人教版2019-2020年度八年级10月月考数学试题(I)卷

合集下载

八年级数学10月月考试卷 试题

八年级数学10月月考试卷 试题

〔2021—2021学年度第一学期〕本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

初二数学10月月考试题〔时间是90分钟,满分是120分〕选择题答题栏题号 1 2 3 4 5 6 7 8 9 10 11答案一、选择题〔每一小题3分,一共33分〕。

1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS〞证明△ABD与△ACE全等的条件顺序是〔〕A. ①②③B. ②③④C. ①②④D.①③④〔第1题图〕〔第2题图〕〔第3题图〕2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么以下判断中正确的选项是〔〕A. 只能证明△AOB≌△CODB. 只能证明△AOD≌△COBC. 只能证明△ABD≌△CBDD. 能证明四对三角形全等3. 如图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中的全等三角形有〔〕A. 1对B. 2对C. 3对D. 4对4. 在以下条件中,不能断定直角三角形全等的是〔〕A. 两条直角边分别对应相等B. 斜边和一个锐角分别对应相等C. 两个锐角分别对应相等D. 斜边和一条直角边分别对应相等5. 以下图形中,是轴对称图形.....的是 〔 〕6. 等腰三角形的两边长分别为5、6,那么此三角形的周长为〔 〕A. 16B. 17C. 16或17D. 无法确定7. 以下说法正确的选项是〔 〕 A. 等腰三角形的底角一定是锐角B. 等腰三角形的底角可以是直角,但不能是钝角C. 等腰三角形一内角平分线与此角所对边上的高一定重合D. 等腰三角形的一个内角等于40,那么其余的两个内角一定都等于708. 三角形中到三边间隔 相等的点是〔 〕A. 三条边的垂直平分线的交点B. 三条高的交点C. 三条中线的交点D. 三条角平分线的交点 9. 如图,直线123,,l l l 表示三条互相穿插的公路,现要修建一个货物中转站,要求它到三条公路的间隔 都相等,那么可供选择的地址有〔 〕A. 一处B. 两处C. 三处D. 四处10. 如图,∠C =90°,AD 平分∠BAC 交BC 于D ,假设BC =5cm ,BD =3cm ,那么点D 到AB 的间隔 为〔 〕A. 5cmB. 3cmC. 2cmD. 不能确定 11.不能确定两个三角形全等的条件是〔 〕 A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .两边和其中一边的对角 二、填空题〔每空3分,一共33分〕12. 如以下图所示,AC ,BD 交于点O ,OA =OB ,OC =OD ,那么图中全等三角形有_______对。

人教版2019-2020学年八年级上学期10月月考数学试题A卷

人教版2019-2020学年八年级上学期10月月考数学试题A卷

人教版2019-2020学年八年级上学期10月月考数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列关于x方程中有两个不相等的实数根的是()A.B.C.D.2 . 有理数,,满足,且,则的值为()A.2B.1C.0D.-13 . 下列判定正确的是()A.是最简二次根式B.方程不是一元二次方程C.已知甲、乙两组数据的平均数分别是,,方差分别是,,则甲组数据的波动较小D.若与都有意义,则的值为54 . 在下列二次根式中,是最简二次根式的是()A.B.D.C.二、填空题5 . a+的有理化因式是__________________。

6 . 计算:=_____.7 . 已知在△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-6x+8=0的一个根,则该三角形为__________三角形.8 . 化简二次根式的结果是_______.9 . 已知直角三角形的两边x,y的长满足|x-4|+=0,则第三边的长为____.10 . , 则xy=______ .11 . 把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为_____.12 . 如果方程有两个不等实数根,则实数的取值范围是________.13 . 化简:________,________.14 . 比较大小:_____(填入“>”或“<”号).15 . 一元二次方程ax2﹣px+1=q(a≠0)的根的判别式是_____.16 . 方程的根为_______________________.17 . 计算:×=____________.18 . 观察下列运算过程:请运用上面的运算方法计算:______.三、解答题19 . 解不等式:≥.20 . 计算:(1)+(π-3)0+|2-3|;(2)×2-÷.21 . 定义一种新运算“*”满足下列条件:①对于任意的实数a,b,a*b总有意义;②对于任意的实数a,均有a*a=0;③对于任意的实数a,b,c,均有a*(b*c)=a*b+c.(1)填空:1*(1*1)=,2*(2*2)=,3*0=;(2)猜想a*0=,并说明理由;(3)a*b=(用含a、b的式子直接表示).22 . 计算:(1)2x2﹣4x+1=0(配方法)(2)﹣3x=1﹣x2(3)2(x+2)2=x(x+2)(4)(x+1)(x﹣1)+2(x+3)=8.23 . 已知关于的一元二次方程,若方程的一个根为2,求的值和方程的另一个根.24 . 解下列方程:(Ⅰ);(Ⅱ).25 . 计算:(1);(2)参考答案一、单选题1、2、3、4、二、填空题1、2、3、4、5、6、7、8、9、10、11、12、13、14、三、解答题1、2、3、4、5、6、7、。

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

A.4
3
S V ABP ,其中正确的个数是(
2
B.3
C.2
第 II 卷

D.1
非选择题(102 分)
二、填空题(本大题共 7 个小题,每小题 4 分,本大题满分 28 分)
13.如图,在 V ABC 中, D 是 BC 边上一点, E 是边上一点.在 △ACE 中, Ð CAE 的对
边是

14.正十边形的每个外角等于
从点 B 出发,在直线 BC 上以 2cm/ s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F ,当
点 E 运动
s 时, CF
= AB .
19.如图,在 V ABC 中, ÐA = 20°, ÐEBC , ÐDCB 为 V ABC 的外角, ÐEBC 与 ÐDCB 的平分
线交于点 A1 , ÐEBA1 与 ÐDCA1 的平分线交于点 A2 , ¼,ÐEBAn -1 与 ÐDCAn -1 的平分线相交于点
的内角和为(
A. 1800°

B. 1440°
C. 1080°
试卷第 2 页,共 7 页
D. 720°
8.如图,在 V ABC 中,点 E 是 BC 的中点, AB = 7 , AC = 10 , △ACE 的周长是 25,则 V ABE
的周长是( )
A.18
B.22
C.28
D.32
9.如图,在 8 ´ 8 的正方形网格中, V ABC 的顶点和线段 EF 的端点都在小正方形的顶点上,

15.如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将 V BMN 沿 MN 翻折得 V FMN ,
若 MF∥AD,FN∥DC ,则 ÐB =

上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)

上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)
A. B. C. D.
【19题答案】
【答案】A
【分析】将方程解的条件化为函数的取值,从而求出m的取值范围.
【详解】∵方程x2+(m+2)x+m+5=0的一个根大于1,另一个根小于1,
令f(x)=x2+(m+2)x+m+5,
则f(1)=1+m+2+m+5<0,
解得,m<-4.
故选A.
【点睛】本题考查了函数与方程之间的互相转化,属于基础题.
4.当 _____时,函数 是正比例函数,且 的值随 的值增大而减小.
【4题答案】
【答案】0
【分析】根据正比例函数的意义,可得答案.
【详解】∵函数 是正比例函数,
∴ ,
解得, , ,
∵y的值随x的值增大而减小,
∴m-2<0,即m<2
∴m=0,
故答案为0.
【点睛】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.
【答案】C
【分析】先提取公因式4后,观察方程4(x2+2x- ),可以令x2+2x- =0,用配方法解得两根x1、x2,则 =4(x2+2x- )=(x-x1)(x-x2).
【详解】 =4(x2+2x- )
令x2+2x- =0,则x2+2x=
∴x2+2x+1= +1,即(x+1)2=
解得, , ,
∴ =4
【点睛】本题考查了一元二次方程的解的定义:就是能够使方程左右两边相等的未知数的值,此题应特别注意一元二次方程的二次项系数不得为零.
10.关于 的代数式 是一个完全平方式,则 _____.

人教版2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷解析版

人教版2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷解析版

2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图案中是轴对称图形的是()A.中国移动B.中国联通C.中国网通D.中国电信2.(3分)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y63.(3分)点M(﹣5,3)关于x轴的对称点的坐标是()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3)4.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.3个B.4个C.5个D.6个5.(3分)如图,△ABC中,BE是角平分线,DE∥BC交AB于D,交AC于E,若DE=7,AD=5,则AB等于()A.10B.12C.14D.166.(3分)下列运算正确的是()A.3x3•5x2=15x6B.4y•(﹣2xy2)=﹣8xy3C.(﹣3x)2•4x3=﹣12x5D.(﹣2a)3•(﹣3a)2=﹣54a57.(3分)如图,直线l表示马家沟河,点P表示工业大学教学楼,点Q表示实验车间,欲在马家沟河l上修建一个排水泵站(记为点M),现从P,Q两处向马家沟排水,有如下四种修建水泵站供水管道的方案,则修建的管道最短的方案是()A.B.C.D.8.(3分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点9.(3分)计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣110.(3分)下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A'B'C'成轴对称,则△ABC一定与△A'B'C'全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.5二、填空题:11.(3分)若点p(a,3)与Q(﹣2,b)关于y轴对称,则a+b=.12.(3分)(x﹣8y)(x﹣y)=.13.(3分)若a n=2,则a3n的值是.14.(3分)如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于.15.(3分)45×(0.25)5=.16.(3分)如图,等腰△ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于.17.(3分)如图,点P关于OA、OB的对称点是H、G,直线HG交OA、OB于点C、D,若∠HOG =80°,则∠CPD=°.18.(3分)如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠EDC=度.19.(3分)△ABC中,AB=AC,DE是AB的垂直平分线,交AB于D,交直线AC于点E,且与直线AC的夹角为50°,则∠ABC=°.20.(3分)如图,△ABC中,AB=AC,点E在AB的延长线上,点D在边AC上,且EB=CD=4,线段DE交边BC于点F,过点F作FG⊥DE交线段CE于点G,CE⊥AC,△GEF的面积为5,则EG的长.三、解答题(21--22每题7分,23--24每题8分,25--27每题10分)21.先化简,再求值:(x2)3﹣x•x2﹣x2﹣x(x5﹣x2+2x﹣1),其中x=2.22.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法);(2)直接写出B′,C′的坐标;(3)直接写出△A′B′C′的面积是.23.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A 的度数.24.如图,AD与BC相交于点F,FA=FC,∠A=∠C,点E在BD的垂直平分线上.(1)如图1,求证:∠FBE=∠FDE;(2)如图2,连接CE分别交BD、AD于点H、G,当∠FBD=∠DBE=∠ABF,CD=DE时,直接写出所有与△ABF 全等的三角形.25.如图,△ABD 、△AEC 都是等边三角形,直线CD 与直线BE 交于点F .(1)求证:CD =BE ;(2)求∠CFE 的度数.26.如图,在△ABC 中,∠ACB =2∠ABC ,AD 为∠BAC 的角平分线,E 为线段AC 上一点,过点E 作AD 的垂线交AD 于H ,交直线AB 于F .(1)如图1,当E 点与C 点重合时,求证:BF =DE ;(2)如图2,连接BE 交AD 于点N ,M 是BF 的中点,连接DM ,若MD ⊥BF 于M ,AB =18,S △ABD :S △ACD =3:2,求DE 的长.27.如图,△ABC 为等边三角形,D 、E 分别是AB 、BC 上的点,且AD =BE ,AE 与CD 相交于点F ,(1)如图1,求∠CFE的度数;(2)如图2,过点C作CH⊥AE于点H,求证:2FH+DF=AE;(3)在(2)的条件下,如图3,过点H作HP⊥FC于P,在AE的延长线上取一点M,连接BM,且∠M=30°,若PC=3,MH=5,AF:HE=5:1,求DF的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.解:A、不是轴对称图形,故不合题意;B、是轴对称图形,故符合题意;C、不是轴对称图形,故不合题意;D、不是轴对称图形,故不合题意;故选:B.2.解:A、b3•b3=b6,故此选项错误;B、(ab2)3=a3b6,故此选项错误;C、(a5)2=a10,正确;D、y3+y3=2y3,故此选项错误;故选:C.3.解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(﹣5,3)关于x轴的对称点的坐标是(﹣5,﹣3),故选:A.4.解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:C.5.解:∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠ABE=∠DEB,∴BD=DE=7,∵AB=AD+BD,∴AB=5+7=12.故选:B.6.解:A.3x3•5x2=15x5,此选项错误;B.4y•(﹣2xy2)=﹣8xy3,此选项正确;C.(﹣3x)2•4x3=36x5,此选项错误;D.(﹣2a)3•(﹣3a)2=﹣72a5,此选项错误;故选:B.7.解:作P点关于直线l的对称点P',连接P'Q后与直线l相交于点M,即M即为所求;故选:B.8.解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.9.解:(﹣3x)•(2x2﹣5x﹣1)=﹣3x•2x2+3x•5x+3x=﹣6x3+15x2+3x.故选:B.10.解:①等腰三角形底边的中点到两腰的距离相等;正确;②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确;③若△ABC与△A'B'C'成轴对称,则△ABC一定与△A'B'C'全等;正确;④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:①③,2个;故选:A.二、填空题:11.解:∵点p(a,3)与Q(﹣2,b)关于y轴对称,∴a=2,b=3,∴a+b=2+3=5.故答案为:5.12.解:原式=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2,故答案为:x2﹣9xy+8y2.13.解:∵a n=2,∴a3n=(a n)3=23=8.故答案为:8.14.解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠DEF=180°﹣(∠EDF+∠EFD)=180°﹣120°=60°.故答案为:60°.15.解:45×(0.25)5=(4×0.25)5=1,故答案为:116.解:作BD⊥AC.∵∠A=30°,AB=3,∴在Rt△ABD中,BD=AB=×12=6,∴S=×12×6=36,△ABC故答案为:36.17.解:连接OP.∵P关于OA、OB的对称点是H、G,∴OA垂直平分PH于R,OB垂直平分PG于T,∴CP=CH,DG=DP,∴∠PCD=2∠CHP,∠PDC=2∠DGP,∵∠PRC=∠PTD=90°,∴在四边形OTPR中,∴∠RPT+∠AOB=180°,∵∠POC=∠COH,∠POD=∠DOG,∠HOG=80°,∴∠AOB=40°∴∠RPT=180°﹣40°=140°∴∠CHP+∠PGD=40°,∴∠PCD+∠PDC=80°∴∠CPD=180°﹣80°=100°.故答案为100.18.解:∵AB=AC,BD=CD,∴AD平分∠BAC,AD⊥BC,∴∠CAD=∠BAD=26°,∠ADC=90°.∵AD=AE,∴∠ADE=∠AED=77°,∴∠CDE=∠ADC﹣∠ADE=13°.∴故答案为:13.19.解:①如图1,∵AB的垂直平分线DE,∴BE=AE,∠EDB=90°,∴∠A=∠ABE,∵∠BED=50°,∴∠ABE=40°,∴∠A=40°,∵AB=AC,∴∠ABC=∠C=×(180°﹣∠A)=×(180°﹣40°)=70°;②如图2,∵AB的垂直平分线DE,∴BE=AE,∠EDB=90°,∴∠EAB=∠ABE,∵∠BED=50°,∴∠ABE=40°,∴∠EAB=40°,∴∠A=180°﹣40°=140°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=×(180°﹣140°)=20°;故答案为:70°或2020.解:过D作DH∥AB交BC于H,则∠DHC=∠ABC,∠EBF=∠DHF,∵AB=AC,∴∠ABC=∠ACB,∴∠DHC=∠ACB,∴DH=CD,∵BE=CD,∴DH=BE,在△BEF与△HDF中,∴△BEF≌△HDF,(AAS),∴EF=DF,设EF=x,FG=a,则DE=2x,∵△GEF的面积为5,∴=5,∴xa=10,∵FG⊥DE,CE⊥AC,∴∠DCE=∠EFG=90°,∵∠FEG=∠CED,∴△EFG∽△ECD,∴=,∴=,∴EG===5,故答案为:5.三、解答题(21--22每题7分,23--24每题8分,25--27每题10分)21.解:原式=x6﹣x3﹣x2﹣x6+x3﹣2x2+x=﹣3x2+x,把x=2代入得:原式=﹣3×4+2=﹣10.22.解:(1)△A'B'C'如图所示;(2)B′(﹣1,2),C′(﹣5,1).=12﹣×2×3﹣×2×2﹣×1×4=5.(3)S△A′B′C′故答案为5.23.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.24.(1)证明:在△BAF和△DCF中∴△BAF≌△DCF(ASA)∴BF=DF∴∠FBD=∠FDB又∵E在BD的垂直平分线上∴EB=ED∴∠EBD=∠EDB∴∠FBE=∠FDE(2)答案:△HBE、△DFC、△DCH、△GED理由如下:由(1)∠FBD=∠FDB,∠EBD=∠EDB∵∠FBD=∠DBE∴∠FDB=∠FDB∵BD=BD∴△BGD≌△BED(ASA)∴BF=EB,DE=DF∵CD=DE∴BF=FD=DE=EB=BA=CD设∠ABF=x,则由已知,∠FBD=∠FDB=∠EBD=∠EDB=x ∵AB=BF∴∠A=∠AFB=2x在△ABD中,x+2x+2x=180°∴x=36°∴∠FBD=∠FDB=∠EBD=∠EDB=36°∠AFB=∠CFD=∠A=72°∴∠CDB=72°∵ED=CD,∠EBD=36°∴∠DCE=∠CED=36°∵∠DBE=36°∴∠BHE=72°∴△ABF≌△HBE,同理,△ABF≌△HCD,△ABF≌△GED∴与△ABF全等的三角形有△HBE、△DFC、△DCH、△GED25.解:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°,∵∠DAB=∠DAC+∠CAB,∠CAE=∠BAE+∠CAB,∴∠DAC=∠BAE,在△DAC和△BAE中,∴△DAC≌△BAE,∴CD=BE.(2)∵△DAC≌△BAE,∴∠ADC=∠ABE,∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°.26.证明:(1)连接DF,设AD与EF交于点K,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵EF⊥AD,∴∠AKF=∠AKE=90°,∴∠AFK=∠AEK,∴AF=AE,则在△AFD 和△AED 中:,∴△AFD ≌△AED (SAS ),∴DF =DE ,∠AFD =∠AED ,又∵∠ACB =2∠ABC ,∴∠FBD =∠FDB ,∴BF =DF ,∴DE =BF ; (2)过A 作AP ⊥BC 于点P ,过D 作DQ ⊥AC 于点Q .连接DF , ∵S △ABD :S △ACD =3:2,即,∴,∵DC =4,∴BD =6∵AD 是∠BAC 的平分线,DM ⊥AB ,DQ ⊥AC ,∴DM =DQ ,∴,∴,由(1)可得:AQ =AM ,DC =BM ,∴AB =AC +DC ,∴,∴AC =8,AB =12,设PC =x ,则BP =10﹣x ,又勾股定理得:AB 2﹣BP 2=AC 2﹣PC 2=AP 2, 即122﹣(10﹣x )2=82﹣x 2,解得:x =1,∴DP =3,又AD 2﹣DP 2=AC 2﹣PC 2=AP 2,∴AD2=72,AD=,∵EF⊥AD,∴∠AKF=∠AKE=90°.∵DA平分∠BAC,∴∠FAD=∠EAD,∴∠AFE=∠AEF∴AF=AE在△AFD和△AED中:,∴△AFD≌△AED(SAS),∴∠AFD=∠AED,DF=DE,又∵DB=DF,∴DB=DE=6,∴∠BFD=∠DEC=∠DBF,∴180°﹣∠C﹣∠DEC=180°﹣∠C﹣∠DBF,∴∠EDC=∠BAC=2∠DAE,又∵∠EDC=2∠NED,∴∠DAE=∠NED,∵∠ADE=∠EDN,∴△DAE∽△DEN,∴,∴DE2=DN•DA,即62=DN•,∴DN=.27.解:(1)如图1中,∵△ABC是等边三角形,∴AC=AB,∠B=∠CAD=60°,∵BE=AD,∴△ABE≌△CAD(SAS),∴∠ACD=∠BAE,∵∠BAE+∠CAF=60°,∴∠CFE=∠ACD+∠CAF=∠BAE+∠CAF=60°.(2)如图2中,∵△ABE≌△CAD,∴AE=CD,在Rt△CFH中,∵∠CHF=90°,∠CFH=60°,∴∠FCH=30°,∴CF=2FH,∴2FH+DF=CF+DF=CD,∴2FH+DF=AE.(3)如图3中,延长CD到N,使得∠N=30°.设HE=a,DF=x,EM=b,则AF=5a.∵AB=AC,∠M=∠N,∠BAM=∠ACN,∴△ABM≌△CAN(AAS),∴AM=CN,∵AE=CD,∴EM=DN=b,∵FN=2AF,∴b+x=10a①,∵MH=5,∴a+b=5 ②,在Rt△CPH中,∵PC=3,∠PCH=30°,∴PH=,PF=1,HF=2,∵AE=CD,∴a+2+5a=x+4 ③由①②③可得x=,∴DF=.。

2019-2020学年江苏省常州市八年级(上)月考数学试卷(10月份) 解析版

2019-2020学年江苏省常州市八年级(上)月考数学试卷(10月份)  解析版

2019-2020学年江苏省常州市天宁区同济中学八年级(上)月考数学试卷(10月份)一.选择题(本大题共8小题,共24分)1.(3分)下列图案属于轴对称图案的是()A.B.C.D.2.(3分)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD3.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点4.(3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD6.(3分)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 7.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE8.(3分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF二、填空题(本大题共10小题,共20分,每题2分)9.(2分)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.10.(2分)△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为,△ABC的面积为.11.(2分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).12.(2分)如图,已知AD是BC的垂直平分线,垂足为D,△ABC的周长为32,△ACD 的周长为24,那么AD的长为.13.(2分)如图,△ABC中,△ACD与△BDE、△ADE都全等,则∠B=°.14.(2分)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是.15.(2分)如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=.16.(2分)如图,在△ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么△EBD的周长为.17.(2分)在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=cm.18.(2分)如图,△ADC中.∠C=90°,AC=10cm,BC=5cm.AD⊥AC,AB=PQ,P、Q两点分别在AC、AD上运动,当AQ=时,△ABC才能和△APQ全等.三、解笞题(本大题选6小题,共56分)19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.(8分)在4×4的方格中有五个同样大小的正方形如图摆放,请你在图1﹣图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.21.(6分)如图,已知AB=CD,∠ABC=∠DCB,求证:∠DBC=∠ACB.22.(7分)如图,点P是∠AOB的平分线上的一点,作PD⊥OA,PE⊥OB,垂足分别为D,E,连接DE,交OC于点F,求证:F是DE的中点.23.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.25.(12分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).2019-2020学年江苏省常州市天宁区同济中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(本大题共8小题,共24分)1.(3分)下列图案属于轴对称图案的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【解答】解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴A、B、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:C.3.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.4.(3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°【分析】要求∠E的大小,先要求出△DFE中∠D的大小,根据全等三角形的性质可知∠D=∠A=45°,然后利用三角形的内角和可得答案.【解答】解:∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°﹣∠D﹣∠F=100°.故选D.5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.6.(3分)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 【分析】从已知条件思考,利用角平分线的性质,结合平行线的性质,可得很多结论,然后与选项进行逐个比对,答案可得.【解答】解:∵∠BAD+∠ABD=90°,∠ABD+∠C=90°∴∠BAD=∠C(同角的余角相等)又∵EF∥AC∴∠BFE=∠C∴∠BAD=∠BFE又∵BE平分∠ABC∴∠ABE=∠FBE∴∠BEF=∠AEB,在△ABE与△FBE中,∵∴△ABE≌△FBE(AAS)∴AB=BF.故选:A.7.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.8.(3分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选:B.二、填空题(本大题共10小题,共20分,每题2分)9.(2分)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.10.(2分)△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为12cm,△ABC的面积为8cm2.【分析】利用关于直线对称图形的性质得出△ABC和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.11.(2分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.12.(2分)如图,已知AD是BC的垂直平分线,垂足为D,△ABC的周长为32,△ACD 的周长为24,那么AD的长为8.【分析】结合三角形的周长公式和线段垂直平分线的性质即可得到答案.【解答】解:∵AD是BC的垂直平分线,∴BD=DC,AB=AC,∵△ABC的周长为32,∴AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16,∵△ACD的周长为24,∴AC+DC+AD=24,∴AD=8,故答案为8.13.(2分)如图,△ABC中,△ACD与△BDE、△ADE都全等,则∠B=30°.【分析】根据全等三角形的性质得到∠AED=∠BED=90°,∠DAE=∠B,∠C=∠AED =90°,∠DAE=∠DAC,根据三角形内角和定理列式计算,得到答案.【解答】解:∵△BDE≌△ADE,∴∠AED=∠BED=90°,∠DAE=∠B,∵△ACD≌△AED,∴∠C=∠AED=90°,∠DAE=∠DAC,∴∠CAD=∠DAE=∠B=30°,故答案为:30.14.(2分)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是65°.【分析】根据Rt△ABC≌Rt△DEC得出AC=CD,然后判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得∠CAD=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DEC,然后根据全等三角形的性质可得∠B=∠DEC.【解答】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.15.(2分)如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=15°.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.16.(2分)如图,在△ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么△EBD的周长为6cm.【分析】首先根据角平分线的性质可得CE=DE,再利用HL定理证明Rt△ADE≌Rt△ACE,进而可得AD长,从而可得DB长,然后再计算出DE+EB长即可得到△EBD的周长.【解答】解:∵AE平分∠BAC,DE⊥AB于D,∠ACB=90°,∴CE=DE,在Rt△ADE和Rt△ACE中,,∴Rt△ADE≌Rt△ACE(HL),∴AC=AD=3cm,∵AB=5cm,∴DB=2cm,∵BC=4cm,∴DE+EB=4cm,∴△EBD的周长为6cm,故答案为:6cm.17.(2分)在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=8或16cm.【分析】作出图形,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,AE=CE,然后分两种情况讨论求解.【解答】解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=12cm,DE=4cm,∴如图1,AD+AE=BD+CE=BC﹣DE=12﹣4=8cm,如图2,AD+AE=BD+CE=BC+DE=12+4=16cm,综上所述,AD+AE=8cm或16cm.故答案为:8或16.18.(2分)如图,△ADC中.∠C=90°,AC=10cm,BC=5cm.AD⊥AC,AB=PQ,P、Q两点分别在AC、AD上运动,当AQ=5cm或10cm时,△ABC才能和△APQ全等.【分析】分两种情况讨论,由全等三角形的判定可求解.【解答】解:∵AD⊥AC,∴∠C=∠P AQ=90°,当BC=AQ=5cm时,且AB=PQ,∴Rt△ABC≌Rt△PQA(HL),当AQ=AC=10cm时,且AB=PQ,∴Rt△ABC≌Rt△QP A(HL),故答案为5cm或10cm.三、解笞题(本大题选6小题,共56分)19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.20.(8分)在4×4的方格中有五个同样大小的正方形如图摆放,请你在图1﹣图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.【分析】根据轴对称图形的性质找出格点即可.【解答】解:如图所示..21.(6分)如图,已知AB=CD,∠ABC=∠DCB,求证:∠DBC=∠ACB.【分析】由“SAS”可证△ABC≌△DCB,可得∠DBC=∠ACB.【解答】证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴∠DBC=∠ACB.22.(7分)如图,点P是∠AOB的平分线上的一点,作PD⊥OA,PE⊥OB,垂足分别为D,E,连接DE,交OC于点F,求证:F是DE的中点.【分析】由“AAS”可证△DOP≌△EOP,可得OD=OE,DP=PE,由线段垂直平分线的性质可得OP是DE的垂直平分线,可得结论.【解答】证明:∵OP平分∠AOB,∴∠AOC=∠BOC,在△DOP和△EOP中,,∴△DOP≌△EOP(AAS),∴OD=OE,DP=PE,∴OP是DE的垂直平分线,∴点F是DE的中点.23.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.【分析】(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=BC=AC,且AC=12,即可求出BD的长.【解答】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:∵△CDB≌△AEC,∴BD=CE,∵AE是BC边上的中线,∴BD=EC=BC=AC,且AC=12cm.∴BD=6cm.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S列方程计算即可得解.△ACD【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF,∴S△ABC=(AB+AC)×DE,即×(16+12)×DE=28,解得DE=2(cm).25.(12分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.。

山东日照港中学2024年八年级上学期10月月考数学试卷

山东日照港中学2024年八年级上学期10月月考数学试卷

2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季第一次月考八年级上学期数学试题含答案(人教版)一、精心选一选(每小题3分,共30分)1.的算术平方根是( )A .4 B. 2 C.-2 D. ±22.下面四个图形中,∠1与∠2是对顶角的是( )3.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)4.下列调查,适合用全面调查的事件是( )A.了解一批炮弹的杀伤半径B.了解枣阳电视台《聚焦》栏目的收视率C.了解汉江中鱼的种类D.了解某班学生对“枣阳一城两花”的知晓率5.一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6.下列四组值中不是二元一次方程12=-y x 的解的是( ) A.⎪⎩⎪⎨⎧-==21,0y x B.⎩⎨⎧==1,1y x C.⎩⎨⎧==0,1y x D.⎩⎨⎧-=-=1,1y x 7.如图,直线AB,CD 相交于点O ,OA 平分∠EOC.若∠EOC ︰∠EOD=2︰3,则∠BOD 的度数为( )A.36°B.40°C.35°D.45°8.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为( )A.(1,2)B.(1,3)C.(2,1)D.(3,2)9.下列说法正确的是( )A.22是分数 B.圆周率π是无理数 C.38是无理数 D.无限小数都是无理数10. 已知点P (a ,1-a )在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )二.细心填一填(每题3分,共30分)21,358;x y x y -=⎧⎨-=⎩①②11.把命题“同角的补角相等”改写成“如果……,那么……”的形式是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2019-2020年度八年级10月月考数学试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是()
A.3B.4C.5D.6
2 . 如图,AE∥BF,∠1=110°,∠2=130°,那么∠3的度数是()
A.40°B.50°C.60°D.70°
3 . 如图,,,则下列结论不一定成立的是()
A.⊥B.C.D.
4 . 已知等腰三角形的两边长分别为 6 和 1,则这个等腰三角形的周长为()
A.13B.8C.10D.8 或 13
5 . 如图,△ABC是等边三角形,D是AC的中点,点E在BC的延长线上,点F在AB上,.若AB=5,则BE+BF的长度为()
A.7.5B.8C.8.5D.9
6 . 下列图形中,不是中心对称图形的是()
A.B.C.D.
7 . 如图,和中,,要判定还需要补充的条件不能是()
A.B.C.D.
8 . 9的算术平方根是()
A.3B.C.D.81
9 . 下列长度的三条线段能组成三角形的是()
A.3, 4, 6B.6, 9,17C.5, 12, 18D.2, 2, 4
10 . 如图,在ABC 与AEF 中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交 EF 于点 D,下列结论正确的个数是
①∠C=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°
A.1B.2C.3D.4
二、填空题
11 . 如图,已知在四边形中,,平分,,,,则四
边形的面积是_____.
12 . 在函数y=中,x的取值范围是.
13 . 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1 .
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2 .
(3)△ABC是否为直角三角形?答(填是或者不是).
(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.
14 . 如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=_____°,
∠3=_____°.
15 . 如图,在正方形中,为对角线,为上一点,连接,,的延长线交于
点,,则的度数为________.
16 . 化简:(b<a<0)得.
17 . 如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是_____.
18 . 如图,正方形ABCD的边长是4cm,点G在边AB上,以BG为边向外作正方形GBFE,连接AE、AC、CE,则
△AEC的面积是cm2.
三、解答题
19 . 已知在平行四边形中,过点作于点,且.连接交于点,作
于点.
(1)如图1,若,,求的长;
(2)如图2,作于点,连接,求证:.
20 . 计算:.
21 . 观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.
(1)这组单项式的系数依次为多少,绝对值规律是什么?
(2)这组单项式的次数的规律是什么?
(3)根据上面的归纳,你可以猜想出第n个单项式是什么?
(4)请你根据猜想,写出第2016个,第2017个单项式.
22 . (1)如图1,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG
(2)如图2,已知AB∥CD,∠AEF与∠CFE的平分线交于点
A.猜想∠G的度数。

证明你的猜想
(3)如图3,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度
数.
23 . 已知如图1,在中,是的角平分线,是边上的高,.
(1)求的度数.
(2)如图2,若点为延长线上一点,过点作于点,求的度
数.
24 . 如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.
(1)的面积为______;
(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.
25 . 如图,在中,是高,,.请在图中作出的角平分线,交
于点,并求的度数.
26 . 已知2a﹣1是9的平方根,3a+b﹣1的算术平方根是4
(1)求a与b;
(2)当ab>0时,求2a﹣b2的立方根.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、。

相关文档
最新文档