二维核磁共振谱原理

合集下载

核磁共振二维实验报告

核磁共振二维实验报告

核磁共振二维实验报告实验目的:本实验旨在使用核磁共振(NMR)技术进行二维谱图的测定,探究样品的化学结构。

实验原理:核磁共振是一种利用原子核在外加磁场作用下发生的能级跃迁的现象,通过探测共振的信号来获得样品的结构信息。

二维核磁共振谱图(2D NMR)是利用两个核磁共振信号之间的相互耦合关系,提供更加详细的结构信息。

实验仪器:1. 核磁共振(NMR)仪:用于提供强大的磁场和测量核磁共振信号。

2. 样品溶液:待测的化合物的溶液。

3. 其他常规实验用具。

实验步骤:1. 样品的制备:将待测的化合物溶解在适当的溶剂中,使其浓度适当,以便于谱图的测定。

2. 样品的装填:将样品溶液倒入核磁共振仪的样品管中,确保样品装填均匀。

3. 参数设置:选择合适的核磁共振实验参数,如脉冲角度、扫描次数、采样时间等。

4. 实验测量:启动核磁共振仪,进行测量。

根据实验需要,可以选择多次测量,以增加信噪比。

5. 数据处理:将测得的核磁共振数据进行处理,包括峰位校正、噪声滤除等。

6. 图谱解析:根据测得的二维谱图,分析样品的化学结构,解释各个峰位的代表意义。

实验结果和讨论:根据实验所测得的二维核磁共振谱图,我们可以得到有关样品的结构信息。

通过观察峰位的位置、强度和耦合模式等特征,可以推断出样品的化学键、官能团等信息。

本实验中,我们成功获得了样品的二维核磁共振谱图,并对谱图进行了解析。

根据峰位的化学位移和耦合模式等数据,我们推测了样品中存在的官能团和化学键,进一步验证了样品的化学结构。

结论:本实验利用核磁共振技术成功地获得了待测样品的二维谱图,并通过对谱图的解析推测了样品的化学结构。

该实验展示了核磁共振技术在化学结构分析中的重要应用,并为进一步研究提供了基础数据。

二维NMR谱原理及解析

二维NMR谱原理及解析
H0
碳谱与氢 谱的对比
氢谱不足
不能测定不 含氢的官能 团
对于含碳较多的 有机物,烷氢的 化学环境类似, 而无法区别
碳谱补充
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
2.2
2.0
1.8
1.6
1.4
1.2
ppm
1D 谱 分辨率可通过提高外磁场强 度和增加谱图的维数而提高. nD NMR (n=2,3,4)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
一维核磁共振氢谱
1D NMR--脉冲序列和原理示意图
D1
核磁共振氢谱
1H NMR是应用最为广泛的核磁共振波谱。
JBC=7 Hz
B,C是磁不等价的核
JAB JAC
Hc C B
A
A
*C
*CH
*CH2 H2
*CH3 H3 H2 H1 C
H1 C C C
H1
由于一些核的自然丰度并非100%.顾此谱图中可能出现偶合分 裂的峰和无偶合的峰.氯仿中的氢谱是一个典型的例子.
H-12C H-13C
H-13C x100
105 Hz
B0
Be
原子核实际感受到的磁场: B = (1-s) B0 S:化学位移常数
化学位移
分子中的原子并不是孤立存在,它不仅在相互间发生作用也同周围环 境发生作用,从而导致相同的原子核却有不同的核磁共振频率.
化学位移
自旋-自旋偶合
Larmor
E B0
频率
e.g. B0=11.7 T,
w(1H)=500 MHz w(13C)=125 MHz 化学位移 ~ B0 » kHz 自旋-自旋偶合» Hz-kHz

二维核磁共振谱的原理

二维核磁共振谱的原理

二维核磁共振谱的原理
二维核磁共振谱的原理是利用傅里叶变换将化学位移、耦合常数等核磁共振参数展开在二维平面上。

这样,在一维谱中重叠在一个频率坐标轴上的信号分别在两个独立的频率坐标轴上展开,从而减少了谱线的拥挤和重叠,提供了自旋核之间相互作用的信息。

具体来说,二维核磁共振谱技术的基本原理可以用二维傅里叶变换来解释。

当样品置于两个垂直的外磁场中时,样品中的原子核会在这两个磁场的作用下产生多重共振信号。

通过调节两个外磁场的频率,可以得到关于样品内部核之间相互作用的二维核磁共振谱数据。

二维核磁共振谱综述

二维核磁共振谱综述
1.什么是二维谱 二维核磁共振(2D NMR)方法是有Jeener 于1971年首先提出 的,是一维谱衍生出来的新实验方法.引入二维后,减少了谱线的拥 挤和重叠,提高了核之间相互关系的新信息.因而增加了结构信息, 有利于复杂谱图的解析.特别是应用于复杂的天然产物和生物大分 子的结构鉴定,2DNMR是目前适用于研究溶液中生物大分子构象 的唯一技术.一维谱的信号是一个频率的函数,记为S(ω),共振峰分 别在一条频率轴上.而二维谱是两个独立频率变量的信号函数,记 为S(ω1,ω2),共振峰分布在由两个频率轴组成的平面上.2D-NMR 的b最大特点是将化学位移,偶合常数等参数字二维平面上展开,于 是在一般一维谱中重叠在一个频率轴上的信号,被分散到两个独立 的频率轴构成的二维平面上.,同时检测出共振核之间的相互作用.
3.二维谱的表达方式
(1)堆积图(stacked plot). • 堆积图的优点是直观,具有立体感.缺点是 难以确定吸收峰的频率。大峰后面可能隐 藏小峰,而且耗时较长。 • (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优 点是容易获得频率定量数据,作图快。缺 点是低强度的峰可能漏画。目前化学位移 相关谱广泛采用等高线。
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
• 二维化学位移相关谱包括 • 同核化学位移相关谱(Homonuclear correlation) • 1)通过化学键:COSY, TOCSY, 2DINADEQUATE。 • 2)通过空间:NOESY, ROESY。 • 异核化学位移相关谱(Heteronuclear correlation) • 强调大的偶合常数:1H-13C –COSY • 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)

2D NMR

2D NMR
• 单从电负性的角度来看,烷、烯、炔质子的δH值理论应为:
δ > δ > δ ( C H )
• 但是实际排列顺序为:
(
C H ) H
(
CH )
δ >δ >δ ( C H ) H
( C H )
( C H )
5.0~ 6.0
1.8~ 3.0
0~ 1.8
上述这些现象显然不能用电负性来解释, 但可以用各向异性效应来解释。所谓各向异 性效应就是当化合物的电子云分布不是球型 对称时(∏电子系统时最为明显),就对邻近质子附 加了一个各向异性的磁场,从而对外磁场起 着增强或减弱的作用。增强外磁场的区域称 为去屏蔽区,用“-”表示,位于该区的质 子共振峰将移向低场;减弱外磁场的区域称 为屏蔽区,用“+”表示,位于该区的质子 共振峰将移向高场。各向异性效应是通过空 间传递的,在氢谱中,这种效应很重要。
简介
• 这种原子核对射频电磁波辐射的吸收就称 为核磁共振波谱。核磁共振波谱又可进一 步分为氢谱(1H-NMR)和碳谱(13CNMR)。所谓氢谱,实际上指的是质子谱 (proton magnetic resonance,简写成 PMR),而碳谱则是指13C谱(carbon magnetic resonance,简写成13CMR)。
0
5.33 7.24
• 如果与质子相连接的原子或原子团的电负 性较强,质子周围的电子云密度就比较小, 即抗磁屏蔽效应比较小,因此质子就在低 场发生共振,化学位移值δ就大。反之,如 与质子相连的原子或原子团是推电子的, 则质子周围的电子云密度就增加,屏蔽效 应亦增大,化学位移δ就向高场移动。
• b:共轭效应
AXz A:原子质量; X:原子种类; z:原子序数

二维核磁共振谱概述 ppt课件

二维核磁共振谱概述  ppt课件

29 ppt 课件
29
ppt课件
30
核磁共振谱图综合解析
确定未知物所含碳氢官能团。 结合氢谱、碳谱、DEPT谱、HMQC谱可以确定 所含碳氢官能团的信息,即含有多少个CH3,CH2 ,CH和季碳。配合化学位移,可以区分饱和的CH2 还是不饱和的CH2;饱和的CH还是不饱和的CH。 是否含杂原子、羰基以及活泼氢等。 注意:利用HMQC把氢谱的各个峰组和碳谱的各条 谱线关联起来非常重要。
?noesy的谱图与11h11hcosy非常相似它的f22维和f11维上的投影均是氢谱也有对角峰和交叉峰图谱解析的方法也和cosy相同唯一不同的是图中的维上的投影均是氢谱也有对角峰和交叉峰图谱解析的方法也和cosy相同唯一不同的是图中的交叉峰并非表示两个氢核之间有耦合关系而是并非表示两个氢核之间有耦合关系而是表示两个氢核之间的空间位置接近
ppt课件 35
它又分为直接相关谱和远程相关谱。

ppt课件
12
异核位移相关谱 ---------测试技术上有两种方法

对异核(非氢核)进行采样,这在以前是常用的方法,是 正相实验,所测得的图谱称为“C,H COSY”或长程“C, H COSY”、 COLOC (C,H Correlation Spectroscopy via Long range Coupling )。 因是对异核进行采样,故灵敏度低,要想得到较好的信噪 比必须加入较多的样品,累加较长的时间。
ppt课件
31
2.确定含氢基团的连接关系,找到结构单元。 一般从COSY谱相关峰可以找到所有存在3J耦合 的结构单元。 注意点: 结构片段终止于季碳原子或杂原子 在一些特殊的情况下,邻碳氢可能未显示出 COSY相关峰。 COSY谱一般情况下显示3J耦合,但也可能显示长 程耦合的相关峰。

《利用核磁共振二维谱技术研究岩心含油饱和度》

《利用核磁共振二维谱技术研究岩心含油饱和度》

《利用核磁共振二维谱技术研究岩心含油饱和度》篇一一、引言随着石油勘探技术的不断发展,岩心含油饱和度的准确测定对于评估油田储量和开发效益具有重要意义。

核磁共振技术作为一种无损检测方法,具有高分辨率、高灵敏度和非侵入性等优点,被广泛应用于岩心含油饱和度的研究。

本文旨在探讨利用核磁共振二维谱技术对岩心含油饱和度进行研究的原理、方法及实际应用,以期为相关研究提供参考。

二、核磁共振二维谱技术原理核磁共振(NMR)是一种基于原子核在磁场中发生能级跃迁的物理现象的技术。

在岩心含油饱和度研究中,核磁共振二维谱技术通过分析岩石样品中氢原子核的NMR信号,得到岩心内油的分布情况及饱和度。

其原理主要基于以下两点:一是利用氢原子核的NMR信号对岩心中流体进行检测;二是通过测量不同时间的NMR信号,得到二维谱图,从而分析岩心的含油饱和度。

三、研究方法1. 样品准备:选取具有代表性的岩心样品,进行切割、磨光、烘干等处理,以消除外界因素对实验结果的影响。

2. 核磁共振实验:将处理后的岩心样品置于核磁共振仪器中,施加磁场和射频脉冲,使氢原子核发生能级跃迁并产生NMR信号。

3. 数据处理:将收集到的NMR信号进行二维谱图处理,分析岩心中油的分布及饱和度。

四、实验结果与分析1. 二维谱图解析:通过对岩心样品的NMR信号进行二维谱图处理,可以得到清晰的油水分布图。

图中不同颜色的区域代表不同含油饱和度的区域。

2. 含油饱和度计算:根据二维谱图中的信息,可以计算岩心的含油饱和度。

具体方法包括峰值积分法、T2谱分析法等。

其中,峰值积分法通过测量不同区域NMR信号的峰值大小,计算各区域的含油量及总含油量;T2谱分析法则通过分析T2谱的形状和分布,得到岩心的孔隙结构及含油饱和度信息。

3. 结果分析:通过对不同区域岩心的含油饱和度进行分析,可以得出以下结论:(1)岩心的含油饱和度与区域地质条件、储层特性等因素密切相关;(2)核磁共振二维谱技术能够准确反映岩心中油的分布及饱和度,为油田开发提供有力依据;(3)结合其他地质资料和地球物理方法,可以进一步提高岩心含油饱和度的研究精度。

二维核磁共振谱原理

二维核磁共振谱原理

Assignments
7-8 3-5 3 - 16 3-9 weak 5 - 10 5 - 16 9 - 10 10 - OH 11- 16 11 - 14 11 - 18' 18 - 14 18 - 18' 13 - 13' 13 - 17 13 - 17' 13' - 17 13' - 17' 17 - 17'
HMQC (trans-ethyl 2-butenoate)
HMQC – Heteronuclear Multiple-Quantum Coherence Experiment
HMQC – Heteronuclear Multiple-Quantum Coherence Experiment
C(9)-H
Acorn NMR's new JEOL Eclipse+ 400 is equipped to perform inverse experiments, and uses Z-gradients for improved spectral quality.
The time required for an HMBC depends on the amount of material, but is much greater than for HMQC, and can take from an hour to overnnd CH Correlation) of Codeine
1H
6.6 6.5 5.7 5.3 4.8 4.2 3.8 3.3 3.0 & 2.3 2.6 2.6 & 2.4 2.4 2.0 & 1.8
13C
113 120 133 128 91 66 56 59 20 40 46 43 36
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 D C-H相关谱(C-H COSY)
2 D 远程C-H COSY
HMQC and HMBC
Heteronuclear Multiple Quantum Coherence Heteronuclear Multiple Bond Coherence (HMBC): (HMQC) and
2-D inverse H,C correlation techniques that allow for the determination of carbon (or other heteroatom) to hydrogen connectivity.
HMQC is selective for direct C-H coupling
HMBC will give longer range couplings (2-4 bond coupling).
Gradient HMBC (gHMBC) improves the acquired spectra by significantly reducing unwanted signal artifacts.
There is no way to know how many bonds separate an H and C when a peak is observed, so analysis is a process of attempting to assign all observed peaks, testing for consistency and checking to be sure none of the assignments would require implausible or impossible couplings.
Because of the large number of peaks observed, analysis requires several expanded plots. In this case, the spectrum has been divided into 4 sections, each of which is discussed below.
What You See In a NOESY. . .
突出表现NOE效应的NOESY谱
NOESY. . .
NOESY Spectrum of Codeine
The sample is 3.3 mg of codeine in .65 ml CDCl3 A contour plot of the NOESY spectrum is shown below. As with all homonuclear 2D plots, the diagonal consists of intense peaks that match the normal spectrum, as do projections onto each axis. The interesting information is contained in the "cross-peaks", which appear at the coordinates of 2 protons which have an NOE correlation. For small molecules, the NOE is negative. Exchange peaks have the opposite sign from NOE peaks, making them easy to identify. The water peak at 1.5 ppm exchanges with the OH at 2.9 ppm, shown here in red. The spectrum is phased with the large diagonal peaks inverted (shown in red here), so the NOE cross-peaks are positive.
HMQC (trans-ethyl 2-butenoate)
HMQC – Heteronuclear Multiple-Quantum Coherence Experiment
HMQC – Heteronuclear Multiple-Quantum Coherence Experiment
C(9)-H C(9)-H
NOESY Spectrum of Codeine
Expansion of the upfield region:
8 - 7, 12 7 - 18, 18' 3 - 5, 10 5 - 11, 16, 18' 9 - 10, 17, 17' 10 - 16 11 - 18, 16, 14, 18' 18 - 13, 18' 16 - 14, 17 13 - 14, 17, 17' 13' - 17, 17' 17 - 17'
Compare to the spectrum obtained when the experiment is optimized for 4 Hz.
The experiment is designed to suppress 1-bond correlations, but a few are observed in most spectra. In concentrated samples of conjugated systems, 4-bond correlations can be observed.
Peaks occur at coordinates in the 2 dimensions corresponding to the chemical shifts of a carbon and protons separated by (usually) 2 or 3 bonds. The experiment is optimized for couplings of ~8 Hz. Smaller couplings are observed, but their intensities are reduced.
NOESY Spectrum of Codeine
In addition to confirming assignments, the NOESY spectrum allows stereospecific assignments of methylene Hs. The 3 crosspeaks indicated in red on the plot below distinguish between the 3 CH2 pairs: Table of NOEs: ( ' indicates the more upfield of geminal CH2 protons) 5 -18' 16 - 17 18 - 13
HMQC (1-Bond CH Correlation) of Codeine
Assign ment
1H
13C
6.6
6.5 5.7 5.3 4.8 4.2 3.8 3.3 3.0 & 2.3 2.6 2.6 & 2.4 2.4 2.0 & 1.8
113
120 133 128 91 66 56 59 20 40 46 43 36
shift Table of COSY correlations 6.6 5.7 5.7 5.7 5.3 5.3 4.9 4.2 3.3 3.3 3.3 3.0 3.0 2.6 2.6 2.6 2.4 2.4 2.1 shift 6.7 5.3 2.7 4.9 4.2 2.7 4.2 2.9 2.7 2.4 2.3 2.4 2.3 2.4 2.1 1.9 2.1 1.9 1.9 Assignments 7-8 3-5 3 - 16 3-9 weak 5 - 10 5 - 16 9 - 10 10 - OH 11- 16 11 - 14 11 - 18' 18 - 14 18 - 18' 13 - 13' 13 - 17 13 - 17' 13' - 17 13' - 17' 17 - 17'
The colored arrows trace out coupling networks, corresponding to: H-3 —> H-5 —> H-10 —> OH H-10 -> H-9 H-3 —> H-16 H-16 —> H-11
COSY Spectrum of Codeine
2D 核磁共振谱
COSY: Hypothetical Coupling
Hale Waihona Puke COSY: 1H-1H Coupling
COSY Spectrum of Codeine
Coupling "networks" can be traced out, as shown in the figure below.
8
7 3 5 9 10 12 11 18 16 13 14 17
HMBC (Multiple-Bond CH Correlation) of Codeine
This is a 2D experiment used to correlate, or connect, 1H and 13C peaks for atoms separated by multiple bonds (usually 2 or 3). The coordinates of each peak seen in the contour plot are the 1H and 13C chemical shifts. This is extremely useful for making assignments and mapping out covalent structure. The information obtained is an extension of that obtained from an HMQC spectrum, but is more complicated to analyze. Like HMQC, this is an "inverse detection" experiment, and is possible only on newer model spectrometers. Acorn NMR's new JEOL Eclipse+ 400 is equipped to perform inverse experiments, and uses Z-gradients for improved spectral quality.
相关文档
最新文档