡发生时母线、电压、系统电流变化示意图混沌引起的非周期性震荡则是体现在了经典的两机系统当中,其中两台发电机的电动势幅值以及相位都会出现直轴暂态电抗。

现阶段的电力振荡分析都需要能够立足于平衡点的线性化理论,同时要能够结合低频振荡以及次同步振荡进行有效的分析,在这种前提之下,能够了解到电力系统周期当中的一些规律,从而探索电力系统振荡的机理[1]。

电力系统的低频振荡问题分析及处理措施

电力系统的低频振荡问题分析及处理措施

电力系统的低频振荡问题分析及处理措施发布时间:2022-06-01T07:50:30.742Z 来源:《新型城镇化》2022年10期作者:谢福梅[导读] 现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。

然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。

其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。

为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。

谢福梅国网四川阿坝州电力有限责任公司四川阿坝州 623200摘要:现代社会的发展决定了电力资源成为国家经济的重要命脉之一,电力系统是否能够安全稳定运行将直接关乎人民社会生活的健康与可持续发展,因此保证电网正常可靠运行具有重大意义。

然而,大规模跨区互联电网的形成必然将给电网运行方式和结构参数带来巨大变化。

其中,长距离、重负荷输电通道的出现无疑将对电力系统低频振荡问题带来严重影响,加之如今发电机更多地采用高放大倍数和快速励磁控制系统,低频振荡问题将会更加恶化以致严重威胁电网的安全稳定运行。

为此,重点研究电网大规模跨区互联阶段下出现的低频振荡现象迫切并且极具现实意义。

关键词:电力系统;低频振荡问题;处理措施目前低频振荡危害已经成为影响电力系统安全稳定运行的首要因素,对日益普遍的电力联网状况提出了更加严峻的挑战。

为了更好地推进西电东送、南北互供、全国联网的电力发展战略,强化对电力系统低频振荡的控制方法的分析,是促进国家电力事业稳定健康发展的关键途径。

1 电网振荡的分类1.1按照相关机组分类(1)地区振荡模式:地区振荡模式为少数机组之间或少数机组对整个电网之间的振荡模式。

电力系统低频振荡的原因及抑制方法分析

电力系统低频振荡的原因及抑制方法分析

电力系统低频振荡的原因及抑制方法分析电力系统低频振荡的原因及抑制方法分析随着电力系统低频振荡对系统稳定性危害的逐渐显现,对系统低频振荡的分析越来越受到关注,本文分析了系统低频振荡产生的原因,比拟了常见的抑制低频振荡的措施,比照了优缺点,对柔性交流输电系统技术在抑制低频振荡中的应用进行展望。

【关键词】低频振荡抑制措施电力系统电力系统联网开展初期,发电厂同步发电机联系较为紧密,阻尼绕组会产生足够大的阻尼,抑制振荡开展,低频振荡在那时少有产生。

随着电网规模互联的不断扩大,出现了大型电力系统之间的互联,电力系统联系因而变得越来越密切,世界许多地区电网都发现了0.2Hz至2.5Hz范围内的低频振荡,低频振荡问题逐渐受到业内关注。

电力系统低频振荡一旦发生,如果没有及时抑制,将会导致电网不稳定乃至解列,严重威胁电力系统的稳定平安运行,甚至诱发联锁事故,造成严重后果。

1 低频振荡产生的原因1.1 负阻尼导致低频振荡有文献记载了运用阻尼转矩的方法,针对单机无穷大系统分析低频振荡的原因,最主要的原因是系统中产生负阻尼因素,从而抵消系统自有的正阻尼性,导致系统的总阻尼很小甚至为负值。

如果系统阻尼很小,在受到扰动后,系统中功率振荡始终难以平息,就会造成等幅或减幅的低频振荡。

如果系统阻尼为负值,在受到扰动后,低频振荡会不断积累增加,影响系统稳定。

1.2 发电机电磁惯性导致低频振荡电力系统中励磁控制是通过调整励磁电压来改变励磁电流,从而到达调整发电机运行工况的目的。

控制励磁电流就是在调整气隙合成磁场,它使得发电机机端的电压调整为所需值,同时也调整了电磁转矩。

故改变励磁电流大小便可以调整电磁转矩和机端电压。

在励磁自动控制时,因发电机励磁绕组有电感,励磁电流比励磁电压滞后,故会产生一个滞后的控制,滞后的控制在一定因素下会引起系统低频振荡。

1.3 电力系统非线性奇异现象导致低频振荡依据小扰动分析法,系统的特征根中有一个零根或一对虚根时,系统处在稳定边界;系统的特征根都为负实部时,系统处于稳定的;系统特征根中有一对正实部的复数或一个正实数时,系统处于不稳定。

发电机振荡的原因分析及处理方法

发电机振荡的原因分析及处理方法
由发电机的功角特性 P=(EqU/ ∑ X)sinδ 式中:Eq 发电机电动势;U 为系统电压;∑ X 为发电机与系统 间的总电抗。 显然,当功角小于 90°时,机组能稳定运行,当功角大于 90°时, 机组不能稳定运行,线路所能输送的最大极限功率为 Pm=EqU/ ∑ X 根据这一特征,我们可以分析引起发电机振荡的基本原因: 1.线路输送的有功功率超过静稳定极限(Pt >Pm). 2.系统短路(U 下降使 Pm 下降) 3.励磁电流 If 过分降低,(Eq 下降使 Pm 下降) 4.非同期并列,当发电机非同期并列时,定子电流急剧上升且 摆动,母线电压大量降低,机内发出吼叫声,当冲击电流较大,发电 机母线电压降得过低,而强励回响不能自动投入时,EqU 大幅降低, 产生失步而振荡。
二发电机振荡原因分析当系统发生重大故障如系统中大容量发电机及变压器的断路器跳闸调速系统不稳定线路短路切除大量负荷发电机突然失磁和系统突然短路等使子系统并列的发电机静态稳定和动态稳定被破坏引发发电机和系统之间发生电流和功率的激烈振荡并可能会发展到使发电机和系统失去同步
水能经济发电机振荡的原源自分析及处理方法1.若系统非同期并列产生振荡,应立即将发电机与系统解列, 然后,按非同期故障的处理措施进行处理后,重新并网。
2. 发电机非同期并列产生振荡,(同步发电机在不符合准同期 并列条件就与系统并列,称为非同期并列)此时将产生很大的冲击电 流和冲击力矩,发电机非同期并列产生振荡处理措施:
(1)测定发电机定子绕组的绝缘电阻。 (2)打开发电机端盖,检查发电机端部绕组有无变形。 (3)查明非同期并列的原因,证明发电机机电部分正常,再启 起、升压、并列。 3.其他原因引起的振荡,可按下述步骤进行处理: (1)对无自动励磁调节器的应设法尽快增大发电机的励磁电流。 (2)若采取上述措施仍不能恢复同步或对于有自动励磁调节器 的机组,应减小导叶开度,降低机组出力。 (3)若采取上述措施后,若在 2min 内仍不能恢复同步时,汇 报调度同意后,方可将机组解列。解列后可重新将机组并入系统运行。 注意:对于全厂型振荡,即全厂所有发电机都产生振荡时,此时, 全厂所有发电机的振幅相同,摆动方向一致。若原因可能是线路引起 的,也可能是系统引起的,此时应立即与调度联系,并设法增加发电 机的励增电流。未经调度同意,切不可轻率地减负荷。若在 2min 内 仍不能恢复同步时,汇报调度同意后,方可将机组解列。

电力系统低频振荡

电力系统低频振荡

电力系统低频振荡
是指电力系统中出现的周期为数秒到几十秒不等的周期性波动,其频率通常在0.1到1Hz之间。

这种现象通常被认为是由于电力
系统的不稳定性造成的,严重影响了电力系统的运行和稳定性。

首先,低频振荡的出现是由于电力系统中存在着多种不稳定因素。

例如,电力系统中的发电机、输电线路、变电站等设施都可
能会因为负载变化、故障等因素而引起不稳定性,从而导致低频
振荡的出现。

此外,电力系统中的负载、非线性负荷等因素也可
能对系统的稳定性造成影响,从而使低频振荡频繁出现。

其次,低频振荡的出现会严重影响电力系统的稳定性和运行。

低频振荡得以存在,可能会引起许多问题,如对发电机的运行造
成较大的损害、使电力系统的传输和分配受到限制等。

此外,低
频振荡还可能引起系统的崩溃和停电,给用户和生产带来极大的
影响。

因此,为了解决问题,需要采取一系列措施。

首先,应该加强
对电力系统的监测和预警,及时发现问题并采取应对措施。

其次,应该加强对电力系统的调控和优化,通过优化负载分配、提高发
电机和输电线路的质量等方式来提升系统的稳定性。

此外,还应
该加强对电力系统的维护和管理,定期检查设备,及时处理故障,防止故障扩大影响。

总之,低频振荡是电力系统面临的一个重大问题,需要全面、
科学、合理地进行管理和维护。

只有这样,才能保障电力系统的
稳定运行,为社会的发展和进步做出贡献。

电力系统振荡原因、现象、处理分析

电力系统振荡原因、现象、处理分析
电气保护专业保护动作分析
分析时间
2006 年 7 月 31 日
分析地点
学习室
分析专业
电气检修队继电保护班Fra bibliotek分析种类岗位分析
参加人员
队长、专工、保护班人员
分析题目
电力系统振荡原因、现象、处理分析
分析内容 一、 提出问题:
2006 年 6 月 1 日、2006 年 6 月 25 日和 2006 年 7 月 1 日由于系统内故障而发生三次系 统振荡,我厂均有不同程度的反应,前两次我厂只有冲击现象,特别是 2006 年 7 月 1 日华 北与华中解网造成的系统振荡,我厂振荡现象明显,220KV、500KV 系统和各发电机反应 强烈,均出现振荡现象。 二、 原因分析:
7、 系统振荡时振荡解列装置动作的现象及处理: (1) 现象:“振荡解列装置 I 动作”、“振荡解列装置 II 动作”光字亮。丰万 I、 II 线跳闸,线路潮流回零,跳闸开关 5051、5053、5061、5063 红灯灭,绿 灯闪光。蒙西网与华北网解网,内 蒙西部网频率增大后又 降低,机组转速 升高。故障录波器动作,高周切机 装置动作,安全自动装 置动作。高周切 机第一轮、安全自动装置动作,#6F—B 组出口开关 5041、5042 跳闸,机 组负荷降至 10MW 左右。高周切机第二轮切#4 机组,#6、#4 机组自带厂用 电运行,锅炉投油维持基本燃烧,汽机手动维持转速在 3000rpm 附近。未 被切的机组在一次调频的作用下, 调门自动关回部分,有 功负荷不同程度 下降,可能出现多台炉同时投油助燃,炉前燃油压力降低。 (2) 处理:网控值班员将保护、高周切机、振荡解列装置动作情况、系统电压、 潮流、周波波动、摆动、系统冲击情况及一次设备检查情况汇报值长。如有 故障设备,应进行隔离,并及时汇报;网控人员应立即通知切机单元跳闸原 因,单元电气值班员通知机、炉专业人员;立即调整发电机端电压,暂时维 持厂用电自代,待令将发电机同期并网。如果汽轮机不能维持 3000rpm 运行, 厂用电不能维持自带,视高备变正常,应采用瞬停切换厂用电的方法切换。 配合机炉作好其它准备工作,待系统振荡平息后,待令将发电机并入电网; 由于蒙西网与华北网解列,我厂负责蒙西网调频任务,指令#2 机组为调频 机组,其他各机按值长令调整负荷。频率允许范围 50±0.5HZ,机组转速变 化范围 2970---3030rpm,当蒙西网与华北主网并列时,频率允许范围 50± 0.2HZ。当蒙西网与华北主网电压、频率偏差较大时,要及时汇报调度予以 调整,直到符合条件再进行同期并列。按调度令逐步进行,具备联网条件应 采用自动准同期装置进行并网。

电网低频振荡现场处置方案

电网低频振荡现场处置方案

电网低频振荡现场处置方案电网低频振荡是电力系统稳定性的一种常见故障。

其表现为电力系统中发生频率为0.1到1Hz之间的低频振荡现象,会对电力系统带来影响,进而危及电网的稳定运行。

因此,在低频振荡发生时,必须采取相应的应急处置措施,以保障电力系统的稳定运行。

故障原因与特征电网低频振荡的本质是由于系统的负荷变化引起的电力系统动态稳定性问题。

其主要原因包括负荷突变、抽水蓄能机组失效、输电线路烧毁、逆变器故障等。

一旦低频振荡发生,其特点包括波形半周期增幅较大、持续时间长、频率变化缓慢,且有可能伴随高频振荡等现象。

现场处置方案第一步:急停发电机组一旦发生低频振荡,首先要立即采取措施,急停发电机组。

经实践验证,急停发电机组能够有效减小电力系统中的不稳定因素,避免振荡现象进一步加剧。

具体操作包括:1.手动关闭发电机组断路器,保障发电机组不再向电网输入负荷;2.停止调速器控制,保障发电机组不再调节电网电压和频率;3.减缓发电机组旋转速度,将其逐渐降至静止状态。

第二步:减少负荷在急停发电机组之后,应该立即减少负荷,以减小电力系统的负荷变化,从而尽可能减少低频振荡的影响。

具体操作包括:1.手动关闭负荷断路器,依次将电网中的载荷逐个切断;2.对于无法切断负荷的情况,应该及时启动备用电源,并通过负荷转移等方式减少负荷。

第三步:加固电网硬件设施在减少负荷之后,应该加固电网硬件设施,以保障电力系统的稳定运行。

具体操作包括:1.对电力系统逐一进行巡视和检查,发现电线松动、绝缘子破损等情况应该立即修理;2.对于输电线路烧毁等情况,应该先进行临时补救措施,避免低频振荡加剧;3.加强对电力系统的监测和预警机制,及时发现低频振荡的迹象,避免事故的发生。

总结电网低频振荡是电力系统常见的稳定性故障,发生时必须采取相应的应急措施。

具体的处置方案包括:急停发电机组、减少负荷、加固电网硬件设施等措施,以保障电力系统的正常运行。

同时,我们应该加强对电力系统的预警和监测,提高电力系统的运行安全性,避免低频振荡事故的发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统振荡的结果及处理方式
2012/7/13 15:35:41
当发生短路或突然有大负荷切除或投入时,发电机与大系统之间的功角会发生变化,发电机的输出功率就会沿着发电机的功角特性曲线来回摆动,这就是电力系统的振荡。

电力系统振荡的结果有两种:一个是发电机的输出功率和负载能重新在一个点上实现平衡,经过一段时间的振荡后重新达到稳定,保持同步运行。

一个是发电机的输出功率和负载能无法再在任何一个点上实现平衡,从而导致发电机失去同步。

发电机的原动机输入力矩突然变化,如:水轮机调速器不正常动作;系
统发生突然短路;大机组或大容量线路突然变化等。

通常,短路是引起
系统振荡,破坏稳定运行的主要原因。

电力系统振荡的预防:预防是多方面的,有继电保护上的要求,如快速切断故障线路;也有运行操作上的要求,如避免使发电机的容量大于被
投入空载线路的充电功率,避免发电机带空载线路启动和以全电压向空载线路合闸;也有设计上的考虑,如避免发生发电机的次同步共振。

系统振荡有多种:异步振荡、同步振荡、低频振荡
异步振荡——其明显特征是,系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。

如发电机、变压器和联络线的电流表,功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的
电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输
送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。

引起电力系统异步振荡的主要原因:
1、输电线路输送功率超过极限值造成静态稳定破坏;
2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间
发生较大突变等造成电力系统暂态稳定破坏;
3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步;
4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏;
5、电源间非同步合闸未能拖入同步。

异步系统振荡的一般现象:
(1)发电机,变压器,线路的电压,电流及功率周期性的剧烈摆动,发
电机和变压器发出有节奏的轰鸣声。

(2)连接失去同步的发电机或系统的联络线上的电流和功率摆动得最大。

电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零一次。

(3)失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。

同步振荡——其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。

低频振荡——在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统
如果缺乏必要的阻尼就会失去动态稳定。

由于电力系统的非线性特性,动态失稳表现为发电机转子之间的持续的振荡,同时输电线路上功率也发生相应的振荡,影响了功率的正常输送。

由于这种持续振荡的频率很低,一般在0.2~2.5HZ之间,故称为低频振荡。

低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用现代、快速、高放大倍数励磁系统的条件下更容易发生。

所谓阻尼就是阻止扰动,平息振荡。

同步发电机阻尼绕组作用:发电机阻尼绕组在结构上相当于在转子励磁绕组外叠加的一个短路鼠笼绕环,其作用相当于一个随转子同步旋转的鼠笼异步电机,对发电机的动态稳定起调节作用。

发电机正常运行时由于定转子旋转磁场是同步旋转的,因此阻力绕组没有切割磁通因而没有感应电流。

当发电机出现扰动使转子转速低于定子磁场的转速时,阻尼绕组切割定子磁通产生感应电流,感应电流在阻尼绕组上产
生的力矩使转子加速,二则转差越大则此力矩越大,加速效果越强。

而负阻尼恰恰相反。

励磁装置的负阻尼,是指励磁装置对于系统功角摆动所作出的调节作用,会加大这种摆动,不利于系统的稳定。

PSS 励磁附加控制器,是一种附加反馈控制,即在励磁调节器中,除了引入发电机端电压作为主要控制信号外,再引入一个超前附加控制信号,作用于调节器,改变励磁输出,使整个励磁装置产生正阻尼转矩,从而提高系统稳定性。

电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电
线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。

一般认为,发生低频振荡的主要原因是,现代电力系统中大容量发电机的标幺值电抗增大,造成了电气距离的增大,再加之远距离重负荷输电,造成系统对于机械模式(其频率由等值发电机的机械惯性决定)的阻尼减少了;同时由于励磁系统的滞后特性,使得发电机产生一个负的阻尼转矩,导致低频振荡的发生。

采用励磁控制系统的附加控制构成的PSS 或其他方式,可以补偿负的阻尼转矩,抑制低频振荡。

电力系统稳定器(PSS)是附加于励磁调节器的控制手段。

随着自并激静止励磁系统的广泛应用,PSS附加控制更成为励磁系统不可缺少的功能之一。

好的PSS附加控制能够增加弱阻尼或负阻尼励磁系统的正阻尼,能够有效的抑制电力系统低频震荡,从而提高发电机组(线路)的最大输出(传输)能力。

电力系统振荡的预防:提高稳定水平
电力系统的振荡在小系统内是比较常见的,在大系统内发生的很少。

但它的危害也是比较可怕的,是必须要预防的!
在小系统内发生较多,主要是在小系统内有很多不很稳定的负荷,系统内的电站都比较小,在它的负荷发生较大的变化时很难使系统稳定,也很可能发生震荡。

在小系统内有时有的设备的安装不合也有可能引起系统的振荡。

如开关处安的阻容吸收器大小的不合适而引起了一次系统的小小振荡。

电力系统发生振荡的处理方式
若发生趋向稳定的振荡,即愈振荡愈小,则不需要什么操作,做好处理事故的思想准备就行.若造成失步,则要尽快创造恢复同步的条件。

1、增加发电机励磁。

对于有自动电压调节器的发电机,在1min内不得干涉自动电压调节器和强励装置的动作,对于无自动电压调节器的发电机,则要手动增加励磁。

增加励磁的作用,是为了增加定转子磁极间的拉力,以消弱转子的惯性作用,使发电机较宜在到达平衡点附近时被拉入同步。

2、若是一台发电机失步,可适当减轻其有功出力,即关小水轮机导叶,这样容易拉入同步,这好比减小转子的冲劲.若是系统的两个部分失去同步,则每个电厂要根据实际情况增加负荷或减少负荷,因为这时送端系统的频率升高,受端系统的频率降低,频率低的电厂应该增加有功出力,同时将电压提高到最大允许值,频率高的电厂应该减少有功出力,以降低频率尽量接近于受端的频率,同时也要将电压提高到最大允许值。

总之,增加励磁是必须的。

3、按上述方法出力1-2min后仍未进入同步,则需要将失步发电机与系统解列,或者按调度要求,将两个非同步的系统解列。

发电机装设了快速励磁系统,或者与电力系统间的联系很弱,会引起发电机对电力系统的自发振荡这类静态不稳定。

相关文档
最新文档