人教版2019-2020年度八年级10月月考数学试题(I)卷

合集下载

八年级数学10月月考试卷 试题

八年级数学10月月考试卷 试题

〔2021—2021学年度第一学期〕本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。

初二数学10月月考试题〔时间是90分钟,满分是120分〕选择题答题栏题号 1 2 3 4 5 6 7 8 9 10 11答案一、选择题〔每一小题3分,一共33分〕。

1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS〞证明△ABD与△ACE全等的条件顺序是〔〕A. ①②③B. ②③④C. ①②④D.①③④〔第1题图〕〔第2题图〕〔第3题图〕2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么以下判断中正确的选项是〔〕A. 只能证明△AOB≌△CODB. 只能证明△AOD≌△COBC. 只能证明△ABD≌△CBDD. 能证明四对三角形全等3. 如图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中的全等三角形有〔〕A. 1对B. 2对C. 3对D. 4对4. 在以下条件中,不能断定直角三角形全等的是〔〕A. 两条直角边分别对应相等B. 斜边和一个锐角分别对应相等C. 两个锐角分别对应相等D. 斜边和一条直角边分别对应相等5. 以下图形中,是轴对称图形.....的是 〔 〕6. 等腰三角形的两边长分别为5、6,那么此三角形的周长为〔 〕A. 16B. 17C. 16或17D. 无法确定7. 以下说法正确的选项是〔 〕 A. 等腰三角形的底角一定是锐角B. 等腰三角形的底角可以是直角,但不能是钝角C. 等腰三角形一内角平分线与此角所对边上的高一定重合D. 等腰三角形的一个内角等于40,那么其余的两个内角一定都等于708. 三角形中到三边间隔 相等的点是〔 〕A. 三条边的垂直平分线的交点B. 三条高的交点C. 三条中线的交点D. 三条角平分线的交点 9. 如图,直线123,,l l l 表示三条互相穿插的公路,现要修建一个货物中转站,要求它到三条公路的间隔 都相等,那么可供选择的地址有〔 〕A. 一处B. 两处C. 三处D. 四处10. 如图,∠C =90°,AD 平分∠BAC 交BC 于D ,假设BC =5cm ,BD =3cm ,那么点D 到AB 的间隔 为〔 〕A. 5cmB. 3cmC. 2cmD. 不能确定 11.不能确定两个三角形全等的条件是〔 〕 A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .两边和其中一边的对角 二、填空题〔每空3分,一共33分〕12. 如以下图所示,AC ,BD 交于点O ,OA =OB ,OC =OD ,那么图中全等三角形有_______对。

人教版2019-2020学年八年级上学期10月月考数学试题A卷

人教版2019-2020学年八年级上学期10月月考数学试题A卷

人教版2019-2020学年八年级上学期10月月考数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列关于x方程中有两个不相等的实数根的是()A.B.C.D.2 . 有理数,,满足,且,则的值为()A.2B.1C.0D.-13 . 下列判定正确的是()A.是最简二次根式B.方程不是一元二次方程C.已知甲、乙两组数据的平均数分别是,,方差分别是,,则甲组数据的波动较小D.若与都有意义,则的值为54 . 在下列二次根式中,是最简二次根式的是()A.B.D.C.二、填空题5 . a+的有理化因式是__________________。

6 . 计算:=_____.7 . 已知在△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-6x+8=0的一个根,则该三角形为__________三角形.8 . 化简二次根式的结果是_______.9 . 已知直角三角形的两边x,y的长满足|x-4|+=0,则第三边的长为____.10 . , 则xy=______ .11 . 把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为_____.12 . 如果方程有两个不等实数根,则实数的取值范围是________.13 . 化简:________,________.14 . 比较大小:_____(填入“>”或“<”号).15 . 一元二次方程ax2﹣px+1=q(a≠0)的根的判别式是_____.16 . 方程的根为_______________________.17 . 计算:×=____________.18 . 观察下列运算过程:请运用上面的运算方法计算:______.三、解答题19 . 解不等式:≥.20 . 计算:(1)+(π-3)0+|2-3|;(2)×2-÷.21 . 定义一种新运算“*”满足下列条件:①对于任意的实数a,b,a*b总有意义;②对于任意的实数a,均有a*a=0;③对于任意的实数a,b,c,均有a*(b*c)=a*b+c.(1)填空:1*(1*1)=,2*(2*2)=,3*0=;(2)猜想a*0=,并说明理由;(3)a*b=(用含a、b的式子直接表示).22 . 计算:(1)2x2﹣4x+1=0(配方法)(2)﹣3x=1﹣x2(3)2(x+2)2=x(x+2)(4)(x+1)(x﹣1)+2(x+3)=8.23 . 已知关于的一元二次方程,若方程的一个根为2,求的值和方程的另一个根.24 . 解下列方程:(Ⅰ);(Ⅱ).25 . 计算:(1);(2)参考答案一、单选题1、2、3、4、二、填空题1、2、3、4、5、6、7、8、9、10、11、12、13、14、三、解答题1、2、3、4、5、6、7、。

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]

A.4
3
S V ABP ,其中正确的个数是(
2
B.3
C.2
第 II 卷

D.1
非选择题(102 分)
二、填空题(本大题共 7 个小题,每小题 4 分,本大题满分 28 分)
13.如图,在 V ABC 中, D 是 BC 边上一点, E 是边上一点.在 △ACE 中, Ð CAE 的对
边是

14.正十边形的每个外角等于
从点 B 出发,在直线 BC 上以 2cm/ s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F ,当
点 E 运动
s 时, CF
= AB .
19.如图,在 V ABC 中, ÐA = 20°, ÐEBC , ÐDCB 为 V ABC 的外角, ÐEBC 与 ÐDCB 的平分
线交于点 A1 , ÐEBA1 与 ÐDCA1 的平分线交于点 A2 , ¼,ÐEBAn -1 与 ÐDCAn -1 的平分线相交于点
的内角和为(
A. 1800°

B. 1440°
C. 1080°
试卷第 2 页,共 7 页
D. 720°
8.如图,在 V ABC 中,点 E 是 BC 的中点, AB = 7 , AC = 10 , △ACE 的周长是 25,则 V ABE
的周长是( )
A.18
B.22
C.28
D.32
9.如图,在 8 ´ 8 的正方形网格中, V ABC 的顶点和线段 EF 的端点都在小正方形的顶点上,

15.如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将 V BMN 沿 MN 翻折得 V FMN ,
若 MF∥AD,FN∥DC ,则 ÐB =

上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)

上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)
A. B. C. D.
【19题答案】
【答案】A
【分析】将方程解的条件化为函数的取值,从而求出m的取值范围.
【详解】∵方程x2+(m+2)x+m+5=0的一个根大于1,另一个根小于1,
令f(x)=x2+(m+2)x+m+5,
则f(1)=1+m+2+m+5<0,
解得,m<-4.
故选A.
【点睛】本题考查了函数与方程之间的互相转化,属于基础题.
4.当 _____时,函数 是正比例函数,且 的值随 的值增大而减小.
【4题答案】
【答案】0
【分析】根据正比例函数的意义,可得答案.
【详解】∵函数 是正比例函数,
∴ ,
解得, , ,
∵y的值随x的值增大而减小,
∴m-2<0,即m<2
∴m=0,
故答案为0.
【点睛】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.
【答案】C
【分析】先提取公因式4后,观察方程4(x2+2x- ),可以令x2+2x- =0,用配方法解得两根x1、x2,则 =4(x2+2x- )=(x-x1)(x-x2).
【详解】 =4(x2+2x- )
令x2+2x- =0,则x2+2x=
∴x2+2x+1= +1,即(x+1)2=
解得, , ,
∴ =4
【点睛】本题考查了一元二次方程的解的定义:就是能够使方程左右两边相等的未知数的值,此题应特别注意一元二次方程的二次项系数不得为零.
10.关于 的代数式 是一个完全平方式,则 _____.

人教版2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷解析版

人教版2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷解析版

2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图案中是轴对称图形的是()A.中国移动B.中国联通C.中国网通D.中国电信2.(3分)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y63.(3分)点M(﹣5,3)关于x轴的对称点的坐标是()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3)4.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.3个B.4个C.5个D.6个5.(3分)如图,△ABC中,BE是角平分线,DE∥BC交AB于D,交AC于E,若DE=7,AD=5,则AB等于()A.10B.12C.14D.166.(3分)下列运算正确的是()A.3x3•5x2=15x6B.4y•(﹣2xy2)=﹣8xy3C.(﹣3x)2•4x3=﹣12x5D.(﹣2a)3•(﹣3a)2=﹣54a57.(3分)如图,直线l表示马家沟河,点P表示工业大学教学楼,点Q表示实验车间,欲在马家沟河l上修建一个排水泵站(记为点M),现从P,Q两处向马家沟排水,有如下四种修建水泵站供水管道的方案,则修建的管道最短的方案是()A.B.C.D.8.(3分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点9.(3分)计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣110.(3分)下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A'B'C'成轴对称,则△ABC一定与△A'B'C'全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.5二、填空题:11.(3分)若点p(a,3)与Q(﹣2,b)关于y轴对称,则a+b=.12.(3分)(x﹣8y)(x﹣y)=.13.(3分)若a n=2,则a3n的值是.14.(3分)如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于.15.(3分)45×(0.25)5=.16.(3分)如图,等腰△ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于.17.(3分)如图,点P关于OA、OB的对称点是H、G,直线HG交OA、OB于点C、D,若∠HOG =80°,则∠CPD=°.18.(3分)如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠EDC=度.19.(3分)△ABC中,AB=AC,DE是AB的垂直平分线,交AB于D,交直线AC于点E,且与直线AC的夹角为50°,则∠ABC=°.20.(3分)如图,△ABC中,AB=AC,点E在AB的延长线上,点D在边AC上,且EB=CD=4,线段DE交边BC于点F,过点F作FG⊥DE交线段CE于点G,CE⊥AC,△GEF的面积为5,则EG的长.三、解答题(21--22每题7分,23--24每题8分,25--27每题10分)21.先化简,再求值:(x2)3﹣x•x2﹣x2﹣x(x5﹣x2+2x﹣1),其中x=2.22.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法);(2)直接写出B′,C′的坐标;(3)直接写出△A′B′C′的面积是.23.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A 的度数.24.如图,AD与BC相交于点F,FA=FC,∠A=∠C,点E在BD的垂直平分线上.(1)如图1,求证:∠FBE=∠FDE;(2)如图2,连接CE分别交BD、AD于点H、G,当∠FBD=∠DBE=∠ABF,CD=DE时,直接写出所有与△ABF 全等的三角形.25.如图,△ABD 、△AEC 都是等边三角形,直线CD 与直线BE 交于点F .(1)求证:CD =BE ;(2)求∠CFE 的度数.26.如图,在△ABC 中,∠ACB =2∠ABC ,AD 为∠BAC 的角平分线,E 为线段AC 上一点,过点E 作AD 的垂线交AD 于H ,交直线AB 于F .(1)如图1,当E 点与C 点重合时,求证:BF =DE ;(2)如图2,连接BE 交AD 于点N ,M 是BF 的中点,连接DM ,若MD ⊥BF 于M ,AB =18,S △ABD :S △ACD =3:2,求DE 的长.27.如图,△ABC 为等边三角形,D 、E 分别是AB 、BC 上的点,且AD =BE ,AE 与CD 相交于点F ,(1)如图1,求∠CFE的度数;(2)如图2,过点C作CH⊥AE于点H,求证:2FH+DF=AE;(3)在(2)的条件下,如图3,过点H作HP⊥FC于P,在AE的延长线上取一点M,连接BM,且∠M=30°,若PC=3,MH=5,AF:HE=5:1,求DF的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.解:A、不是轴对称图形,故不合题意;B、是轴对称图形,故符合题意;C、不是轴对称图形,故不合题意;D、不是轴对称图形,故不合题意;故选:B.2.解:A、b3•b3=b6,故此选项错误;B、(ab2)3=a3b6,故此选项错误;C、(a5)2=a10,正确;D、y3+y3=2y3,故此选项错误;故选:C.3.解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(﹣5,3)关于x轴的对称点的坐标是(﹣5,﹣3),故选:A.4.解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:C.5.解:∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠ABE=∠DEB,∴BD=DE=7,∵AB=AD+BD,∴AB=5+7=12.故选:B.6.解:A.3x3•5x2=15x5,此选项错误;B.4y•(﹣2xy2)=﹣8xy3,此选项正确;C.(﹣3x)2•4x3=36x5,此选项错误;D.(﹣2a)3•(﹣3a)2=﹣72a5,此选项错误;故选:B.7.解:作P点关于直线l的对称点P',连接P'Q后与直线l相交于点M,即M即为所求;故选:B.8.解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.9.解:(﹣3x)•(2x2﹣5x﹣1)=﹣3x•2x2+3x•5x+3x=﹣6x3+15x2+3x.故选:B.10.解:①等腰三角形底边的中点到两腰的距离相等;正确;②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确;③若△ABC与△A'B'C'成轴对称,则△ABC一定与△A'B'C'全等;正确;④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:①③,2个;故选:A.二、填空题:11.解:∵点p(a,3)与Q(﹣2,b)关于y轴对称,∴a=2,b=3,∴a+b=2+3=5.故答案为:5.12.解:原式=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2,故答案为:x2﹣9xy+8y2.13.解:∵a n=2,∴a3n=(a n)3=23=8.故答案为:8.14.解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠DEF=180°﹣(∠EDF+∠EFD)=180°﹣120°=60°.故答案为:60°.15.解:45×(0.25)5=(4×0.25)5=1,故答案为:116.解:作BD⊥AC.∵∠A=30°,AB=3,∴在Rt△ABD中,BD=AB=×12=6,∴S=×12×6=36,△ABC故答案为:36.17.解:连接OP.∵P关于OA、OB的对称点是H、G,∴OA垂直平分PH于R,OB垂直平分PG于T,∴CP=CH,DG=DP,∴∠PCD=2∠CHP,∠PDC=2∠DGP,∵∠PRC=∠PTD=90°,∴在四边形OTPR中,∴∠RPT+∠AOB=180°,∵∠POC=∠COH,∠POD=∠DOG,∠HOG=80°,∴∠AOB=40°∴∠RPT=180°﹣40°=140°∴∠CHP+∠PGD=40°,∴∠PCD+∠PDC=80°∴∠CPD=180°﹣80°=100°.故答案为100.18.解:∵AB=AC,BD=CD,∴AD平分∠BAC,AD⊥BC,∴∠CAD=∠BAD=26°,∠ADC=90°.∵AD=AE,∴∠ADE=∠AED=77°,∴∠CDE=∠ADC﹣∠ADE=13°.∴故答案为:13.19.解:①如图1,∵AB的垂直平分线DE,∴BE=AE,∠EDB=90°,∴∠A=∠ABE,∵∠BED=50°,∴∠ABE=40°,∴∠A=40°,∵AB=AC,∴∠ABC=∠C=×(180°﹣∠A)=×(180°﹣40°)=70°;②如图2,∵AB的垂直平分线DE,∴BE=AE,∠EDB=90°,∴∠EAB=∠ABE,∵∠BED=50°,∴∠ABE=40°,∴∠EAB=40°,∴∠A=180°﹣40°=140°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=×(180°﹣140°)=20°;故答案为:70°或2020.解:过D作DH∥AB交BC于H,则∠DHC=∠ABC,∠EBF=∠DHF,∵AB=AC,∴∠ABC=∠ACB,∴∠DHC=∠ACB,∴DH=CD,∵BE=CD,∴DH=BE,在△BEF与△HDF中,∴△BEF≌△HDF,(AAS),∴EF=DF,设EF=x,FG=a,则DE=2x,∵△GEF的面积为5,∴=5,∴xa=10,∵FG⊥DE,CE⊥AC,∴∠DCE=∠EFG=90°,∵∠FEG=∠CED,∴△EFG∽△ECD,∴=,∴=,∴EG===5,故答案为:5.三、解答题(21--22每题7分,23--24每题8分,25--27每题10分)21.解:原式=x6﹣x3﹣x2﹣x6+x3﹣2x2+x=﹣3x2+x,把x=2代入得:原式=﹣3×4+2=﹣10.22.解:(1)△A'B'C'如图所示;(2)B′(﹣1,2),C′(﹣5,1).=12﹣×2×3﹣×2×2﹣×1×4=5.(3)S△A′B′C′故答案为5.23.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.24.(1)证明:在△BAF和△DCF中∴△BAF≌△DCF(ASA)∴BF=DF∴∠FBD=∠FDB又∵E在BD的垂直平分线上∴EB=ED∴∠EBD=∠EDB∴∠FBE=∠FDE(2)答案:△HBE、△DFC、△DCH、△GED理由如下:由(1)∠FBD=∠FDB,∠EBD=∠EDB∵∠FBD=∠DBE∴∠FDB=∠FDB∵BD=BD∴△BGD≌△BED(ASA)∴BF=EB,DE=DF∵CD=DE∴BF=FD=DE=EB=BA=CD设∠ABF=x,则由已知,∠FBD=∠FDB=∠EBD=∠EDB=x ∵AB=BF∴∠A=∠AFB=2x在△ABD中,x+2x+2x=180°∴x=36°∴∠FBD=∠FDB=∠EBD=∠EDB=36°∠AFB=∠CFD=∠A=72°∴∠CDB=72°∵ED=CD,∠EBD=36°∴∠DCE=∠CED=36°∵∠DBE=36°∴∠BHE=72°∴△ABF≌△HBE,同理,△ABF≌△HCD,△ABF≌△GED∴与△ABF全等的三角形有△HBE、△DFC、△DCH、△GED25.解:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°,∵∠DAB=∠DAC+∠CAB,∠CAE=∠BAE+∠CAB,∴∠DAC=∠BAE,在△DAC和△BAE中,∴△DAC≌△BAE,∴CD=BE.(2)∵△DAC≌△BAE,∴∠ADC=∠ABE,∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°.26.证明:(1)连接DF,设AD与EF交于点K,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵EF⊥AD,∴∠AKF=∠AKE=90°,∴∠AFK=∠AEK,∴AF=AE,则在△AFD 和△AED 中:,∴△AFD ≌△AED (SAS ),∴DF =DE ,∠AFD =∠AED ,又∵∠ACB =2∠ABC ,∴∠FBD =∠FDB ,∴BF =DF ,∴DE =BF ; (2)过A 作AP ⊥BC 于点P ,过D 作DQ ⊥AC 于点Q .连接DF , ∵S △ABD :S △ACD =3:2,即,∴,∵DC =4,∴BD =6∵AD 是∠BAC 的平分线,DM ⊥AB ,DQ ⊥AC ,∴DM =DQ ,∴,∴,由(1)可得:AQ =AM ,DC =BM ,∴AB =AC +DC ,∴,∴AC =8,AB =12,设PC =x ,则BP =10﹣x ,又勾股定理得:AB 2﹣BP 2=AC 2﹣PC 2=AP 2, 即122﹣(10﹣x )2=82﹣x 2,解得:x =1,∴DP =3,又AD 2﹣DP 2=AC 2﹣PC 2=AP 2,∴AD2=72,AD=,∵EF⊥AD,∴∠AKF=∠AKE=90°.∵DA平分∠BAC,∴∠FAD=∠EAD,∴∠AFE=∠AEF∴AF=AE在△AFD和△AED中:,∴△AFD≌△AED(SAS),∴∠AFD=∠AED,DF=DE,又∵DB=DF,∴DB=DE=6,∴∠BFD=∠DEC=∠DBF,∴180°﹣∠C﹣∠DEC=180°﹣∠C﹣∠DBF,∴∠EDC=∠BAC=2∠DAE,又∵∠EDC=2∠NED,∴∠DAE=∠NED,∵∠ADE=∠EDN,∴△DAE∽△DEN,∴,∴DE2=DN•DA,即62=DN•,∴DN=.27.解:(1)如图1中,∵△ABC是等边三角形,∴AC=AB,∠B=∠CAD=60°,∵BE=AD,∴△ABE≌△CAD(SAS),∴∠ACD=∠BAE,∵∠BAE+∠CAF=60°,∴∠CFE=∠ACD+∠CAF=∠BAE+∠CAF=60°.(2)如图2中,∵△ABE≌△CAD,∴AE=CD,在Rt△CFH中,∵∠CHF=90°,∠CFH=60°,∴∠FCH=30°,∴CF=2FH,∴2FH+DF=CF+DF=CD,∴2FH+DF=AE.(3)如图3中,延长CD到N,使得∠N=30°.设HE=a,DF=x,EM=b,则AF=5a.∵AB=AC,∠M=∠N,∠BAM=∠ACN,∴△ABM≌△CAN(AAS),∴AM=CN,∵AE=CD,∴EM=DN=b,∵FN=2AF,∴b+x=10a①,∵MH=5,∴a+b=5 ②,在Rt△CPH中,∵PC=3,∠PCH=30°,∴PH=,PF=1,HF=2,∵AE=CD,∴a+2+5a=x+4 ③由①②③可得x=,∴DF=.。

2019-2020学年江苏省常州市八年级(上)月考数学试卷(10月份) 解析版

2019-2020学年江苏省常州市八年级(上)月考数学试卷(10月份)  解析版

2019-2020学年江苏省常州市天宁区同济中学八年级(上)月考数学试卷(10月份)一.选择题(本大题共8小题,共24分)1.(3分)下列图案属于轴对称图案的是()A.B.C.D.2.(3分)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD3.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点4.(3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD6.(3分)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 7.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE8.(3分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF二、填空题(本大题共10小题,共20分,每题2分)9.(2分)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.10.(2分)△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为,△ABC的面积为.11.(2分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).12.(2分)如图,已知AD是BC的垂直平分线,垂足为D,△ABC的周长为32,△ACD 的周长为24,那么AD的长为.13.(2分)如图,△ABC中,△ACD与△BDE、△ADE都全等,则∠B=°.14.(2分)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是.15.(2分)如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=.16.(2分)如图,在△ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么△EBD的周长为.17.(2分)在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=cm.18.(2分)如图,△ADC中.∠C=90°,AC=10cm,BC=5cm.AD⊥AC,AB=PQ,P、Q两点分别在AC、AD上运动,当AQ=时,△ABC才能和△APQ全等.三、解笞题(本大题选6小题,共56分)19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.(8分)在4×4的方格中有五个同样大小的正方形如图摆放,请你在图1﹣图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.21.(6分)如图,已知AB=CD,∠ABC=∠DCB,求证:∠DBC=∠ACB.22.(7分)如图,点P是∠AOB的平分线上的一点,作PD⊥OA,PE⊥OB,垂足分别为D,E,连接DE,交OC于点F,求证:F是DE的中点.23.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.25.(12分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).2019-2020学年江苏省常州市天宁区同济中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(本大题共8小题,共24分)1.(3分)下列图案属于轴对称图案的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【解答】解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴A、B、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:C.3.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.4.(3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°【分析】要求∠E的大小,先要求出△DFE中∠D的大小,根据全等三角形的性质可知∠D=∠A=45°,然后利用三角形的内角和可得答案.【解答】解:∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°﹣∠D﹣∠F=100°.故选D.5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.6.(3分)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 【分析】从已知条件思考,利用角平分线的性质,结合平行线的性质,可得很多结论,然后与选项进行逐个比对,答案可得.【解答】解:∵∠BAD+∠ABD=90°,∠ABD+∠C=90°∴∠BAD=∠C(同角的余角相等)又∵EF∥AC∴∠BFE=∠C∴∠BAD=∠BFE又∵BE平分∠ABC∴∠ABE=∠FBE∴∠BEF=∠AEB,在△ABE与△FBE中,∵∴△ABE≌△FBE(AAS)∴AB=BF.故选:A.7.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.8.(3分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选:B.二、填空题(本大题共10小题,共20分,每题2分)9.(2分)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.10.(2分)△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为12cm,△ABC的面积为8cm2.【分析】利用关于直线对称图形的性质得出△ABC和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.11.(2分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.12.(2分)如图,已知AD是BC的垂直平分线,垂足为D,△ABC的周长为32,△ACD 的周长为24,那么AD的长为8.【分析】结合三角形的周长公式和线段垂直平分线的性质即可得到答案.【解答】解:∵AD是BC的垂直平分线,∴BD=DC,AB=AC,∵△ABC的周长为32,∴AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16,∵△ACD的周长为24,∴AC+DC+AD=24,∴AD=8,故答案为8.13.(2分)如图,△ABC中,△ACD与△BDE、△ADE都全等,则∠B=30°.【分析】根据全等三角形的性质得到∠AED=∠BED=90°,∠DAE=∠B,∠C=∠AED =90°,∠DAE=∠DAC,根据三角形内角和定理列式计算,得到答案.【解答】解:∵△BDE≌△ADE,∴∠AED=∠BED=90°,∠DAE=∠B,∵△ACD≌△AED,∴∠C=∠AED=90°,∠DAE=∠DAC,∴∠CAD=∠DAE=∠B=30°,故答案为:30.14.(2分)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是65°.【分析】根据Rt△ABC≌Rt△DEC得出AC=CD,然后判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得∠CAD=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DEC,然后根据全等三角形的性质可得∠B=∠DEC.【解答】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.15.(2分)如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=15°.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.16.(2分)如图,在△ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么△EBD的周长为6cm.【分析】首先根据角平分线的性质可得CE=DE,再利用HL定理证明Rt△ADE≌Rt△ACE,进而可得AD长,从而可得DB长,然后再计算出DE+EB长即可得到△EBD的周长.【解答】解:∵AE平分∠BAC,DE⊥AB于D,∠ACB=90°,∴CE=DE,在Rt△ADE和Rt△ACE中,,∴Rt△ADE≌Rt△ACE(HL),∴AC=AD=3cm,∵AB=5cm,∴DB=2cm,∵BC=4cm,∴DE+EB=4cm,∴△EBD的周长为6cm,故答案为:6cm.17.(2分)在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=8或16cm.【分析】作出图形,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,AE=CE,然后分两种情况讨论求解.【解答】解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=12cm,DE=4cm,∴如图1,AD+AE=BD+CE=BC﹣DE=12﹣4=8cm,如图2,AD+AE=BD+CE=BC+DE=12+4=16cm,综上所述,AD+AE=8cm或16cm.故答案为:8或16.18.(2分)如图,△ADC中.∠C=90°,AC=10cm,BC=5cm.AD⊥AC,AB=PQ,P、Q两点分别在AC、AD上运动,当AQ=5cm或10cm时,△ABC才能和△APQ全等.【分析】分两种情况讨论,由全等三角形的判定可求解.【解答】解:∵AD⊥AC,∴∠C=∠P AQ=90°,当BC=AQ=5cm时,且AB=PQ,∴Rt△ABC≌Rt△PQA(HL),当AQ=AC=10cm时,且AB=PQ,∴Rt△ABC≌Rt△QP A(HL),故答案为5cm或10cm.三、解笞题(本大题选6小题,共56分)19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.20.(8分)在4×4的方格中有五个同样大小的正方形如图摆放,请你在图1﹣图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.【分析】根据轴对称图形的性质找出格点即可.【解答】解:如图所示..21.(6分)如图,已知AB=CD,∠ABC=∠DCB,求证:∠DBC=∠ACB.【分析】由“SAS”可证△ABC≌△DCB,可得∠DBC=∠ACB.【解答】证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴∠DBC=∠ACB.22.(7分)如图,点P是∠AOB的平分线上的一点,作PD⊥OA,PE⊥OB,垂足分别为D,E,连接DE,交OC于点F,求证:F是DE的中点.【分析】由“AAS”可证△DOP≌△EOP,可得OD=OE,DP=PE,由线段垂直平分线的性质可得OP是DE的垂直平分线,可得结论.【解答】证明:∵OP平分∠AOB,∴∠AOC=∠BOC,在△DOP和△EOP中,,∴△DOP≌△EOP(AAS),∴OD=OE,DP=PE,∴OP是DE的垂直平分线,∴点F是DE的中点.23.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.【分析】(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=BC=AC,且AC=12,即可求出BD的长.【解答】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:∵△CDB≌△AEC,∴BD=CE,∵AE是BC边上的中线,∴BD=EC=BC=AC,且AC=12cm.∴BD=6cm.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S列方程计算即可得解.△ACD【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF,∴S△ABC=(AB+AC)×DE,即×(16+12)×DE=28,解得DE=2(cm).25.(12分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.。

山东日照港中学2024年八年级上学期10月月考数学试卷

2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季第一次月考八年级上学期数学试题含答案(人教版)一、精心选一选(每小题3分,共30分)1.的算术平方根是( )A .4 B. 2 C.-2 D. ±22.下面四个图形中,∠1与∠2是对顶角的是( )3.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)4.下列调查,适合用全面调查的事件是( )A.了解一批炮弹的杀伤半径B.了解枣阳电视台《聚焦》栏目的收视率C.了解汉江中鱼的种类D.了解某班学生对“枣阳一城两花”的知晓率5.一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6.下列四组值中不是二元一次方程12=-y x 的解的是( ) A.⎪⎩⎪⎨⎧-==21,0y x B.⎩⎨⎧==1,1y x C.⎩⎨⎧==0,1y x D.⎩⎨⎧-=-=1,1y x 7.如图,直线AB,CD 相交于点O ,OA 平分∠EOC.若∠EOC ︰∠EOD=2︰3,则∠BOD 的度数为( )A.36°B.40°C.35°D.45°8.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为( )A.(1,2)B.(1,3)C.(2,1)D.(3,2)9.下列说法正确的是( )A.22是分数 B.圆周率π是无理数 C.38是无理数 D.无限小数都是无理数10. 已知点P (a ,1-a )在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )二.细心填一填(每题3分,共30分)21,358;x y x y -=⎧⎨-=⎩①②11.把命题“同角的补角相等”改写成“如果……,那么……”的形式是 。

名校调研系列卷八年级上第一次月考数学试题

))))ABDCFEFABD C9.如图,在△ABC 中,BC 边所在直线上的高是线段 .(第9题) (第10题) (第11题)10.如图,若AB = AC ,AE = AD ,BD = CE ,∠CAE = 20°,则∠BAD = °. 11.如图,把△ABC 沿虚线剪一刀,若∠A = 43°,则∠1+∠2 = °.12.如图,△ABC ≌ △ADE ,若∠DAE = 80°,∠C = 30°,∠DAC = 35°,AC 、DE 交于点F ,则∠CFE = °.(第12题) (第13题)13.如图,AE = CF , AD = BC ,E 、F 为BD 上的两点,且BF = DE ,若∠AED = 60°,∠ADB = 30°,则∠BCF = °.14.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题. 如果从某个多边形的一个顶点出发的对角线共有3条,那么该多边形的内角和是 .15.一个多边形的每一个内角都是108°,求这个多边形的边数.21AAB C D E GE D AB CA BCDEPNM B A CBECA16.如图,C 为BE 上一点,点A 、D 分别在BE 两侧,AC = CD ,AB = CE ,请你添加一个条件,使△ABC ≌ △CED ,你添加的条件是 ,并写出证明过程. (第16题)17.如图,M 、N 在直线AB 上,AC = MP ,AM = BN ,BC = PN ,求证:AC ∥MP .(第17题)18.如图,在Rt △ABC 中,∠ACB = 90°,∠A = 30°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处,求∠CDE 的度数.(第18题)ABC D19.如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为13cm ,求AC 的长. (第19题)20.如图,△ABC 的面积是56cm 2,D 是AB 的中点,O 是CD 的中点,求图中阴影部分的面积.(第20题)得 分 评卷人四、解答题(每小题7分,共28分) OCADBDA OCECADBE21.如图,线段AB、CD相交于点O,E是△OCB内任一点,连接AE、DE,求∠A+∠B +∠C +∠D+∠AED的度数.(第21题)22.如图,在△ABC与△ABD中,AC = BD,且CE = DE,AE = BE,AD与BC交于点E.(1)求证:△ACE≌△BDE;(2)若AC = 3,BC = 5,求△ACE的周长.(第22题)ACA BDCFE 2123.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若∠1 = 48°,求∠2的度数; (2)求证:AB ∥DE . (第23题)24.如图,在△ABC 中,∠C >∠B ,AD ⊥BC 于点D ,AE 平分∠BAC . (1)若∠B = 50°,∠C = 72°,求∠EAD 的度数;(2)若∠B 、∠C 的度数未知,求证:∠EAD = (∠C -∠B ).(第24题)12MN12MN 21MN21ABODCABODBDACO25.如图①,AB = CD ,AD = BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点M 、N .(1)∠1与∠2有什么关系?请说明理由;(2)若将过O 点的直线旋转至图②、图③的情况下,其他条件不变,那么(1)中的∠1与∠2的关系还成立吗?请说明理由.图① 图② 图③(第25题)ADN CBMEF GABCD EF MN26.如图,四边形ABCD 中,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,若∠BAD= α,∠BCD = β.(1)如图①,若α+β = 150°,求∠MBC +∠NDC 的度数;(2)如图①,若BE 与DF 相交于点G ,∠BGD = 30°,请写出α、β所满足的等量关系式; (3)如图②,若α = β,判断BE 、DF 的位置关系,并说明理由.图① 图②(第26题)1、最困难的事就是认识自己。

人教版八年级(上)月考数学试卷(10月份)共3份

2020—2021学年太原市志达中学校八年级第一学期10月月调研 数学试卷(含答案)说明:本试卷为闭卷笔答,考试时不允许携带科学计算器,时间60分钟,满分100分一、选择题(本大题共10个小题,每小题3分,共30分)1.3的相反数是( ) A .3 B .3- C .33 D .33- 2.下列实数中的无理数是( )A .12B .4C .12-D .38-3.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .0.3,0.4,0.5C .1,2,3D .2,3,44.下列二次根式中是最简二次根式的是( )A .6B .16C .40D .175.下列算式中,正确的是( )A .255=±B .93±=C .()222-=-D .31-6.要使1x -有意义,则x 的取值范围是( )A .1x ≥B .01x <<C .1x ≤D .1x > 7.已知212m =+,估计m 的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 8.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A .5B .25C .144D .1699.如图,在行距、列距都是1的的44⨯方格网中,将任意连接两个格点的线段称作“格点线”,则“格点线”的长度不可能等于( )A .13B .5C .9D .1110.如图,在矩形ABCD 中,5CD =,8BC =,点E 若为BC 的中点,点F 为CD 上任意一点,AEF ∆周长的最小值为( )A .12B .1241+C .1341+D .13二、填空题(本大题含8个小题,每小题3分,共24分)把结果直接填在横线上.11.27的立方根是_______.12.计算:(23)(23)+-=_______.13.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三个城市的沿江高速公路,已知该沿江高速公路的建设成本是5000万元/km ,该沿江高速公路的造价预计是______万元.1431+______54(填“>”,“<”,“=”) 15.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若8ab =,小正方形的面积为9,则大正方形的边长为______.16.如图,数轴上点A 所表示的实数是_______.17.如图,四边形ABCD 中,2AB BC ==,1CD =,3DA =,AC 为一条对角线,若90ABC ∠=︒,则四边形ABCD 的面积为_______.18.如图,长方形ABCD 中,90A ABC C D ∠=∠=∠=∠=︒,6AB CD ==,10AD BC ==,点E 为射线AD 上的一个动点,ABE ∆与FBE ∆关于直线BE 对称,当点E ,F ,C 三点共线时,AE 的长为_______.三、解答题(共46分,解答时写出必要的文字说明,证明过程或演算步骤)19.(12045(28182+ (3)(223 (41(21227)3(5)(35)(52)20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长为25米,求木杆断裂处离地面多少米?21.如图,在ABC ∆中,D 是BC 上一点,若10AB =,6BD =,8AD =,17AC =.(1)求DC 的长.(2)求ABC ∆的面积.22.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a 、b 、c ,设2a b c p ++=,则三角形的面积()()()S p p a p b p c =---. 我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a 、b 、c ,则三角形的面积222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦. (1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于______. (2)若一个三角形的三边长分别是5,6,7选择一种适当的方法求这个三角形的面积.23.数学活动课上,老师提出了这样的问题:没有直角尺,要过AB 上的一点C ,作出AB 的垂线. 乐学组想到了办法一:如图1,可利用一把有刻度的直尺在AB 上量出4CD cm =,然后分别以C ,D 为圆心,以3cm 与5cm 为半径画圆弧,两弧相交于点E ,作射线CE ,则DCE ∠必为90︒.图1勤学组想到了办法二:如图2,以C 为圆心,任意长为半径作弧,交直线AB 于点F ,G 分别以F ,G 为圆心,大于12FG 长为半径作弧,两弧相交于点H ;作射线CH ,则FCH ∠必为90︒. 图2善思组想到了办法三:如图3,以C 为圆心,任意长为半径作弧,交直线AB 于点M ;分别以M ,C 为圆心,MC 长为半径作弧,两弧相交于点N :射线MN ,以N 为圆心,MN 长为半径作弧,交射线MN 于点P ;作射线CP ,则MCP ∠必为90︒.图3任务: (1)填空:“办法一”依据的一个数学定理是_________________________;(2)根据“办法二”的操作过程,亮亮完成了证明过程:如图4,连接HF ,HG ,在HFG ∆中,由作图可知HF HG =,CF CG =,HC FG ∴⊥(依据1):90FCH ∴∠=︒.依据1指的是:______________________; 图4 (3)请你根据“办法三”的操作过程,补充完成证明过程:如图5,连接CN ,由作图可知NM NC MC ==,图5(4)已知,如图6,点Q ,R 是直线l 上两点,且4QR =①尺规作图:求作RQS ∆,使得点S 在l 的上方,且90RQS ∠=︒,QR QS =;②若RSW ∆是以RS 为一边的等边三角形,请直接写出线段QW 的长度(不需要作图).图62020—2021学年志达八年级第一学期10月月调研数学试卷一、选择题1-5:BABAD 6-10:ACBDC二、填空题11.312.1 13.900000 14.> 15.5 1651 17.22+18.2或18三、解答题19.【答案】(1)5-(2)5(3)743-(4)1(55120.【答案】12米【解析】解:设木杆断裂处离地面x 米由题意得:2225(25)x x +=-解得12x =.答:木杆断裂处离地面12米21.【答案】(1)15(2)84【解析】解:2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,AD BC ∴⊥,在Rt ACD ∆中,15CD ===,111()21884222ABC S BC AD BC CD AD ∆∴=⋅=⋅⋅=⨯⨯= 因此ABC ∆的面积为8422.【答案】(1)66(2)2【解析】解:(1)567922a b c p ++++===S ===答:这个三角形的面积等于(2)S ====23.【答案】(1)勾股定理逆定理(2)等腰三角形三线合一(3)见解析(4)见解析【解析】(3)如下所示:NM NC =NMC NCM ∴∠=∠又NP NC =NPC NCP ∴∠=∠又180NMC NCM NPC NCP ∠+∠+∠+∠=︒90NCM NCP ∴∠+∠=︒又180NMC NCM NPC NCP ∠+∠+∠+∠=︒90NCM NCP ∴∠+∠=︒90MCP ∴∠=︒(4)①如图所示,RQS ∆即为所求②2622QW =或26224QS QR ==42RS ∴=易得2PS PR PQ ===易得22PR SP ==122326PW ==12622QW ∴=同理,易得22622QW ∴=图22020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷(解析版)一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.79.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为.12.(3分)三角形的外角和等于度.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为s.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是°.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.2020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性【分析】利用三角形的稳定性进行解答即可.【解答】解:按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是三角形的稳定性,故选:D.3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵这个正六边形的外角和等于360°,∴∠1=360°÷6=60°.故选:A.4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:A,C,D都不是△ABC的边AB上的高,故选:B.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°【分析】先求出∠2=45°、∠3=30°,再根据三角形的内角和列式计算即可得解.【解答】解:由图可知,∠2=90°﹣45°=45°,∴∠1=180﹣45°﹣30°=105°.故选:A.6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°【分析】利用平行线的性质求出∠A,再利用三角形内角和定理求出∠B即可.【解答】解:∵AB∥CD,∴∠A=∠ACD=36°,∵∠ACB=90°,∴∠B=90°﹣36°=54°,故选:B.7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE【分析】利用三角形内角和定理可得∠ADC的度数,再利用平行线的性质及角平分线的定义可得答案.【解答】解:∵∠C=90°,∠CAD=26°,∴∠ADC=64°.∵直线EF∥直线GH,∴∠DBE=∠ADC=64°.∵BA平分∠DBE,∴∠ABE=∠DBE=32°.∵直线EF∥直线GH,∴∠BAD=∠ABE=32°.故选:D.8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.7【分析】利用全等三角形的性质可得BC=EF=8,再利用线段的和差关系计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF=8,∴EC=5,∴CF=8﹣5=3,故选:B.9.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【分析】根据三角形内角和定理来判断.【解答】解:①由∠A+∠B=∠C,∠A+∠B+∠C=180°得到:2∠C=180°,则∠C=90°,所以△ABC是直角三角形;②设∠A=x,∠B=2x,∠C=3x,∠A+∠B+∠C=180°得到:6x=180°,则x=30°,∠C=3x=90°,所以△ABC是直角三角形;③由∠A=2∠B=3∠C,∠A+∠B+∠C=180°得到:∠A+∠A+∠A=180°,则∠A=()°,所以△ABC不是直角三角形;④∠A=∠B=∠C,∠A+∠B+∠C=180°得到:∠A+∠A+2∠A=180°,则∠A=45°,∠C=90°,所以△ABC是直角三角形;综上所述,能确定△ABC是直角三角形的条件有3个.故选:C.10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°【分析】求出∠AFE+∠CFD即可解决问题.【解答】解:∵∠B=100°,∴∠A+∠C=80°,∵∠AFE=∠AEF,∠CFD=∠CDF,∠A+2∠AFE=180°,∠C+2∠CFD=180°,∴2∠AFE+2∠CFD=280°,∴∠AFE+∠CFD=140°,∴∠EFD=180°﹣140°=40°,故选:C.二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为55°.【分析】根据直角三角形的性质解答即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=35°,∴∠A=90°﹣35°=55°,故答案是:55°.12.(3分)三角形的外角和等于360度.【分析】根据任何多边形的外角和是360度即可求解.【解答】解:三角形的外角和等于360°.故答案是:360.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为4.【分析】利用三角形的中线定义解答即可.【解答】解:∵CD是△ABC的中线,∴AD=AB,∵AB=8,∴AD=4,故答案为:4.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为60°.【分析】利用全等三角形的性质结合等式的性质可推出∠ACD=∠BCE,进而可得答案.【解答】解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∵∠BCE=60°,∴∠ACD=60°.故答案为:60°.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为16 s.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.【解答】解:360°÷45°=8,则所走的路程是:4×8=32(m),则所用时间是:32÷2=16(s).故答案是:16.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.【分析】(1)根据三角形的外角性质求出∠B,根据余角的概念计算,得到答案;(2)根据五边形的内角和等于540°列方程即可得到结论.【解答】解:(1)∠B=∠CAD﹣∠C=36°,∴∠B的余角=90°﹣36°=54°;(2)∵80°+x°+x°+x°+x°=540°,∴x=115.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.【分析】利用全等三角形的性质可得∠ACB=∠DCB,进而可得度数,然后再利用三角形内角和求∠ABC 的度数即可.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.【分析】利用角平分线的定义可得∠BAC的度数,然后再计算出∠FDE的度数,再利用直角三角形两锐角互余可得答案.【解答】解:∵AD平分∠BAC,∴∠BAC=2∠1=2×40°=80°,∵∠C=70°,∴∠B=30°,∴∠ADC=∠1+∠B=70°,∵EF⊥BC于点E,∴∠FED=90°,∴∠F=180°﹣70°﹣90°=20°.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =360°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=540°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是180n°.【分析】(1)过点E作EF∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.【解答】解:(1)过E作EF∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EF∥AB,∴CD∥EF(平行于同一条直线的两条直线互相平行).∵EF∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EF,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.【分析】尝试:利用三角形三边关系进而得出c的取值范围,进而得出答案;发现:根据奇数的定义和x的取值范围,可求解;联想:根据偶数的定义,以及x的取值范围即可求c的值,利用等腰三角形的判定方法得出即可.【解答】解:尝试:因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.发现:∵a=4,b=6,c为奇数,∴x为奇数,∵12<x<20,∴x最大为19,最小为13.联想:∵周长为小于18的偶数,∴x=16或x=14.当x为16时,c=6;当x为14时,c=4.当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上所述,△ABC是等腰三角形.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.【分析】(1)根据角平分线的定义得到∠GAB=∠DAB,∠GBA=∠CBA,求得∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),两式相加即可得到结论;(2)当∠FGE=∠FHE时,求得∠DAB+∠CBA=∠ADC+∠BCD,根据四边形的内角和即可得到结论.【解答】解:(1)∠FGE+∠FHE=180°,理由:∵AE平分∠BAD,BF平分∠ABC,∴∠GAB=∠DAB,∠GBA=∠CBA,∴∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),∴∠FGE+∠FHE=360°﹣(∠DAB+∠CBA+∠ADC+∠BCD)=180°;(2)∠FGE与∠FHE相等,此时,AD∥BC,∵∠FGE=180°﹣(∠DAB+∠CBA),∠FHE=180°﹣(∠ADC+∠BCD),当∠FGE=∠FHE时,180°﹣(∠DAB+∠CBA)=180°﹣(∠ADC+∠BCD),即∠DAB+∠CBA=∠ADC+∠BCD,∵四边形的内角和=360°,∴∠DAB+∠CBA=∠ADC+∠BCD=180°,∴AD∥BC.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=168°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=168°,∴∠MBC+∠NDC=168°;(2)β﹣α=70°.理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=35°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+35°=180°,∴β﹣α=70°;(3)平行.理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.2020-2021学年山东省济南实验中学八年级(上)月考数学试卷(10月份)(解析版)一.选择题(本大题共12小题,共48分)1.(3分)9的平方根是()A.3B.±3C.﹣3D.±2.(3分)在3.14159,,0,π,这4个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个3.(3分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣35.(3分)下列二次根式中,不能与合并的是()A.B.C.D.6.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c27.(3分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处8.(3分)通常来讲,电视机的大小是以屏幕的对角线长度来测量的(1英寸≈2.5厘米)现有一台电视机的屏幕长约80厘米,宽约60厘米,则该电视机的大小是()A.25英寸B.29英寸C.34英寸D.40英寸9.(3分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣810.(3分)如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为()A.B.C.D.511.(3分)如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米12.(3分)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)二、填空题(本大题共6小题,共24分)13.(3分)4是的算术平方根.14.(3分)与﹣最接近的整数是.15.(3分)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“炮”位于点.16.(3分)已知a、b满足,则点(a、b)关于y轴对称的点的坐标为.17.(3分)有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为.18.(3分)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是.三、解答题(共78分)19.(16分)计算:(1);(2);(3);(4).20.(8分)化简:(1);(2).21.(6分)先化简,再求值:(a+b)(a﹣b)+b(a+2b)﹣(a﹣b)2,其中a=1+,b=1﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点A为端点画出AB=,AC=,AD=的线段;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,;(3)如图3,点P,M,N是小正方形的顶点,直接写出∠PNM的度数.23.(6分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.(6分)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.25.(8分)定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN =45°,求证:点M、N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=+1.求BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半.)26.(10分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A 作AD⊥CD,过点B作BE⊥CD,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线PQ与x轴交于点Q(1,0),与y轴交于点P(0,3),以线段PQ为一边作等腰直角三角形PQR,请直接写出点R的坐标.2020-2021学年山东省济南实验中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(本大题共12小题,共48分)1.(3分)9的平方根是()A.3B.±3C.﹣3D.±【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:B.2.(3分)在3.14159,,0,π,这4个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个【分析】根据同类项、整式、多项式的定义,结合选项进行判定.【解答】解:3.14159,,0是有理数,π是无理数,故无理数的个数有1个.故选:A.3.(3分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.4.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣3【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式==,所以C选项错误;D、原式=3,所以D选项错误.故选:B.5.(3分)下列二次根式中,不能与合并的是()A.B.C.D.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.6.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c2【分析】根据三角形内角和定理可分析出A、C的正误;根据勾股定理逆定理可分析出B、D的正误.【解答】解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵()2=12+12,∴能构成直角三角形,故此选项不合题意;C、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,∴△ABC不是直角三角形,故此选项符合题意;D、∵b2=a2+c2,∴能构成直角三角形,故此选项不符合题意.故选:C.7.(3分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处【分析】根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.【解答】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.8.(3分)通常来讲,电视机的大小是以屏幕的对角线长度来测量的(1英寸≈2.5厘米)现有一台电视机的屏幕长约80厘米,宽约60厘米,则该电视机的大小是()A.25英寸B.29英寸C.34英寸D.40英寸【分析】根据勾股定理求出电视机对角线的长即可.【解答】解:∵一台电视机的屏幕长约80厘米,宽约60厘米,∴对角线的长==100.∵1英寸≈2.5厘米,∴=40(英寸).故选:D.9.(3分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣8【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2019-2020年度八年级10月月考数学试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是()
A.3B.4C.5D.6
2 . 如图,AE∥BF,∠1=110°,∠2=130°,那么∠3的度数是()
A.40°B.50°C.60°D.70°
3 . 如图,,,则下列结论不一定成立的是()
A.⊥B.C.D.
4 . 已知等腰三角形的两边长分别为 6 和 1,则这个等腰三角形的周长为()
A.13B.8C.10D.8 或 13
5 . 如图,△ABC是等边三角形,D是AC的中点,点E在BC的延长线上,点F在AB上,.若AB=5,则BE+BF的长度为()
A.7.5B.8C.8.5D.9
6 . 下列图形中,不是中心对称图形的是()
A.B.C.D.
7 . 如图,和中,,要判定还需要补充的条件不能是()
A.B.C.D.
8 . 9的算术平方根是()
A.3B.C.D.81
9 . 下列长度的三条线段能组成三角形的是()
A.3, 4, 6B.6, 9,17C.5, 12, 18D.2, 2, 4
10 . 如图,在ABC 与AEF 中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交 EF 于点 D,下列结论正确的个数是
①∠C=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°
A.1B.2C.3D.4
二、填空题
11 . 如图,已知在四边形中,,平分,,,,则四
边形的面积是_____.
12 . 在函数y=中,x的取值范围是.
13 . 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1 .
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2 .
(3)△ABC是否为直角三角形?答(填是或者不是).
(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.
14 . 如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=_____°,
∠3=_____°.
15 . 如图,在正方形中,为对角线,为上一点,连接,,的延长线交于
点,,则的度数为________.
16 . 化简:(b<a<0)得.
17 . 如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是_____.
18 . 如图,正方形ABCD的边长是4cm,点G在边AB上,以BG为边向外作正方形GBFE,连接AE、AC、CE,则
△AEC的面积是cm2.
三、解答题
19 . 已知在平行四边形中,过点作于点,且.连接交于点,作
于点.
(1)如图1,若,,求的长;
(2)如图2,作于点,连接,求证:.
20 . 计算:.
21 . 观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.
(1)这组单项式的系数依次为多少,绝对值规律是什么?
(2)这组单项式的次数的规律是什么?
(3)根据上面的归纳,你可以猜想出第n个单项式是什么?
(4)请你根据猜想,写出第2016个,第2017个单项式.
22 . (1)如图1,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG
(2)如图2,已知AB∥CD,∠AEF与∠CFE的平分线交于点
A.猜想∠G的度数。

证明你的猜想
(3)如图3,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度
数.
23 . 已知如图1,在中,是的角平分线,是边上的高,.
(1)求的度数.
(2)如图2,若点为延长线上一点,过点作于点,求的度
数.
24 . 如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.
(1)的面积为______;
(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.
25 . 如图,在中,是高,,.请在图中作出的角平分线,交
于点,并求的度数.
26 . 已知2a﹣1是9的平方根,3a+b﹣1的算术平方根是4
(1)求a与b;
(2)当ab>0时,求2a﹣b2的立方根.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、。

相关文档
最新文档