山东省烟台市2020-2021学年高二下学期期末考试数学试题

合集下载

2020~2021学年度第二学期期末考试高二数学答案

2020~2021学年度第二学期期末考试高二数学答案

2021~2022学年度第一学期期末考试高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案BDADBBCCA二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,每个空2分.10.111.1812.2214x y -=13.848(,,999-14.(],1-∞;0,,42πππ⎡⎤⎛⎫⎪⎢⎣⎦⎝⎭15.2214x y +=三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:依题意,设圆的方程为x 2+y 2+Dx +Ey +F =0,则代入圆的一般方程,193016442014970D E F D E F D E F ++++=⎧⎪++++=⎨⎪++-+=⎩………………………3分∴D =2-………………………4分E =4,………………………5分F =20-,………………………6分∴x 2+y 22x -4y +20-=0,………………………8分令x =0,可得24200y y +-=,………………………9分∴y =2-±……………………10分∴PQ =.……………………12分17.(本小题满分12分)解:(Ⅰ)设等比数列}{n a 的公比为q ,则41(1)151a q q -=-………………………2分4211134a q a q a =+………………………3分因为各项均为正数,所以2q =………………………4分解得11a =………………………5分故}{n a 的通项公式为12n n a -=………………………6分(Ⅱ)由(Ⅰ)可知12n n a -=,………………………7分*22()n n n b n a n n =⋅=⋅∈N ………………………8分所以1212222nn S n =⨯+⨯++⨯ ③231212222n n S n +=⨯+⨯++⨯ ④………………………9分③-④得1212222n n n S n +-=+++-⨯ ……………………10分11222n n n ++=--⨯1(1)22n n +=-⨯-……………………11分所以1(1)22n n S n +=-⨯+……………………12分18.(本小题满分12分)解:(Ⅰ)证明:连接1CD ,因为O ,P 分别是AC ,1AD 的中点,………………………2分所以1∥OP CD .………………………3分又因为OP ⊄平面11CC D D ,………………………4分1CD ⊂平面11CC D D ,………………………5分所以OP ∥平面11CC D D .………………………6分(Ⅱ)依题意,以D 为原点,分别以DA ,DC ,1DD 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,可得)0,0,2(A ,)2,0,0(1D ,)1,0,1(P ,)0,2,2(B ,)0,2,0(C ,)2,2,0(1C .………7分依题意)2,0,2(1-=BC ………………………8分设),,(z y x n =为平面BPC 的法向量………………………9分则⎪⎩⎪⎨⎧=⋅=⋅0PC n PB n 得)2,1,0(=n ……………………10分因此510==BC n ……………………11分所以,直线1BC 与平面BPC 所成角的正弦值为510.………………12分解:(Ⅰ)由题意知:c ……………………1分根据椭圆的定义得:122a =+,即2a =.……………………2分2431b =-=.……………………3分所以椭圆C 的标准方程为2214x y +=.……………………4分(Ⅱ)由题:①当直线l 的斜率不存在时,l的方程是x =.……………………5分此时||1AB =,||OP =,所以24=||=1||OP AB λ--.…………6分②当直线l 的斜率存在时,设直线l的方程为=(y k x ,…………7分11(,)A x y ,22(,)B x y .由⎪⎩⎪⎨⎧-==+3(1422x k y y x可得2222(41)1240k x x k +-+-=.显然0∆>,则212241x x k +=+,212212441k x x k -=+,...............8分因为11=(y k x,22=(y k x ,所以||AB ==221441k k +=+.....................9分所以22223||1k OP k ==+,……………………10分此时2222341==111k k k k λ+--++.……………………11分综上所述,λ为定值1-.……………………12分解:(Ⅰ)设{}n a 的公比为(0)q q >,由题意得324113541114242a q a q a q a q a q⎧=⎨=+⎩,………1分解得11212q a ⎧=⎪⎪⎨⎪=⎪⎩,………………………2分所以12nn a ⎛⎫= ⎪⎝⎭,………………………3分当2n ≥时,11122n n n n n nb n b S S b --+=-=-,………………………4分即11n n b b n n -=-,………………………5分∴{}nb n是首项为1的常数列,………………………6分所以1nb n=∴n b n =………………………7分(Ⅱ)设()()()212121(3)241112222n n n n n n b a n c b b n n +++++==-++,n *∈N ,……………8分()111212n n n n +=-⋅+………………………9分所以2231111111122222322(1)2n n n A n n +=-+-++-⨯⨯⨯⨯⨯+⨯ …………10分1112(1)2n n A n +=-+⨯……………………11分因为*n N ∈,所以12n A <.……………………12分。

2020-2021学年山东省烟台市高二下学期期末考试数学试题

2020-2021学年山东省烟台市高二下学期期末考试数学试题

烟台市2020-2021学年度第二学期期末学业水平诊断高二数学注意事项:1.本试题满分150分,考试时间为120分钟. 2.答卷前,务必将姓名和准考证号填涂在答题卡上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹清晰;超出答题区书写的答案无效;在草稿纸、试题卷上答题无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1A x x =<,{}13B x x =-<<,则()RA B ⋂=()A .{}3x x < B .{}13x x <<C .{}1x x ≥D .{}13x x ≤<2.“11x<”是“1x >”的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知()()21,11,1x x f x f x x ⎧+≤⎪=⎨->⎪⎩,则()2021f =()A .2B .1C .0D .不确定4.函数()2221x xf x x --=+的图象可能为() A . B . C . D .5.若函数()21f x ax x=-在[)1,+∞上单调递减,则实数a 的取值范围是() A .[)0,+∞ B .()0,+∞C .1,2⎛⎤-∞- ⎥⎝⎦D .1,2⎛⎫-∞-⎪⎝⎭6.某种放射性物质在其衰变过程中,每经过一年,剩余质量约是原来的23.若该物质的剩余质量变为原来的14,则经过的时间大约为()(lg 20.301≈,lg30.477≈) A .2.74年B .3.42年C .3.76年D .4.56年7.已知函数()ln ,02,0x x f x x x >⎧=⎨+≤⎩,若()()f m f n =且n m <,则m n -的最小值为()A .2B .3C .21e -D .2e8.已知奇函数()f x 的定义域为()(),00,-∞⋃+∞,()10f -=,且()f x 在(),0-∞上单调递增,则不等式()()210xf x ->的解集为()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()()1,00,1-⋃D .()(),11,-∞-⋃+∞二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的有()A .“()0,x ∀∈+∞,21x>”的否定为“()0,x ∃∈+∞,21x≤”B .“()0,x ∀∈+∞,21x>”的否定为“(],0x ∃∈-∞,21x≤”C .“0x ∃>,210x x -->”的否定为“0x ∀>,210x x --≤”D .“0x ∃>,210x x -->”的否定为“0x ∀≤,210x x --≤”10.已知函数()1212xxf x -=+,())lg g x x =,则()A .函数()f x 为偶函数B .函数()g x 为奇函数C .函数()()()F x f x g x =+在区间[]1,1-上的最大值与最小值之和为0D .设()()()F x f x g x =+,则()()210F a F a +--<的解集为()1,+∞ 11.已知函数()1xf x x =-,()()g x x a a R =-∈,则() A .()f x 在()1,+∞单调递减 B .()f x 的图象关于点()1,0对称C .若方程()()f x g x =仅有1个实数根,则04a <<D .当0a <或4a >时,方程()()f x g x =有3个实数根12.若函数()g x 在区间D 上有定义,且对,,a b c D ∀∈,()g a ,()g b ,()g c 均可作为一个三角形的三边长,则称()g x 在区间D 上为“M 函数”.已知函数()1ln x f x x k x-=-+在区间1,e e ⎡⎤⎢⎥⎣⎦为“M 函数”,则实数k 的值可能为() A .4e -B .1e -C .25e -D .214e三、填空题,本题共4小题,每小题5分,共20分. 13.函数()f x =的定义域为______.14.已知()272,11,1x a x f x x ax x -+≥⎧=⎨-+<⎩是R 上的减函数,则实数a 的取值范围为______.15.若函数23x y e =-在0x =处的切线与ln y x ax =+的图象相切,则实数a 的值为______. 16.已知函数()(20f x a xx =-<<在其图象上任意一点()(),P t f t 处的切线,与x 轴、y 轴的正半轴分别交于M ,N 两点,设OMN △(O 处坐标原点)的面积为()S t ,当0t t =时,()S t取得最小值,则t 的值为______.四、解答题,本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知()f x 是定义在R 上的偶函数,当0x ≥时,()sin f x x x =-. (1)当0x <时,求函数()f x 的解析式; (2)解关于m 的不等式()()21f m f m >-. 18.(12分)已知函数()31413f x x x =-+. (1)求函数()f x 的极值;(2)讨论方程()()f x a R =∈实数解的个数.19.(12分)已知函数()()()ln 421x xf x k k R =+⋅+∈,()ln2g x x =.(1)若()f x 的定义域为R ,求k 的取值范围; (2)若不等式()()f x g x <有解,求k 的取值范围.20.(12分)如图,将一张长为a ,宽为58a 的矩形铁皮的四角分别截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体容器.设截去的小正方形的边长为x ,所得容器的体积为V .(1)将V 表示为x 的函数()V x(2)x 为何值时,容积V 最大?求出最大容积. 21.(12分)已知函数()()ln f x x x x m m R =-+∈. (1)若()y f x =的图象恒在x 轴上方,求m 的取值范围;(2)若存在正数1x ,2x ()12x x <,满足()()12f x f x =,证明:122x x +>. 22.(12分)已知函数()xf x xe -=.(1)求()f x 的单调区间; (2)令()()()()ln ag x f x a R f x =+∈,对任意1x ≥,()1g x ≥-.求a 的取值范围. 2020-2021学年度第二学期期末学业水平诊断 高二数学参考答案 一、单选题 DBAA CBBD二、多选题 9.AC 10.BCD11.ACD12.BD三、填空题13.(]0,2 14.[]2,315.116四、解答题17.解:(1)当0x <时,0x ->,()()()sin sin f x x x x x -=---=-+, 又()f x 为偶函数,所以()()sin f x f x x x =-=-+. (2)当0x ≥时,()()sin 1cos 0f x x x x ''=-=-≥, 所以()f x 在[)0,+∞单调递增.又()f x 为偶函数,所以()()()()2121f m f m fm f m >-⇔>-.所以21m m >-,两边平方,整理得()()3110m m -+>, 解得1m <-或13m >.18.解:(1)()24f x x '=-.令()0f x '=,解得2x =-或2x =.因此,当2x =-时,()f x 有极大值,且极大值为()23f -=. 当2x =时,()f x 有极小值,且极小值为()1323f =-. (2)方程()f x a =的实数解的个数,即为函数()y f x =的图象与直线y a =的交点的个数. 当x →-∞时,()f x →-∞,当x →+∞时,()f x →+∞, 结合(1)知()f x 的大致图象如图所示.所以,当193a >或133a <-时,解为1个; 当193a =或133a =-时,解为2个;当131933a -<<时,解为3个. 19.解:(1)要使()f x 的定义域为R ,只需4210x xk +⋅+>在R 上恒成立.令20x t =>,只需210y t kt =++>在0t >上恒成立.当02k-≤,即0k ≥时,()y t 在()0,+∞单增,恒有()()010y t y >=>, 因此,对任意0k ≥均成立.当02k ->,即0k <时,()y t 在0,2k ⎛⎫- ⎪⎝⎭单减,,2k ⎛⎫-+∞ ⎪⎝⎭单增,只需02k f ⎛⎫-> ⎪⎝⎭, 即221042k k -+>,解得22k -<<,所以20k -<<.综上,k 的取值范围为()2,-+∞.(2)若不等式()()f x g x <有解,即()ln 421ln 2ln 2x x xk x +⋅+<=,可得04212x x x k <+⋅+<有解.因为当x →+∞时,421x x k +⋅+→+∞,所以,对任意实数k ,总存在00x >,使得004210x x k +⋅+>,即4210x x k +⋅+>有解.由4212x x x k +⋅+<可得,1122x x k ⎛⎫-<-+⎪⎝⎭. 令20x t =>,1y t t=--,()()221111t t y t t-+'=-+=, 显然当()0,1t ∈时,函数单调递增,当()1,t ∈+∞时,函数单调递减, 所以当1t =时,y 取最大值2-, 所以12k -<-,即1k <-.20.解:(1)由题意知,长方体容器的长、宽、高分别为2a x -,528a x -,x , 容器的体积()5228V a x a x x ⎛⎫=-- ⎪⎝⎭. 令20a x ->,5208a x ->,0x >,可得5016x a <<. 故函数()()3225135224848V x a x a x x x ax a x ⎛⎫=--=-+ ⎪⎝⎭,5016x a <<.(2)令()221351228V x x ax a '=-+. 令()0V x '=,得11x a =,25ax =(舍去).因此,18x a =是函数()V x 的极大值点,相应的极大值398256a aV ⎛⎫= ⎪⎝⎭,也是()V x 在区间50,16a ⎛⎫⎪⎝⎭上的最大值. 答:截去的小正方形边长为18a 时,容器的容积最大,最大容积39256a .21.解:(1)()f x 的定义域为()0,+∞,()1ln 1ln f x x x x x'=+⋅-=. 当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增. 因此,当1x =时,()()min 11f x f m ==-. 由题意,()min 0f x >,即10m ->,解得1m >. (2)由(1)及()f x 的单调性知,1201x x <<<. 构造函数()()()2g x f x f x =--,01x <<.则()()()2ln ln 2ln 11g x x x x ⎡⎤'=+-=--⎣⎦,当01x <<时,()2111x --<,()2ln 110x ⎡⎤--<⎣⎦,即()0g x '<,所以()g x 在区间()0,1上单调递减.因为11x <,所以()()110g x g >=,即()()112f x f x >-. 由题意()()21f x f x =,所以()()212f x f x >-. 因为()f x 在()1,+∞,且单调递增,21x >,121x ->, 所以212x x >-,即122x x +>. 22.解:(1)()1xxf x e -'=, 令()0f x '>,得1x <;令()0f x '<,得1x >.所以()f x 的单调增区间为(),1-∞,单调减区间为()1,+∞.(2)由题意知()ln xae g x x x x=-+. 于是()()()221111x xx ae x x e x g x a x x x e --⎛⎫'=-+=- ⎪⎝⎭, 由(1)知,在[)1,+∞上,()f x 单调道减,且()10,f x e⎛⎤∈ ⎥⎝⎦,当0a ≤时,()0g x '≤,函数()g x 在[)1,+∞上单调递减,取0x e =,显然1e >, 但()1111e g e ae e e -=-+≤-<-,因此,0a ≤不合题意.当10a e<<时,结合(1)中()f x 的单调性知,存在()01,x ∈+∞,得00x ae x =, 此时()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()0000minln x ae g x g x x x x ==-+()001ln 1ln 1x x ae a =-+=+≥-,解得21a e ≥,即211a e e≤<;当1a e≥时,()0g x '≥,函数()g x 在[)1,+∞上单调道增,()()min 111g x g ae ==-≥-, 解得0a ≥,即1a e≥;综上所述,a 的取值范围21,e ⎡⎫+∞⎪⎢⎣⎭.。

2020-2021学年山东省德州市高二(下)期末数学试卷

2020-2021学年山东省德州市高二(下)期末数学试卷

2020-2021学年山东省德州市高二(下)期末数学试卷试题数:22,总分:1501.(单选题,5分)已知集合A= {x|y=√x−2},B={x|lnx<1},则A∩B=()A.(2,e)B.[2,e)C.(e,+∞)D.∅2.(单选题,5分)命题“∃x>0,xx2+1>0”的否定是()A.∀x>0,xx2+1>0B.∃x>0,xx2+1<0C.∀x>0,xx2+1≤0D.∃x>0,xx2+1≤03.(单选题,5分)已知a>0>b且a2>b2,那么下列不等式中,成立的是()A. 1a <1bB.a3<ab2C.a2b<b3D.a+b<04.(单选题,5分)在等比数列{a n}中,a2,a10是方程x2-6x+4=0的两根,则a3a9a6=()A.2B.-2C.-2或2D.3± √55.(单选题,5分)设函数f(x)= x−1x+1,则下列函数中为奇函数的是()A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+16.(单选题,5分)已知正实数a,b满足a+b=3,则4a +1b的最小值为()A.1B.3C. 32 D.97.(单选题,5分)已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A. f (x )=(12+1e x −1)•sinx B.f (x )=(12+1e x −1)•|cosx | C.f (x )=(12+1e x −1)•cosx D.f (x )=(12+1e x −1)•|sinx |8.(单选题,5分)设f'(x )为奇函数f (x )(x∈R )的导函数,f (-2)=0,当x >0时,xf'(x )-3f (x )<0,则使得f (x )>0成立的x 取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(-2,0)∪(2,+∞) C.(-2,0)∪(0,2) D.(-∞,-2)∪(0,2)9.(多选题,5分)已知函数f (x )= {log 2(x −1),x >12x ,x ≤1 ,则下面结论成立的是( )A.f (2)=4B. f (f (32))=12 C.f (f (1))=0 D.若f (a )=2,则a=110.(多选题,5分)已知定义域为R 的奇函数f (x )满足f (x+1)=-f (x ),且f (x )=x 2-x (0<x≤1),则下列结论一定正确的是( ) A. f (232)=−14B.f (-1-x )=f (x )C.函数f (x )的图象关于点(-1,0)对称D.f (x )在区间 (−12,12) 上是单调函数11.(多选题,5分)“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而引人,故又称该数列为“兔子数列”,它在现代物理、准晶体结构、化学.等领域都有直接的应用.斐波那契数列{a n }满足:a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*),记其前n 项和为S n ,则下列结论成立的是( ) A.S 8=54B.a 1+a 3+a 5+a 7+⋯+a 2019=a 2020C.a 2+a 4+a 6+a 8+⋯+a 2020=a 2021D.S 2020+S 2019-S 2018-S 2017=a 202212.(多选题,5分)我们把有限集合A 中的元素个数用card (A )来表示,并规定card (∅)=0,例如A={1,2,3},则card (A )=3.现在,我们定义A*B= {card (A )−card (B ),card (A )≥card (B )card (B )−card (A ),card (A )<card (B ) ,已知集合A={x|e x +x 2-2=0},B={x|(lnx-ax )(x 2-aex+1)=0},且A*B=1,则实数a 不可能在以下哪个范围内( ) A. (−2e ,−1e ) B. (0,1e ) C. (1e ,2e ) D. (2e,+∞)13.(填空题,5分)不等式|2x-1|<a 的解集为(0,1),则方程x 2-(2a-1)x-2=0的两根之和为 ___ .14.(填空题,5分)已知函数f (x )满足 f (x )=f′(π4)cosx −sinx ,则 f′(π4) =___ . 15.(填空题,5分)已知不等式 (4x +y )(1x +a y)≥9 对任意正实数x ,y 恒成立,则正实数a 的取值范围是 ___ .16.(填空题,5分)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为a i ,j ,例如a 3,2=9,a 4,2=15,a 5,4=23,由此可得a 8,5=___ ,若a i ,j =2021,则i-j=___ .17.(问答题,10分)已知集合A= {x|x−32−x >0} ,B={x|2m <x <m+3}. (1)当m=0时,求(∁R A )∩B ;(2)请在 ① 充分不必要条件 ② 必要不充分条件这两个条件中任选一个,补充到下面的问题中,并解决问题.若x∈A 是x∈B 的______条件,试判断m 是否存在,若存在,求出m 的取值范围,若不存在,说明理由.18.(问答题,12分)已知数列{a n }满足a 1=1,a n+1= {a n +2,n 奇数a n +1,n 偶数 .(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前10项和.19.(问答题,12分)已知函数f (x )=x 2e x -ax 2-4ax . (1)若a=0,求y=f (x )在x=1处的切线方程;(2)已知函数y=f (x )在x=1处有极值,求函数的单调递增区间.20.(问答题,12分)科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业2020年最新研发了一款电子设备,通过市场分析,生产此类设备每年需要投人固定成本200万,每生产x (百台)电子设备,需另投人成本R (x )万元,且R (x )= {12x 2+30x +150,(10<x <64)72x +1800x−60−920,(64≤x <120) ,由市场调研可知,每台设备售价0.7万元,且生产的设备当年能全部售完.(1)求出2020年的利润W (x )(万元)关于年产量x (百台)的函数关系式,(利润=销售额一成本);(2)2020年产量为多少百台时,企业所获利润最大?最大利润是多少?21.(问答题,12分)已知数列{a n}的前n项和为S n,且a1=1,a n+1=S n+1.(1)求数列{a n}的通项公式;(2)设b n= a n(S n+2)(S n+1+2),数列{b n}前n项和为T n,求证:T n<16.22.(问答题,12分)已知函数f(x)=lnx+ 2−ax-1-a(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(0,+∞)恒成立,求整数a的最大值.2020-2021学年山东省德州市高二(下)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A= {x|y=√x−2},B={x|lnx<1},则A∩B=()A.(2,e)B.[2,e)C.(e,+∞)D.∅【正确答案】:B【解析】:先利用函数的定义以及指数不等式的解法求出集合A,B,再由集合交集的定义求解即可.【解答】:解:因为A= {x|y=√x−2}={x|x≥2},B={x|lnx<1}={x|0<x<e},所以A∩B={x|2≤x<e}.故选:B.【点评】:本题考查了集合的运算,主要考查了集合交集的求解,解题的关键是掌握交集的定义,属于基础题.2.(单选题,5分)命题“∃x>0,xx2+1>0”的否定是()A.∀x>0,xx2+1>0B.∃x>0,xx2+1<0C.∀x>0,xx2+1≤0D.∃x>0,xx2+1≤0【正确答案】:C【解析】:由含有量词的命题的否定方法:先改变量词,然后再否定结论,求解即可.【解答】:解:由含有量词的命题的否定方法:先改变量词,然后再否定结论,可得命题“∃x>0,xx2+1>0”的否定是“∀x>0,xx2+1≤0”.【点评】:本题考查了含有量词的命题的否定,要掌握其否定方法:先改变量词,然后再否定结论,属于基础题.3.(单选题,5分)已知a>0>b且a2>b2,那么下列不等式中,成立的是()A. 1a <1bB.a3<ab2C.a2b<b3D.a+b<0【正确答案】:C【解析】:A选项,利用a,b的正负判断即可;B、C选项,利用不等式a2>b2两边同乘a,b判断;D选项,利用不等式开方性质判断.【解答】:解:因为a2>b2,所以|a|>|b|,又a>0>b,所以a>-b,即a+b>0,所以D选项错误;A选项:因为a>0>b,所以1a >0>1b,所以A选项错误;B选项:因为a2>b2,a>0,所以a3>ab2,所以B选项错误;C选项:因为a2>b2,b<0,所以a2b<b3,所以C选项正确.故选:C.【点评】:本题考查不等式的基本性质,属于基础题.4.(单选题,5分)在等比数列{a n}中,a2,a10是方程x2-6x+4=0的两根,则a3a9a6=()A.2B.-2C.-2或2D.3± √5【正确答案】:A【解析】:根据一元二次方根跟与系数的关系可得2a10=4,再根据等比数列的性质可得a2a10=a3a9=a 62 =4,从而可得a6=2,所以a3a9a6 = a62a6=a6可求.【解答】:解:由a2,a10是方程x2-6x+4=0的两根,得a2a10=4,又{a n}是等比数列,所以a2a10=a3a9=a 62 =4,解得a6=2或a6=-2(舍去),所以a3a9a6 = a62a6故选:A .【点评】:本题考查等比数列的性质,运用到一元二次方程的根与系数的关系,考查学生逻辑推理和运算求解的能力,属于基础题.5.(单选题,5分)设函数f (x )= x−1x+1 ,则下列函数中为奇函数的是( ) A.f (x-1)-1 B.f (x-1)+1 C.f (x+1)-1 D.f (x+1)+1 【正确答案】:A【解析】:根据题意,先分析f (x )的对称性,结合函数平移变换的规律依次分析选项,判断选项中函数的对称中心,分析可得答案.【解答】:解:根据题意,函数f (x )= x−1x+1 = x+1−2x+1 =- 2x+1+1,则f (x )的图象关于点(-1,1)对称, 依次分析选项:对于A ,f (x-1)-1,由函数f (x )的图象向右平移1个单位,向下平移一个单位得到,即f (x-1)-1的图象关于(0,0)对称,是奇函数,A 正确; 对于B ,f (x-1)+1,由函数f (x )的图象向右平移1个单位,向上平移一个单位得到,即f (x-1)+1的图象关于(0,2)对称,不是奇函数,B 错误; 对于C ,f (x+1)-1,由函数f (x )的图象向左平移1个单位,向下平移一个单位得到,即f (x+1)-1的图象关于(-2,0)对称,不是奇函数,C 错误; 对于D ,f (x+1)+1,由函数f (x )的图象向左平移1个单位,向上平移一个单位得到,即f (x+1)+1的图象关于(-2,2)对称,不是奇函数,D 错误; 故选:A .【点评】:本题考查函数奇偶性的判断以及性质的应用,涉及函数解析式的计算,属于基础题. 6.(单选题,5分)已知正实数a ,b 满足a+b=3,则 4a +1b 的最小值为( ) A.1 B.3 C. 32D.9【正确答案】:B【解析】:由a+b=3可得13(a+b)=1,所以4a+ 1b= 13(a+b)(4a+ 1b)= 13(5+ ab+ 4ba)≥ 13(5+2 √ab•4ba)再进一步分析之后即可得出4a+1b的最小值.【解答】:解:由a+b=3,得13(a+b)=1,又a>0,b>0,所以4a + 1b= 13(a+b)(4a+ 1b)= 13(5+ ab+ 4ba)≥ 13(5+2 √ab•4ba)=3,当且仅当ab = 4ba,a=2b,即a=2、b=1时,等号成立,所以4a+1b的最小值为3.故选:B.【点评】:本题主要考查基本不等式的运用,考查学生的推理论证和运算求解能力,属于基础题.7.(单选题,5分)已知函数f(x)的图象如图所示,则f(x)的解析式可能是()A. f(x)=(12+1e x−1)•sinxB. f(x)=(12+1e x−1)•|cosx|C. f(x)=(12+1e x−1)•cosxD. f(x)=(12+1e x−1)•|sinx|【正确答案】:B【解析】:利用f(0)的值排除选项A,D,利用当x∈(π2,3π2)时,f(x)的值排除选项C,即可得到答案.【解答】:解:对于A,当x=0时,f(0)=0,不符合图象,故选项A错误;对于D,当x=0时,f(0)=0,不符合图象,故选项D错误;对于C,当x>0时,e x>1,故1e x−1>0,所以12+1e x−1>0,则当x∈(π2,3π2)时,cosx<0,故f(x)<0,不符合图象,故选项C错误;令g(x)=12+1e x−1,则g(-x)=-g(x),则g(x)为奇函数,又y=|cosx|为偶函数,故函数f(x)为奇函数,有可能是图象的解析式.故选:B.【点评】:本题考查了函数图象的识别,解题的关键是掌握识别图象的方法:可以从定义域、值域、函数值的正负、特殊点、特殊值、函数的性质等方面进行判断,考查了直观想象能力与逻辑推理能力,属于基础题.8.(单选题,5分)设f'(x)为奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-3f(x)<0,则使得f(x)>0成立的x取值范围是()A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(2,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(0,2)【正确答案】:D【解析】:构造函数g(x)=f(x)x3,g(x)是偶函数,结合题意可得g(x)在(0,+∞)上单调递减,再结合f(-2)=0,可得g(-2)=g(2)=0,作出g(x)的草图,利用f(x)>0⇔x3g(x)>0⇔xg(x)>0⇔{x>0g(x)>0或{x<0g(x)<0可求得答案.【解答】:解:构造函数g(x)=f(x)x3,定义域为{x|x≠0},因为f(x)是在R上的奇函数,所以f(0)=0,且g(−x)=f(−x)(−x)3=−f(x)−x3=f(x)x3=g(x),所以g(x)是偶函数,g′(x)=xf′(x)−3f(x)x4,当x>0时,因为xf′(x)-3f(x)<0,所以g′(x)<0,g(x)在(0,+∞)上单调递减,又因为g(x)是偶函数,所以g(x)在(-∞,0)上单调递增,因为f(-2)=0,所以g(-2)=0,所以g(2)=0,作出函数g(x)的大致草图,当x=0时,f (x )=0,所以x=0不是不等式f (x )>0的解; 当x≠0时, f (x )>0⇔x 3g (x )>0⇔xg (x )>0⇔{x >0g (x )>0 或 {x <0g (x )<0, 数形结合可得x <-2或0<x <2. 故选:D .【点评】:本题考查函数的奇偶性与单调性综合,考查导数逆运算构造函数解不等式,考查数形结合的数学思想,属于中档题.9.(多选题,5分)已知函数f (x )= {log 2(x −1),x >12x ,x ≤1 ,则下面结论成立的是( )A.f (2)=4B. f (f (32))=12 C.f (f (1))=0 D.若f (a )=2,则a=1 【正确答案】:BC【解析】:由分段函数的解析式,逐个求得函数值,即可得出答案.【解答】:解:对于A :f (2)=log 2(2-1)=0,故A 错误;对于B :f ( 32 )=log 2( 32 -1)=log 2 12 =-1,f (f ( 32 ))=f (-1)=2-1= 12 ,故B 正确; 对于C :f (1)=2,f (f (1))=f (2)=log 2(2-1)=0,故C 正确; 对于D :当a >1时,令f (a )=2, 得log 2(a-1)=2,解得a=5, 当a≤1时,令f (a )=2, 得2a =2,解得a=1,所以a=1或a=5,故D 错误.故选:BC.【点评】:本题考查分段函数,函数值,属于中档题.10.(多选题,5分)已知定义域为R的奇函数f(x)满足f(x+1)=-f(x),且f(x)=x2-x(0<x≤1),则下列结论一定正确的是()A. f(232)=−14B.f(-1-x)=f(x)C.函数f(x)的图象关于点(-1,0)对称D.f(x)在区间(−12,12)上是单调函数【正确答案】:BCD【解析】:根据题意,依次分析选项是否正确,综合可得答案.【解答】:解:根据题意,依次分析选项:对于A,函数f(x)满足f(x+1)=-f(x),则f(x+2)=-f(x+1)=f(x),函数f(x)是周期为2的周期函数,f(232)=f(12- 12)=f(- 12)=-f(12),而f(12)=- 14,则f(232)=-f(12)= 14,A错误;对于B,f(x)为奇函数,且f(x+1)=-f(x),即f(x)=-f(x+1),则有f(x)=f(-x-1),B正确;对于C,由A的结论,f(x)是周期为2的周期函数,则有f(x-2)=f(x),即f(x-2)=-f (-x),函数f(x)的图象关于点(-1,0)对称,C正确;对于D,在区间(0,12)上,f(x)=x2-x=(x- 12)2- 14,是减函数,且有f(x)<f(0)=0,又由f(x)为奇函数,则在区间(- 12,0)上,f(x)是奇函数且f(x)>f(0)=0,综合可得:f(x)在区间(−12,12)上是单调减函数,D正确;故选:BCD.【点评】:本题考查函数奇偶性的性质以及应用,涉及函数周期性的分析,属于基础题.11.(多选题,5分)“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而引人,故又称该数列为“兔子数列”,它在现代物理、准晶体结构、化学.等领域都有直接的应用.斐波那契数列{a n}满足:a1=1,a2=1,a n=a n-1+a n-2(n≥3,n∈N*),记其前n项和为S n,则下列结论成立的是()A.S8=54B.a1+a3+a5+a7+⋯+a2019=a2020C.a 2+a 4+a 6+a 8+⋯+a 2020=a 2021D.S 2020+S 2019-S 2018-S 2017=a 2022 【正确答案】:ABD【解析】:由a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*)可计算得出a 3,a 4,a 5,a 6,a 7,a 8,直接计算S 8即可;【解答】:解:由a 1=1,a 2=1,a n =a n-1+a n-2(n≥3,n∈N*)得:a 3=2,a 4=3,a 5=5,a 6=8,a 7=13,a 8=21,于是,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=54,故A 正确;因为a 1+a 3+a 5+a 7+…+a 2019=a 2+(a 4-a 2)+(a 6-a 4)+…+(a 2020-a 2018)=a 2020,故B 正确; 因为a 2+a 4+a 6+a 8+…+a 2020=(a 3-a 1)+(a 5-a 3)+(a 7-a 5)+…+(a 2021-a 2019)=a 2021-1,故C 不正确;因为S 2020+S 2019-S 2018-S 2017=a 2019+a 2018+a 2019+a 2020=a 2020+a 2021=a 2022,故D 正确; 故选:ABD .【点评】:本题考查递推数列与数列的前n 项和,考查学生的逻辑思维能力和计算能力,属中档题.12.(多选题,5分)我们把有限集合A 中的元素个数用card (A )来表示,并规定card (∅)=0,例如A={1,2,3},则card (A )=3.现在,我们定义A*B= {card (A )−card (B ),card (A )≥card (B )card (B )−card (A ),card (A )<card (B ) ,已知集合A={x|e x +x 2-2=0},B={x|(lnx-ax )(x 2-aex+1)=0},且A*B=1,则实数a 不可能在以下哪个范围内( ) A. (−2e,−1e) B. (0,1e ) C. (1e ,2e ) D. (2e ,+∞) 【正确答案】:BCD【解析】:数形结合可得card (A )=2,根据题中定义可得card (B )=1或3,设f (x )=lnx x ,g (x )= 1e (x+ 1x),分析可知直线y=a 与函数f (x ),g (x )在(0,+∞)上的图象共有1个或3个交点,数形结合可得实数a 的取值范围,即可得出答案.【解答】:解:对于集合A,由e x+x2-2=0,可得e x=2-x2,作出函数y=e x与函数y=2-x2的图象如下所示:所以函数y=e x与函数y=2-x2的图象有两个公共点,故card(A)=2,因为A*B=|card(A)-card(B)|=1,所以card(B)=1或3,对于集合B,由(lnx-ax)(x2-aex+1)=0,x>0,由lnx-ax=0,可得a= lnxx,由x2-aex+1=0,可得a= 1e (x+ 1x),设f(x)= lnxx ,g(x)= 1e(x+ 1x),则直线y=a与函数f(x),g(x)在(0,+∞)上的图象共有1个或3个交点,f′(x)= 1−lnxx2,当0<x<e时,f′(x)>0,函数f(x)单调递增,当x>e时,f′(x)<0,函数f(x)单调递减,所以f(x)max=f(e)= 1e,当x>1时,f(x)>0,g′(x)= 1e (1- 1x2)= x2−1ex2,当0<x<1时,g′(x)<0,g(x)单调递减,当x>1时,g′(x)>0,g(x)单调递增,所以g(x)min=g(1)= 2e,作出直线y=a与函数f(x),g(x)在(0,+∞)上的图象,如下图所示:由图象可知,当a≤0,a= 1e 或a= 2e时,直线y=a与函数f(x),g(x)在(0,+∞)上的图象共有1个公共点,故选:BCD.【点评】:本题考查导数的综合应用,解题中注意分类讨论思想的应用,属于中档题.13.(填空题,5分)不等式|2x-1|<a的解集为(0,1),则方程x2-(2a-1)x-2=0的两根之和为 ___ .【正确答案】:[1]1【解析】:将不等式|2x-1|<a去绝对值,可得1−a2<x<1+a2,由于不等式的解集为(0,1),求出a,再结合韦达定理,即可求解.【解答】:解:∵|2x-1|<a,∴-a<2x-1<a,即1−a2<x<1+a2,又∵不等式|2x-1|<a的解集为(0,1),∴ 1−a2=0且1+a2=1,解得a=1,设x1,x2为方程x2-(2a-1)x-2=0的两根,∴由韦达定理,可得x1+x2=2a-1=1.故答案为:1.【点评】:本题主要考查绝对值不等式的求解,以及韦达定理的应用,属于基础题.14.(填空题,5分)已知函数f(x)满足f(x)=f′(π4)cosx−sinx,则f′(π4) =___ .【正确答案】:[1]1- √2【解析】:根据三角函数的求导公式求导得出f′(x)=−f′(π4)sinx−cosx,然后将x换上π4即可得出f′(π4)的值.【解答】:解:∵ f′(x)=−f′(π4)sinx−cosx,∴ f′(π4)=−√22f′(π4)−√22,解得f′(π4)=−1√2+1=1−√2.故答案为:1−√2.【点评】:本题考查了三角函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.15.(填空题,5分)已知不等式(4x+y)(1x +ay)≥9对任意正实数x,y恒成立,则正实数a的取值范围是 ___ .【正确答案】:[1][1,+∞)【解析】:由x>0,y>0可得(4x+y)(1x + ay)=4+a+ yx+ 4axy≥4+a+2 √yx•4axy=4+a+4√a,又不等式(4x+y)(1x +ay)≥9对任意正实数x,y恒成立,所以4+a+4 √a≥9,从而解出a的取值范围即可.【解答】:解:由x>0,y>0,得(4x+y)(1x + ay)=4+a+ yx+ 4axy≥4+a+2 √yx•4axy=4+a+4 √a,当且仅当yx = 4axy,即y=2 √a x时等号成立,又不等式(4x+y)(1x+ay)≥9对任意正实数x,y恒成立,所以4+a+4 √a≥9,即a+4 √a -5≥0,解得√a≥1或√a≤-5(舍去),所以a≥1.故答案为:[1,+∞).【点评】:本题主要考查基本不等式的运用,考查学生推理论证和运算求解能力,属于基础题.16.(填空题,5分)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i行,第j列的数记为a i,j,例如a3,2=9,a4,2=15,a5,4=23,由此可得a8,5=___ ,若a i,j=2021,则i-j=___ .【正确答案】:[1]65; [2]20【解析】:根据所给数表得到规律:数表为从1开始的连续奇数蛇形排列形成宝塔形数表,第1组1个奇数,第2组2个奇数…第n 组n 个奇数, 则前n 组共n (n+1)2个奇数,奇数行由大到小排列,偶数行由小到大排列, 第一空:a 8,5代表第八行第5个奇数,由上述规律即可求出答案;第二空:由等差数列的前n 项和公式可得:2021在第n 组中,又2021是从1开始的连续奇数的第1011个奇数,则有 {n (n−1)2<1011n (n+1)2≥1011,解得n=45,即2021在第45组中,由归纳推理可得:前44组共990个数,又第44组中的奇数从右到左,从小到大,则2021为第45组从右到左的第1011-990=21个数,即2021为第45组从左到右的第45-21+1=25个数,得解.【解答】:解:由图表可知:数表为从1开始的连续奇数蛇形排列形成宝塔形数表,第1组1个奇数,第2组2个奇数…第n 组n 个奇数, 则前n 组共n (n+1)2个奇数,奇数行由大到小排列,偶数行由小到大排列, 因为a 8,5代表第八行第5个奇数,而前7组共 7×82=28个数,则第8组的第一个奇数为57,且此行奇数由小到大排列,故第5个奇数为65;设2021在第n 组中,又2021是从1开始的连续奇数的第1011个奇数,则有 {n (n−1)2<1011n (n+1)2≥1011,解得n=45,即2021在第45组中, 则前44组共990个数,又第45组中的奇数从右到左,从小到大,则2021为第45组从右到左的第1011-990=21个数, 即2021为第45组从左到右的第45-21+1=25个数, 即i=45,j=5, 故i-j=45-25=20, 故答案为:65,20.【点评】:本题考查归纳推理,涉及等差数列的前n 项和公式及归纳推理,属中档题. 17.(问答题,10分)已知集合A= {x|x−32−x >0} ,B={x|2m <x <m+3}. (1)当m=0时,求(∁R A )∩B ;(2)请在 ① 充分不必要条件 ② 必要不充分条件这两个条件中任选一个,补充到下面的问题中,并解决问题.若x∈A 是x∈B 的______条件,试判断m 是否存在,若存在,求出m 的取值范围,若不存在,说明理由.【正确答案】:【解析】:(1)当m=0时,求出集合A ,B ,由此能求出C R A∩B .(2)若选条件 ① :x∈A 是x∈B 的充分不必要条件且2m=2与m+3=3不同时成立,由此能求出存在m ,m∈[0,1].若选条件 ② :x∈A 是x∈B 的必要不充分条件,当2m≥m+3,即m≥3时,B=∅,成立.当2m <m+3,即m <3时, {2m ≥2m +3≤3 ,由此能求出结果.【解答】:解:(1)当m=0时,B=(0,3), x−32−x >0 ,等价于(x-2)(x-3)<0, ∴A=(2,3),C R A=(-∞,2]∪[3,+∞), ∴C R A∩B=(0,2]. (2)若选条件 ① :∵x∈A 是x∈B 的充分不必要条件且2m=2与m+3=3不同时成立, 解得0≤m≤1,所以存在m ,m∈[0,1], 若选条件 ② :∵x∈A 是x∈B 的必要不充分条件, 当2m≥m+3,即m≥3时,B=∅,成立.当2m <m+3,即m <3时, {2m ≥2m +3≤3 ,解得m 不存在,∴存在m≥3.【点评】:本题考查补集、交集的求法,考查补集、交集定义等基础知识,考查运算求解能力,是基础题.18.(问答题,12分)已知数列{a n }满足a 1=1,a n+1= {a n +2,n 奇数a n +1,n 偶数 .(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前10项和.【正确答案】:【解析】:(1)直接利用分类法和赋值法的应用求出数列的b 1,b 2的值和数列的通项公式; (2)利用分组法的求和的公式的应用求出结果.【解答】:解:(1)设2n 为偶数,2n+1为奇数, 则a 2n+1=a 2n +1,a 2n+2=a 2n+1+2, ∴a 2n+2=a 2n +3, 即b n+1=b n +3, 且b 1=a 2=a 1+2=3,∴{b n }是以3为首项,3为公差的等差数列, ∴b 1=3,b 2=6,b n =3n .(2)当n 为奇数时,a n =a n+1-2,∴{a n }的前10项和为a 1+a 2+...+a 10=(a 1+a 3+...+a 9)+(a 2+a 4+...+a 10)[(a 2-2)+(a 4-2)+...+(a 10-2)]+(a 2+a 4+...+a 10)=2(a 2+a 4+...+a 10)-10, 由(1)可知,a 2+a 4+...+a 10=b 1+b 2+...+b 5= 3×5+5×42×3 =45,∴{a n }的前10项和为2×45-10=80.【点评】:本题考查的知识要点:数列的通项公式的求法及应用,数列的求和,主要考查学生的运算能力和数学思维能力,属于中档题.19.(问答题,12分)已知函数f (x )=x 2e x -ax 2-4ax . (1)若a=0,求y=f (x )在x=1处的切线方程;(2)已知函数y=f (x )在x=1处有极值,求函数的单调递增区间.【正确答案】:【解析】:(1)当a=0时,f (x )=x 2e x ,求导得f'(x ),由导数的几何意义可得k 切=f′(1),又f (1)=e ,即可得出答案.(2)求导得f'(x )=(x 2+2x )e x -2ax-4a ,若函数y=f (x )在x=1处有极值,则f'(1)=0,解得 a =e2 ,进而可得f (x )的解析式,求导,分析f′(x )>0,即可得出答案.【解答】:解:(1)当a=0时,f (x )=x 2e x ,则f'(x )=(x 2+2x )e x , 因此切线斜率k=f'(1)=3e ,又函数图象过点(1,e ),因此切线方程为y-e=3e (x-1),即y=3ex-2e . (2)f'(x )=(x 2+2x )e x -2ax-4a ,函数y=f (x )在x=1处有极值,则f'(1)=0,解得 a =e 2 ,故f'(x )=(x 2+2x )e x -ex-2e=(x+2)(xe x -e ). 设h (x )=xe x ,h'(x )=(x+1)e x , 可知当时x <-1时,h (x )=xe x 为递减函数, 且h (x )<0;x >-1时,h (x )=xe x 为递增函数, 故x=1为xe x =e 的解,且为唯一的解.因此,f'(x )>0时,即x <-2或x >1时,函数单调递增, 因此,函数的单调递增区间为(-∞,-2)和(1,+∞).【点评】:本题考查导数的综合应用,解题中需要理清思路,属于中档题.20.(问答题,12分)科技创新是企业发展的源动力,是一个企业能够实现健康持续发展的重要基础.某科技企业2020年最新研发了一款电子设备,通过市场分析,生产此类设备每年需要投人固定成本200万,每生产x (百台)电子设备,需另投人成本R (x )万元,且R (x )= {12x 2+30x +150,(10<x <64)72x +1800x−60−920,(64≤x <120),由市场调研可知,每台设备售价0.7万元,且生产的设备当年能全部售完.(1)求出2020年的利润W (x )(万元)关于年产量x (百台)的函数关系式,(利润=销售额一成本);(2)2020年产量为多少百台时,企业所获利润最大?最大利润是多少?【正确答案】:【解析】:(1)由题意知销售额为0.7×100x=70x 万元,分两种情况:当10<x <64时,当64≤x <120时,写出W (x )的解析式.(2)分情况:10<x <64,64≤x <120时,求出W (x )的最值,即可得出答案.【解答】:解:(1)由题意知销售额为0.7×100x=70x 万元当10<x <64时, W (x )=70x −(12x 2+30x +150)−200=−12x 2+40x −350 , 当64≤x <120时,W (x )=70x-(72x+ 1800x−60 -920)-200=-2x- 1800x−60 +720,w (x )= {−12x 2+40x −350,(10<x <64)720−2x −1800x−−60,(64≤x <120) . (2)若10<x <64, W (x )=−12(x −40)2+450 ,当x=40时,W (x )max =450万元,若64≤x <120时, W (x )=720−2x −1800x−60 600−2(x −60)−1800x−60 ≤600−2√2(x −60)⋅1800x−60=480 ,当且仅当 2(x −60)=1800x−60 时,即x=90时,W (x )max =480万元.相比较可得,2020年产量为90(百台)时,企业所获利润最大,最大利润是480万元.【点评】:本题考查利用函数知识解决实际问题,属于中档题.21.(问答题,12分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n+1=S n +1.(1)求数列{a n }的通项公式;(2)设b n = a n (S n +2)(S n+1+2) ,数列{b n }前n 项和为T n ,求证:T n < 16.【正确答案】:【解析】:(1)由数列的递推式和等比数列的定义、通项公式,可得所求;(2)运用等比数列的求和公式,求得b n=2n−1(2n+1)(2n+1+1)=12(12n+1−12n+1+1),再由数列的裂项相消求和,结合不等式的性质,即可得证.【解答】:解:(1)当n≥2时,a n=S n-1+1,又a n+1=S n+1,两式相减得a n+1-a n=a n,即a n+1=2a n,又a1=1,a2=a1+1=2,a2a1=2,所以数列{a n}是首项为1,公比是2的等比数列,所以a n=2n−1.(2)证明:S n=1+2+22+⋯+2n−1=1−2n1−2=2n−1,因为b n=2n−1(2n+1)(2n+1+1)=12(12n+1−12n+1+1),所以T n=b1+b2+⋯+b n=12(13−122+1+122+1−123+1+⋯+12n+1−12n+1+1)= 12(13−12n+1+1)=16−12⋅12n+1+1,所以T n<16.【点评】:本题考查数列的递推式的运用,以及等比数列的通项公式和求和公式的运用、数列的裂项相消求和,考查转化思想和运算能力,属于中档题.22.(问答题,12分)已知函数f(x)=lnx+ 2−ax-1-a(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(0,+∞)恒成立,求整数a的最大值.【正确答案】:【解析】:(1)求出f(x)的定义域,求出f'(x),通过研究f'(x)的正负,确定函数f (x)的单调性即可;(2)将不等式恒成立转化为a<xlnx+2−xx+1对x∈(0,+∞)恒成立,令g(x)=xlnx+2−xx+1,故a<g(x)min,利用导数以及函数零点的存在性定义,研究函数g(x)的最小值,即可得到a的取值范围,从而得到答案.【解答】:(1)函数f(x)的定义域为(0,+∞).因为f(x)=lnx+2−ax−1−a,所以f′(x)=1x +a−2x2=x+a−2x2.当a-2≥0,即a≥2时,f'(x)>0;当a-2<0,即a<2时,由f'(x)>0,解得x>2-a,令f'(x)<0,解得0<x<2-a,综上可得,当a≥2时,f(x)在(0,+∞)上单调递增;当a<2时,f(x)在(0,2-a)上单调递减,在(2-a,+∞)上单调递增;(2)因为f(x)>0在(0,+∞)恒成立,即lnx+2−ax−1−a>0在(0,+∞)恒成立,所以xlnx+2-x>(1+x)a在(0,+∞)恒成立,所以a<xlnx+2−xx+1对x∈(0,+∞)恒成立,令g(x)=xlnx+2−xx+1,故a<g(x)min,则g′(x)=x+lnx−2(x+1)2,令h(x)=x+lnx-2,则ℎ′(x)=1+1x =x+1x,因为x>0,所以h'(x)>0,则h(x)在(0,+∞)上单调递增,因为h(1)=-1<0,h(2)=ln2>0,所以存在x0∈(1,2)满足h(x0)=0,即x0+lnx0-2=0,当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,所以g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,故g(x)min=g(x0)=x0lnx0+2−x0x0+1=x0(2−x0)+2−x0x0+1=2−x0,所以a<2-x0,因为1<x0<2,a∈Z,所以a的最大值为0.【点评】:本题考查了利用导数研究函数的单调性问题以及不等式恒成立的求解,利用导数研究不等式恒成立问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围,属于难题.。

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷+答案解析(附后)

2020-2021学年山东省烟台市高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列说法正确的是( )A. 任何三个不共线的向量可构成空间向量的一个基底B. 空间的基底有且仅有一个C. 两两垂直的三个非零向量可构成空间的一个基底D. 直线的方向向量有且仅有一个2.直线的倾斜角是( )A. B. C.D.3.已知,,,若P ,A ,B ,C 四点共面,则( )A. 9B.C. D. 34.已知实数x ,y 满足,那么的最小值为( )A. B.C. 2D. 45.直线的一个方向向量是( )A.B.C.D.6.正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( )A.B.C. D.7.棱长为1的正方体中,O 是面的中心,则O 到平面的距离是( )A.B.C. D.8.已知圆C 的方程为,过直线l :上任意一点作圆C 的切线,若切线长的最小值为,则直线l 的斜率为( )A. 4B.C.D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.下列叙述正确的有( )A. 平面直角坐标系中的任意一条直线都有斜率B. 平面直角坐标系中的任意一条直线都有倾斜角C. 若,则D. 任意两个空间向量共面10.古希腊数学家阿波罗尼奥斯著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,,圆C:上有且仅有一个点P满足,则r的取值可以为( )A. 2B. 4C. 6D. 811.如图,棱长为1的正方体中,E,F分别为,的中点,则( )A. 直线与底面ABCD所成的角为B. 平面与底面ABCD夹角的余弦值为C.直线与直线AE的距离为D. 直线与平面的距离为12.设有一组圆:,下列说法正确的是( )A. 这组圆的半径均为1B.直线平分所有的圆C.直线被圆截得的弦长相等D. 存在一个圆与x轴和y轴均相切三、填空题:本题共4小题,每小题5分,共20分。

山东省烟台市高二下学期数学期末考试试卷

山东省烟台市高二下学期数学期末考试试卷

山东省烟台市高二下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017高三上·四川月考) 已知集合 , 则 =()A .B .C .D .2. (2分)(2016·淮南模拟) 若复数z满足i•z= (1+i),则z的虚部是()A . ﹣ iB . iC . ﹣D .3. (2分)(2016·海口模拟) 在平面直角坐标系xOy中,点P为椭圆C: =1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈(, ],则椭圆C的离心率的取值范围为()A . (0, ]B . (0, ]C . [ , ]D . [ , ]4. (2分) (2018高一下·北京期中) 若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为().A . ,B . ,C . ,D . ,5. (2分)(2017·吉林模拟) 的展开式中,各项系数之和为A,各项的二项式系数之和为B,若=32,则n=()A . 5B . 6C . 7D . 86. (2分)“成立"是“成立”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件7. (2分)数列的前n项和为,则数列的前50项的和为()A . 49B . 50C . 99D . 1008. (2分) (2017高一下·汽开区期末) 若实数x,y满足,则的取值范围为()A .B .C .D .9. (2分)函数的定义域是[a,b],值域为,则b﹣a的最大值与最小值之和为()A . 2πB . πC .D .10. (2分) (2015高一下·湖州期中) 若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A .B .C . 5D . 6二、填空题 (共7题;共8分)11. (1分)(2020·杨浦期末) 椭圆的焦点为为椭圆上一点,若 ,则________.12. (1分) (2018高二上·佛山期末) 是双曲线右支上一点,分别是圆和上的点,则的最大值为________.13. (1分)有一射击时击中目标的概率为0.7,记4次射击击中目标的次数为随机变量ξ,则P(ξ≥1)=________.14. (1分)口袋中有三个大小相同、颜色不同的小球各一个,每次从中取一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取了5次停止种数为________.15. (1分) (2017高三上·南通期末) 已知,是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 ,K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为________.16. (2分) (2017高二下·温州期末) 函数f(x)= 的对称中心为________,如果函数g(x)=( x>﹣1)的图象经过四个象限,则实数a的取值范围是________.17. (1分)在空间四边形ABCD中,E,F,G,H分别是AC,BC,BD,DA的中点,若,,且四边形EFGH的面积为,则AB和CD所成的角为________.三、解答题 (共5题;共60分)18. (15分)已知函数f(x)=2cos(π﹣)•tan(π﹣)•cos ,﹣≤x≤ .(1)求f()的值;(2)判断函数是否是偶函数(请直接给出结论);(3)求f(2x)在区间[﹣, ]上的最大值和最小值.19. (10分)如图,在多面体ABCDEF中,四边形ABCD为矩形,△ADE,△BCF均为等边三角形,EF∥AB,EF=AD= AB,N为线段PC的中点.(1)求证:AF∥平面BDN;(2)求直线BN与平面ABF所成角的正弦值.20. (10分) (2015高一下·普宁期中) 已知函数f(x)=lnx﹣ a(x﹣1)(a∈R).(1)若a=﹣2,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若不等式f(x)<0对任意x∈(1,+∞)恒成立.(ⅰ)求实数a的取值范围;(ⅱ)试比较ea﹣2与ae﹣2的大小,并给出证明(e为自然对数的底数,e=2.71828).21. (10分) (2018高三上·大连期末) 已知直线与抛物线交于两点,(1)若,求的值;(2)以为边作矩形,若矩形的外接圆圆心为,求矩形的面积. 22. (15分) (2018高二下·长春月考) 在数列中,且 .(1)求出a2,a3,a4;(2)归纳猜想出数列的通项公式;(3)证明通项公式 .参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共60分) 18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、第11 页共11 页。

山东省济南市2020-2021学年高二下学期期末数学试题

山东省济南市2020-2021学年高二下学期期末数学试题
因为 关于 为正相关,则 ,所以,相关系数 变大,D对.
故选:BCD.
12.ACD
【分析】
由已知得出 ,化简变形后可判断A选项的正误;取 可判断B选项的正误;利用构造函数法证明CD选项中的不等式,可判断CD选项的正误.
【详解】
由 可得 ,可知直线 与函数 在 上的图象有两个交点,
,当 时, ,此时函数 单调递增,
附:若随机变量 ,则 .
A.甲生产线硼硅玻璃膨胀系数范围在 的概率约为0.6827
B.甲生产线所产硼硅玻璃的膨胀系数比乙生产线所产硼硅玻璃的膨胀系数数值更集中
C.若用于疫苗药瓶的硼硅玻璃膨胀系数不能超过5.则乙生产线生产的硼硅玻璃符合标准的概率更大
D.乙生产线所产的砌硅玻璃膨胀系数小于4.5的概率与大于4.8的概率相等
3
5
7
9
6.5
5
4
2.5
得到经验回归方程为 ,则()
A. , B. , C. , D. ,
4.甲、乙、丙、丁、戊五个人站成一排,甲乙不相邻的排列方法有()
A.12种B.48种C.72种D.120种
5.目前国家为进一步优化生育政策,实施一对夫妻可以生育三个子女政策.假定生男孩和生女孩是等可能的,现随机选择一个有三个小孩的家庭,如果已经知道这个家庭有女孩,那么在此条件下该家庭也有男孩的概率是()
12.已知函数 , 为常数,若函数 有两个零点 、 ,则下列说法正确的是()
A. B. C. D.
三、填空题
13.已知随机变量 的分布如下表,则 ______.
0
1
14.为调查某企业年利润 (单位:万元)和它的年研究费用 (单位:万元)的相关性,收集了5组成对数据 ,如下表所示:

山东省烟台市2020-2021学年高二下学期期末考试化学试题及答案

山东省烟台市2020-2021学年高二下学期期末考试化学试题及答案

2020-2021学年度第二学期期末学业水平诊断高二化学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H1 C12 N14 O16 S32 Cl35.5 K39 Cr52 Fe56Cu64 Zn65 Ba137一、选择题:本题共10小题,每小题2分,共20分。

每小题只有一个选项符合题意。

1. 化学与生活密切相关。

下列说法正确的是A.汽车尾气中含有的氮氧化物是汽油不完全燃烧造成的B.燃煤中加入CaO可以减少酸雨的形成及温室气体的排放C.使用医用酒精(75%)、“84”消毒液或加热均能有效灭活新型冠状病毒D.纳米铁粉通过物理吸附可除去污水中的Pt2+、Cu2+、Cd2+、Hg2+等2.下列有关元素与物质分类说法正确的是A.胶体区别于其他分散系的本质特征是具有丁达尔效应B.CuCl2、FeCl2、CuS、SO3均可以由单质直接化合生成C.强电解质一定含有离子键,弱电解质一定含有弱极性共价键D.碱性氧化物一定是金属氧化物,酸性氧化物不一定是非金属氧化物3.N A是阿伏加德罗常数的值。

下列说法错误的是A.1L0.1mol·L-1的NaF溶液含有的质子数为2N AB.5.6gFe在7.1gCl2中充分燃烧,转移电子数为0.2N AC.1L 0.1mol·L-1Na2SO3溶液中含阴离子数目大于0.1N AD.标准状况下,2.24 LNH3中含有的共价键数目为0.3N A4.下列反应对应的离子方程式正确的是A.用Na2S处理含Hg2+的废水:Hg2++Na2S=HgS↓+2Na+B.将Na218O2加入水中:2Na218O2+2H2O=O2↑+4Na++418OH-C.过量SO2与“84”消毒液反应:SO2+ClO-+3H2O=HSO3-+HClOD.向NaHCO3溶液中加足量Ba(OH)2溶液:HCO3-+Ba2++OH-=BaCO3↓+H2O5.下列说法正确的是A.纯碱是制作面包等糕点的膨松剂B.FeO粉末在空气中受热,迅速被氧化成Fe2O3C.配制FeCl2溶液时,加入少量铁粉是为了防止Fe2+被氧化D.植物直接吸收利用空气中的NO和NO2作为肥料,实现氮的固定6.利用下列装置(夹持装置略)进行实验,不能达到实验目的的是甲 乙 丙 丁 A .用甲装置制取并收集少量NH 3B .用乙装置比较KMnO 4、Cl 2、S 的氧化性强弱C .用丙装置检验浓硫酸与铜反应后产物中是否含有Cu 2+D .配制一定物质的量浓度的溶液时,用丁装置进行溶液转移 7.光化学烟雾污染的形成过程可通过如图表示,下列说法正确的是OA .反应过程中氮氧化物总物质的量不断减少B .反应I 中,每消耗1molO 3生成3mol NO 2C .反应II 、反应III 均属于氧化还原反应D .光化学烟雾的形成只发生在白天 8.实验室由MnO 2制取KMnO 4的流程如下:MnO 2下列说法错误的是A .步骤①发生反应2MnO 2+O 2+4KOH =2K 2MnO 4+2H 2OB .步骤②用到的玻璃仪器有烧杯、漏斗和玻璃棒C .试剂X 可为石灰乳D .上述流程中只有MnO 2可循环利用9.某溶液中只含有K +、NH 4+、SO 42-、Cl -、Fe 2+、Fe 3+、CO 32-中的若干种,且各离子浓度均相同。

山东省烟台市2023-2024学年高二下学期7月期末学业水平诊断数学答案

山东省烟台市2023-2024学年高二下学期7月期末学业水平诊断数学答案

2023~2024学年度第二学期期末学业水平诊断高二数学参考答案及评分标准一、选择题C C AD B D C A 二、选择题9. ABD 10.BCD 11.AC 三、填空题12.80− 13.1(,]e −∞ 14.14()3n L −2L 四、解答题15.解:(1)根据已知条件,可得:······················································ 3分零假设为0H :创新作文比赛获奖与选修阅读课程无关联, 根据列联表中数据计算得到,2250(828212)25==8.3337.879203010403χ××−×≈>×××. ······························· 6分 根据小概率值0.005α=的独立性检验,推断0H 不成立,即认为创新作文比赛获奖与选修阅读课程有关联,此推断犯错误的概率不大于0.005.···························· 7分 (2)由题意可知X 的可能取值为1,2,3,则 ··································· 8分12823101(1)15C C P X C ===,21823107(2)15C C P X C ===, 383107(3)15C P X C ===, ········································ 11分 所以,随机变量X 的分布列为:所以17712()1231515155E X =×+×+×=. ·························· 13分 16.解:(1)当2a =−时,2()(21)e xf x x x =−+,所以2()(1)e x f x x ′=−. ········· 1分 设切点为00(,)x y ,则02000(21)e xy x x =−+,020(1)e xk x =−, 获奖 没有获奖 合计 选修阅读课程 8 12 20 不选阅读课程2 28 30 合计104050所以,切线方程为00220000(21)e(1)e ()x x y x x x x x −−+=−−. ························ 3分将(1,0)代入得200(1)0x x −=,解得00x =或01x =. ····························· 5分 故过(1,)0的切线方程为0y =或10x y +−=. ················································ 7分(2)2()(2)e (1)e (1)(1)e x x x f x x a x ax x a x ′=++++=+++. ····················· 8分当0a =时,2()(1)e x f x x ′=+,恒有()0f x ′≥,函数()f x 单调递增. ········· 10分 当0a >时,11a −−<−,当(,1)x a ∈−∞−−,或(1,)x ∈−+∞时,()0f x ′>,函数()f x 单调递增,当(1,1)x a ∈−−−时,()0f x ′<,函数()f x 单调递减. ···· 12分 当0a <时,11a −−>−,当(,1)x ∈−∞−,或(1,)x a ∈−−+∞时,()0f x ′>,函数()f x 单调递增,当(1,1)x a ∈−−−时,()0f x ′<,函数()f x 单调递减. ······· 14分综上,当0a =时,()f x 在R 上单调递增,当0a >时,()f x 在(,1)a −∞−−,(1,)−+∞上单调递增,在(1,1)a −−−上单调递减,当0a <时,()f x 在(,1)−∞−,(1,)a −−+∞上单调递增,在(1,1)a −−−上单调递减. ······························ 15分17.解:(1)由题意可知,212b b a −=,即211b −=−,故20b =. ························ 1分 由323b b a −=,可得31a =. ······················································ 2分 所以数列{}n a 的公差2d =,所以12(2)25n a n n =−+−=−. ······················ 3分由1n n n b b a −−=,121n n n b b a −−−−=, ,212b b a −=, 叠加可得 123(1)(125)2n n n n b b a a a −−+−−=+++=,整理可得 244(2)n b n n n =−+≥;当1n =时,满足上式,所以244n b n n =−+ ················································································ 5分(2)不妨设(,)m n a b m n ∗=∈N ,即225(2)m n −=−,可得2(2)52n m −+=, ········ 6分当2n k =时,29242m k k =−+,不合题意, 当21n k =−时,22672(3)7m k k k k ∗=−+=−+∈N , ································ 7分所以21k b −在数列{}n a 中均存在公共项,又因为1357b b b b =<<< ,所以n c =221(21)n b n +=−. ································· 9分 (3)当1n =时,1514T =<,结论成立, ············································ 10分 当2n ≥时,2111111()(21)(22)241n c n n n n n=<=−−−×−, ····················· 12分所以1111111(1)43351n T n n <+−+−++−− 111(1)4n =+− 515444n =−<, 综上,54n T <. ·················································· 15分18.解:(1)记事件A =“第2次取出的小球为黑球”;事件B =“第1次取出的小球为白球”,则333311()666520P A =×+×=, ············································ 2分 333()=6510P AB =×,所以()6(|)()11P AB P B A P A ==; ·································· 4分 (2)由题意,X 的可能取值为0,1,2,3,则 ·············································· 5分3331(0)6668P X ==××=, 33333333391(1)++655665666200P X ==××××××=, 32333233237(2)++654655665100P X ==××××××=,3211(3)65420P X ==××=,10分(3)由题意可知,前1n −次取了一个白球,第n 次取了第二个白球,则:23233333332[()()()]65665665n n n n P −−−=×+××++×× ··························· 12分233232333333=[()()()()]65565656n n n n −−−−××+×+×+ =22213555()[1()()]55666n n −−×+++ 121151()13316()2[()()]5555216n n n n −−−−−=×=×−−*(2,)n n ≥∈N . ···················· 16分 所以11312[()()]52n n n P −−=×−*(2,)n n ≥∈N . ·································· 17分19.解:(1)函数()f x 定义域为(0,)+∞,11()ln (1)1(ln )1x f x a x a x a x x x+′=++⋅+=++, ···································· 1分显然0a ≠,令()0f x ′=,可得11ln x x x a++=−, 令1()ln x t x x x +=+,由()f x 有两个不同极值点得1()t x a =−有两个不同的正根. ·· 3分 因为22111()x t x xx x−′=−=. 当(0,1)x ∈时,()0t x ′<,()t x 单减,(1,)x ∈+∞时,()0t x ′>,()t x 单增.················································································ 5分 所以()t x 的极小值即最小值(1)2t =,又当0x →时,()t x →+∞,且x →+∞时,()t x →+∞,所以12a−>,即102a −<<. ··········································· 6分(2)设12,x x 为函数()f x 的极值点,由(1),不妨设121x x <<,下证122x x +>.要证:2121x x >−>,只要证21()(2)t x t x >−.令()()(2)(01)g x t x t x x =−−<<. ···························· 8分因为22222114(1)()()(2)0(2)(2)x x x g x t x t x x x x x −−−−′′′=+−=+=<−−. ··········· 10分 所以()g x 在(0,1)上单调递减,所以()(1)0g x g >=,故21()(2)t x t x >−,即122x x +>. ························· 11分 由(1)可知,在1(0,)x 上,1()(())0f x a t x a′=+<,()f x 单调递减,在12(,)x x 上,()0f x ′>,()f x 单调递增,在2(,)x +∞上,()0f x ′<,()f x 单调递减,又因为(1)0f =,所以1()(1)0f x f <=, 因为102a −<<,所以12a <−,所以12e e 1a −<<,而11111(e )(e 1)ln e e 12e 0a a a a af a =++−=>,所以()f x 在11(e ,)ax 上存在点3x ,使得3()0f x =, ····························· 13分同理2()(1)0f x f >=,又12a−>,12e e 1a −>>, 1111(e )(e1)ln ee120aaaaf a −−−−=++−=−<,所以()f x 在12(,e )ax −上存在点4x ,使得4()0f x =, ····························· 14分故()f x 存在3个零点34,1,x x , 注意到111111()(1)ln 1((1)ln 1)()f a a x x x f x x x x x x x =++−=−++−=−, · 15分所以341x x =,所以343312x x x x +=+>. ··································· 16分所以123415x x x x ++++>,即5m n +>. ···································· 17分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.“函数 在 内 ”是“ 在 内单调递增”的充要条件
D.已知 在 处存在导数,则“ ”是“ 是函数 的极值点”的必要不充分条件
10.已知函数 ,则()
A.对于任意实数 , 在 上均单调递减
B.存在实数 ,使函数 为奇函数
C.对任意实数 ,函数 在 上函数值均大于0
D.存在实数 ,使得关于 的不等式 的解集为
【点睛】
本题考查函数的定义域的求法,属于基础题.
4.A
【分析】
根据函数 是偶函数可得 ,可求出 ,求出函数在 处的导数值即为切线斜率,即可求出切线方程.
【详解】
函数 为偶函数,
,即 ,解得 ,
,则 ,
,且 ,
切线方程为 ,整理得 .
故选:A.
【点睛】
本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.
18.已知函数 .
(1)求函数 的极值;
(2)若函数 有3个零点,求 的取值范围.
19.已知 是定义域为 的奇函数,当 时, .
(1)求 的解析式;
(2)若存在 ,使不等式 成立,求实数 的取值范围.
20.已知函数 .
(1)若函数 在定义域上单调递增,求实数 的取值范围;
(2)当 时,证明: .
21.某科技公司【最新】实现利润8千万元,为提高产品竞争力,公司决定在【最新】增加科研投入.假设【最新】利润增加值 (千万元)与科研经费投入 (千万元)之间的关系满足:① 与 成正比,其中 为常数,且 ;②当且不高于上一年利润的75%.
5.C
【分析】
根据指数函数列不等式,解不等式即得结果.
【详解】
由题意得
故选:C
【点睛】
本题考查指数函数实际应用、解指数不等式,考查基本分析求解能力,属基础题.
6.A
【分析】
可知 在其定义域上不单调等价于 有两个解,利用 即可求解.
【详解】
可得 ,
在其定义域上不单调等价于方程 有两个解,
,解得 或 .
11.为预防新冠病毒感染,某学校每天定时对教室进行喷洒消毒.教室内每立方米空气中的含药量 (单位:mg)随时间 (单位:h)的变化情况如图所示:在药物释放过程中, 与 成正比;药物释放完毕后, 与 的函数关系式为 ( 为常数),则()
A.当 时,
B.当 时,
C. 小时后,教室内每立方米空气中的含药量可降低到 以下
【点睛】
本题考查根据图形判断集合运算,属于基础题.
2.B
【分析】
分别判断出 , , 的范围即可.
【详解】
因为 , ,
所以
故选:B
【点睛】
本题考查的是指对数式的大小比较,较简单.
3.D
【分析】
求使函数有意义的 取值范围,即解 可得解.
【详解】
要使函数 有意义,只需
得 ,即 或
所以函数定义域为 ,
故选:D.
有 ,函数 为奇函数,
又由 ,则 在 上为增函数,

即 的取值范围为 ;
故选: .
【点睛】
本题考查函数的奇偶性与单调性的综合应用,涉及函数奇偶性与单调性的判断,属于中档题.
D. 小时后,教室内每立方米空气中的含药量可降低到 以下
12.已知函数 ,下述结论正确的是()
A. 存在唯一极值点 ,且
B.存在实数 ,使得
C.方程 有且仅有两个实数根,且两根互为倒数
D.当 时,函数 与 的图象有两个交点
三、填空题
13.设集合 , ,若 ,则实数 的取值范围为________.
14.高斯,德国著名数学家、物理学家、天文学家,是近代数学奠基者之一,享有“数学王子”之称.函数 称为高斯函数,其中 表示不超过实数 的最大整数,当 时,函数 的值域为________.
15.设 满足 , 满足 ,则 ________.
四、双空题
16.已知 ,函数 ,当 时,不等式 的解集是________;若函数 恰有2个零点,则 的取值范围是________.
五、解答题
17.已知集合 , .
(1)若 ,求 ;
(2)设 : , : ,若 是 的必要不充分条件,求实数 的取值范围.
A.5B.6C.7D.8
6.若函数 在其定义域上不单调,则实数 的取值范围为()
A. 或 B. C. D.
7.函数 的图象大致为()
A. B.
C. D.
8.已知函数 ,若 ,则 的取值范围为()
A. B. C. D.
二、多选题
9.下列四个命题中,为假命题的是()
A. ,
B.“ , ”的否定是“ , ”
【点睛】
本题考查函数的图象与性质,一般从函数的单调性、奇偶性或特殊点处的函数值等方面着手思考,考查学生的逻辑推理能力和运算能力,属于基础题.
8.D
【分析】
根据题意,分析可得 为奇函数且在 上为增函数,据此可得原不等式等价于 ,则有 ,解可得 的取值范围,即可得答案.
【详解】
解:根据题意, ,其定义域为 ,
3.函数 的定义域为()
A. B.
C. D.
4.已知函数 为偶函数,则 在 处的切线方程为()
A. B. C. D.
5.根据我国《车辆驾驶人员血液、呼气酒精含量阈值与检验》规定,车辆驾驶人员100mL血液中酒精含量在 (单位:mg)即为酒后驾车,80mg及以上认定为醉酒驾车.某人喝了一定量的酒后,其血液中的酒精含量上升到 ,此时他停止饮酒,其血液中的酒精含量以每小时20%的速度减少,为避免酒后驾车,他至少经过 小时才能开车,则 的最小整数值为()
(1)求 关于 的函数表达式;
(2)求【最新】利润增加值 的最大值以及相应的 的值.
22.已知函数 , .
(1)讨论函数 极值点的个数;
(2)若函数 有两个极值点 , ,证明: .
参考答案
1.C
【分析】
根据图形可得阴影部分表示的集合为 ,求出即可.
【详解】
根据图形可得阴影部分表示的集合为 ,
.
故选:C.
故选:A.
【点睛】
本题考查利用导数研究函数的单调性,属于基础题.
7.B
【分析】
先根据函数奇偶性的概念可判断出函数 为奇函数,于是排除选项 和 ;再对比选项 和 ,只需计算 时的函数值 ,并与0比较大小即可作出选择.
【详解】
解:因为 ,所以 为奇函数,排除选项 和 ;
又因为 ,所以排除选项 ,
故选: .
山东省烟台市【最新】高二下学期期末考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知全集 , , ,则图中阴影部分表示的集合为()
A. B. C. D.
2.已知 , , ,则 , , 的大小关系为()
A. B. C. D.
相关文档
最新文档