(完整版)八年级下册数学第十六章分式方程知识点与练习题,推荐文档
2021-2022华师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)

2021-2022学年华师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)1.下列关于x的方程,是分式方程的是()A.﹣3=B.x﹣y=5C.=+D.=1﹣2.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A.B.C.D.3.若关于x的分式方程无解,则m的值为.4.已知:商品利润率=.某商人经营甲乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%,那么当售出的甲,乙两种商品的件数相等时,这个商人的总利润率是.5.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x株,则可列分式方程为.6.为深入践行“绿水青山就是金山银山”的发展理念,我国生态文明建设不断迈出坚实步伐,绿色发展成就举世瞩目.在今年的植树造林活动期间,某苗圃园第一天卖出一批雪松收款11000元;第二天又卖出一批雪松收款23000元,所卖数量是第一天的2倍,售价比第一天每棵多了5元.第二天每棵雪松售价元.7.解方程.8.解方程:1+=.9.阅读下面材料,解答后面的问题解方程:.解:设,则原方程化为:,方程两边同时乘y得:y2﹣4=0,解得:y=±2,经检验:y=±2都是方程的解,∴当y=2时,,解得:x=﹣1,当y=﹣2时,,解得:x=,经检验:x=﹣1或x=都是原分式方程的解,∴原分式方程的解为x=﹣1或x=.上述这种解分式方程的方法称为换元法.问题:(1)若在方程中,设,则原方程可化为:;(2)若在方程中,设,则原方程可化为:;(3)模仿上述换元法解方程:.10.整体思想就是通过研究问题的整体形式从而对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?11.已知方程有增根x=1,求k的值.12.关于x的分式方程:.(1)当m=3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值.13.若关于x的分式方程=5有增根,求m的值.14.自带保温杯已成为人们良好的健康生活习惯,某学校为教师员工购买甲、乙两种型号的保温杯,购买A型号保温杯共花费6000元,购买B型号保温杯共花费3200元,且购买A型号保温杯数量是购买B型号保温杯数量的3倍,已知购买一个B型号保温杯比购买一个A型号保温杯多花30元,求购买一个A型号保温杯,一个B型号保温杯各需多少钱?15.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:Ⅰ、甲队单独完成这项工程刚好如期完成;Ⅱ、乙队单独完成这项工程要比规定日期多6天;Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.(1)设甲队单独完成这项工程需要x天.工程总量所用时间(天)工程效率甲队乙队(2)根据题意及表中所得到的信息列出方程.16.王涵想复习分式方程,由于印刷问题,有一个数“?”看不清楚:=2﹣.(1)她把这个数“?”猜成﹣2,请你帮王涵解这个分式方程;(2)王涵的妈妈说:“我看到标准答案是:x=3是方程的增根,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?17.(1)解下列方程:①根为;②根为;③根为;(2)根据这类方程特征,写出第n个方程为,其根为.(3)请利用(2)的结论,求关于x的方程(n为正整数)的根.18.对于两个不相等的实数a、b,我们规定符号M ax{a,b}表示a、b中的较大值,例如:M ax{2,4}=4,按照这个规定,求方程M ax{x,﹣x}=的解.19.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.20.某工厂采用A、B两种机器人来搬运化工原料,其中A型机器人每天搬运的重量是B型机器人的2倍,如果用两种机器人各搬运300t原料,A型机器人比B型机器人少用3天完成.(1)求A、B两种型号的机器人每天各搬运多少吨化工原料;(2)现有536t化工原料需要搬运,若A型机器入每天维护所需费用为150元,B型机器人每天维护所需费用为65元,那么在总费用不超过740元的情况下,至少安排B型机器人工作多少天?(注:天数为整数)21.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?22.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a 的所有可能值.23.某糕点加工点受资金和原料保质期等因素影响,在购买主要原料面包粉和蛋糕粉时需分次购买.下表是该店最近三次购进原料的数量与总金额,其中前两次是按原价购买,第三次享受了优惠.第一次第二次第三次面包粉(袋)235蛋糕粉(袋)458总金额(元)520700912(1)第三次购买的总金额比按原价购买节省了多少钱?(2)该店第四次购买原料时,按照第三次购买的经验,预算912元,仍需购买5袋面包粉和8袋蛋糕粉.在接洽的过程中,发现优惠方式又发生了变化,相较于原价,每袋蛋糕粉降低的价格是每袋面包粉降低的价格的两倍,这时用576元能够买到面包粉的袋数是蛋糕粉袋数的.预算够吗?24.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区准备购进A型和B型两种垃圾桶,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花20元,用250元购进A型垃圾桶的数量与用350元购进B型垃圾桶的数量相等.(1)求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?(2)小区决定用不超过600元购进A、B两种型号的垃圾桶共10台,且A型垃圾桶的个数不多于B型垃圾桶的个数的2倍,问小区有几种购买方案?参考答案1.解:A.方程分母中不含未知数,故不是分式方程;B.方程分母中不含未知数,故不是分式方程;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程;D.方程分母中含未知数x,故是分式方程.故选:D.2.解:∵甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,∴两队共同工作了半个月完成的工程量=(+)=+,故选:D.3.解:∵关于x的分式方程无解,∴x﹣1=0,∴x=1,∵,∴x+2(x﹣1)=﹣m,把x=1代入x+2(x﹣1)=﹣m中可得:1=﹣m,∴m=﹣1,故答案为:﹣1.4.解:设甲进价为a元,则售出价为1.4a元;乙的进价为b元,则售出价为1.6b元;若售出甲x件,则售出乙1.5x件.=0.5,解得a=1.5b,∴售出的甲,乙两种商品的件数相等,均为y时,这个商人的总利润率为===48%,故答案为48%.5.解:设这批椽的数量为x株,由题意可得:,故答案为:.6.解:设第一天每棵雪松售价x元,则第二天每棵雪松售价(x+5)元,由题意得:=2×,解得:x=110,经检验,x=110是原方程的解,则x+5=115,即第二天每棵雪松售价115元,故答案为:115.7.解:,两边都乘以3(3x﹣1)得:1﹣3x=2(3x﹣1),解得:,检验:当时,3(3x﹣1)=0,∴是原方程的增根∴原分式方程无解.8.解:1+=,1﹣x2+1=x(1﹣x),解得:x=2,检验:当x=2时,1﹣x2≠0,∴x=2是原方程的根.9.解:(1)将代入原方程,则原方程化为;(2)将代入方程,则原方程可化为;(3)原方程化为:,设,则原方程化为:,方程两边同时乘y得:y2﹣1=0解得:y=±1,经检验:y=±1都是方程的解.当y=1时,,该方程无解;当y=﹣1时,,解得:;经检验:是原分式方程的解,∴原分式方程的解为.10.解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:设=a,=b,原方程化为:②×3﹣①×2得:27b﹣12b=1∴b=③将③代入②得:4a+9×=1∴a=∴经检验,x=10,y=15是原方程的解.∴甲公司单独完成需10周,乙公司单独完成需15周.11.解:方程两边都乘(x+1)(x﹣1),得2(x﹣1)+k(x+1)=6∵原方程有增根x=1,∴当x=1时,k=3,故k的值是3.12.解:(1)把m=3代入方程得:+=,去分母得:3x+2x+4=3x﹣6,解得:x=﹣5,检验:当x=﹣5时,(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣5;(2)去分母得:mx+2x+4=3x﹣6,∵这个关于x的分式方程会产生增根,∴x=2或x=﹣2,把x=2代入整式方程得:2m+4+4=0,解得:m=﹣4;把x=﹣2代入整式方程得:﹣2m=﹣12,解得:m=6.13.解:去分母得:2m﹣1﹣7x=5x﹣5,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=4.14.解:设购买一个A型号保温杯需要x元,则购买一个B型号保温杯需要(x+30)元,根据题意,得=3×.解得x=50.经检验x=50是原方程的解,且符合题意.所以x+30=80.答:购买一个A型号保温杯需要50元,则购买一个B型号保温杯需要80元.15.解:(1)由题意可得,把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,故答案为:1,x,;1,x+6,;(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,故答案为:()×3+(x﹣3)×=1.16.解:(1)由题意,得,去分母,得x=2(x﹣3)+2,去括号,得x=2x﹣6+2,移项、合并同类项,得x=4,经检验,当x=4时x﹣3≠0,∴x=4是原分式方程的解;(2)设原分式方程中“?”代表的数为m,方程两边同时乘(x﹣3)得x=2(x﹣3)﹣m,由于x=3是原分式方程的增根,把x=3代入上面的等式解得m=﹣3,∴原分式程中“?”代表的数是﹣3.17.解:(1)①去分母,得:x2+2=3x,即x2﹣3x+2=0,(x﹣1)(x﹣2)=0,则x﹣1=0,x﹣2=0,解得:x1=1,x2=2,经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2﹣5x+6=0,(x﹣2)(x﹣3)=0,则x﹣2=0,x﹣3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2﹣7x+12=0,(x﹣3)(x﹣4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)出第n个方程为x+=2n+1,解是x1=n,x2=n+1;(3),即x﹣3+=2n+1,则x﹣3=n或x﹣3=n+1,解得:x1=n+3,x2=n+4.18.解:当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x﹣1=0,解得:x1=1+,x2=1﹣(舍去);当x<﹣x,即x<0时,所求方程变形得:﹣x=,即x2+2x+1=0,解得:x3=x4=﹣1,经检验:x1=1+,x3=x4=﹣1都为分式方程的解.19.解:去分母可得:3x﹣2(x﹣6)=m∴3x﹣2x+12=m∴x=m﹣12将x=m﹣12代入最简公分母可知:m﹣12﹣6≠0,∴m≠18∵分式方程的解是正数,∴m﹣12>0,∴m>12∴m的取值范围为m>12且m≠1820.解:(1)设B种型号的机器人每天搬运x吨化工原料,则A种型号的机器人每天搬运2x吨化工原料,根据题意得:,解得:x=50,经检验x=50是原方程的根,此时2x=100,答:A种型号的机器人每天搬运100吨化工原料,B种型号的机器人每天搬运50吨化工原料;(2)设B型机器人工作b天,则A型机器人需要工作()天,由题意得:150×+65b≤740,整理得:3(536﹣50b)+130b≤1480,解得:b≥6.4,∵b为整数,∴b最小为7,如果B机器人工作7天的,A机器人需工作(536﹣50×7)÷100约2天,总费用为65×7+150×2=755>740,B机器人工作8天的话,A机器人工作天数为整数,还是需要2天,B机器人工作9天的话,A机器人只需要工作1天,总费用为65×9+150=735,符合要求答:至少安排B型机器人工作9天.21.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400=2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.22.解:(1)设原计划每天加工纸箱x个,则现在每天加工1.5x个,由题意得﹣2=解得x=20经检验x=20是原分式方程的解,答:原计划每天加工纸箱20个.(2)设加工竖式纸盒x个,加工横式纸盒y个,依题意,得解得:答:加工竖式纸盒200个,加工横式纸盒400个;(3)设加工竖式纸盒x个,加工横式纸盒y个,依题意得:∴y=40﹣,∵y、a为正整数,∴a为5的倍数,∵120<a<136∴满足条件的a为:125,130,135.当a=125时,x=20,y=15;当a=130时,x=22,y=14;当a=135时,x=24,y=13据符合题意,∴a所有可能的值是125,130,13523.解:(1)设每袋面包粉x元,每袋蛋糕粉y元.依题意得:,解得.100×5+80×8﹣912=500+640﹣912=228(元).答:第三次购买时,该店比按原价购买节省的总金额为228元;(2)设每袋面包粉降价m元,则每袋蛋糕粉降价2m元,依题意,得.解得m=4.经检验,m=4符合题意.故第四次购买时,面包粉每袋96元,蛋糕粉每袋72元.∵96×5+72×8=1056>912,∴预算不足.24.解:(1)设购买一个A型垃圾桶需要x元,则购买一个B型垃圾桶需要(x+20)元,根据题意得:,解得:x=50,经检验,x=50是原方程的根,且符合题意,∴x+20=70.答:购买一个A型垃圾桶需要50元,购买一个B型垃圾桶需要70元.(2)设B型垃圾桶购进y个,则A型垃圾桶(10﹣y)个.由题意得,解得:,∵y是正整数,∴y可取4,5,即小区共有两种购买方案.。
(完整版)初中数学分式章节知识点及典型例题解析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2—a 2、m 1、65xy x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。
(2)下列式子,哪些是分式?5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145b-+。
2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )A .122+x x B 。
12+x x C 。
133+x x D 。
25xx - 例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A. 2 B 。
—1或—3 C 。
-1 D 。
3同步练习题:3、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去.例1:当x 时,分式121+-a a的值为0 例2:当x 时,分式112+-x x 的值为0例3:如果分式22+-a a 的值为为零,则a 的值为( ) A. 2± B 。
初中数学之分式方程知识点汇总

初中数学之分式方程知识点汇总
分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:
(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 初中数学分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。
在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须验根。
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.。
第16讲 分式方程八年级数学下册同步讲义(北师大版)

第16讲分式方程目标导航2.通过将简单的分式方程转化为整式方程进行求解,领会分式方程“整体化”的化归思想和方法;3.理解增根的概念,会检验分式方程的根;4.会用分式方程解决相关问题,并进行简单的应用.知识精讲知识点01 分式方程的定义分式方程的定义:分母中含有未知数的方程叫做分式方程.判断一个方程是否为分式方程主要是看这个方程的分母中是否含有未知数.【知识拓展】(2021秋•平罗县期末)下列方程中,不是分式方程的是()A.B.C.D.【即学即练】(2021秋•西峰区期末)下列关于x的方程是分式方程的是()A.B.C.D.知识点02 分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.【知识拓展】(2022春•北碚区校级月考)若实数a使关于x的分式方程有正整数解,且使关于y的一元一次不等式组至少有4个整数解,则符合条件的所有整数a之和为()A.12B.15C.19D.22【即学即练】(2022春•沙坪坝区校级月考)若关于x的不等式组有且只有四个整数解,且关于y的分式方程的解为非负整数,则所有满足条件的整数a的值的和是()A.2B.0C.1D.﹣1知识点03 解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.【知识拓展】(2022•德城区校级开学)方程的解为()A.B.﹣4或1C.﹣4D.无解【即学即练1】((2022•江汉区模拟)方程的解为.【即学即练2】((2021秋•利通区校级期末)若分式值相等,则x的值为.知识点04换元法解分式方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.【知识拓展】(2021春•淮安月考)用换元法解分式方程x2+2x﹣=8,若设x2+2x=y,则原方程可化为()A.20y2+8y﹣1=0B.y2﹣8y﹣20=0C.y2+8y﹣20=0D.8y2﹣20y+1=0【即学即练】(2021春•宝山区校级月考)用换元法解方程时,设,则原方程可变形为()A.y2+y=4B.y2+y=2C.y2+y=6D.y2﹣y=4知识点05分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.【知识拓展】(2021秋•开福区校级期末)若关于x的分式方程有增根,则m的值是()A.m=2或m=6B.m=2C.m=6D.m=2或m=﹣6【即学即练】(2021秋•德江县期末)关于x的方程有增根,则m的值是()A.0B.2或3C.2D.3知识点06由实际问题抽象出分式方程由实际问题抽象出分式方程的关键是分析题意找出相等关系.(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.【知识拓展】(2022•罗山县校级模拟)郑州市新冠肺炎疫情防控指挥部发布开展全市全员新冠病毒核酸检测的通告,某小区有3000人需要进行核酸检测,由于组织有序,居民也积极配合,实际上每小时检测人数比原计划增加50人,结果提前2小时完成检测任务.假设原计划每小时检测x人,则依题意,可列方程为()A.B.C.D.【即学即练】(2021秋•和硕县校级期末)在新农村建设中,为了美化乡村,八年级同学积极参加植树造林,已知八(1)班每天比八(2)班每天多植5棵树,八(1)班植80棵树所用的天数与八(2)班植70棵树所用的天数相等,若设八(1)班每天植x棵,根据题意列出的方程是()A.B.C.D.知识点07分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【知识拓展】(2022•麻栗坡县校级模拟)根据云南省《关于加快推进城镇老旧小区改造工作的指导意见》,在2021年底要基本完成云南全省城镇老旧小区改造提升工作.某小区计划对面积为1200m2的区域进行停车位改造,经投标由甲、乙两个工程队来完成.已知甲队每天能完成改造的面积是乙队每天能完成改造面积的2倍,如果两队各自独立完成面积为400m2区域的改造时,甲队比乙队少用4天.求甲、乙两工程队每天各能完成多少面积的停车位改造?【即学即练1】(2021秋•利通区校级期末)“阅读陪伴成长,书香润泽人生,”吴忠市第四中学为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同,求每本A类图书和每本B类图书的价格各为多少元?【即学即练2】(2021秋•绵阳期末)精强硅谷,有众多高科技产业,红旗电子科技公司是通讯设备、电源设备及消费类电子产品生产厂商,提供各类高分子材料、热传导材料、绝缘材料、缓冲及防尘材料.该公司今年承包了一手机品牌某一热传导材料零部件的生产任务,原计划在规定时间内生产24000个热传导材料零部件,由于此零件紧缺,需要提前5天供货,该公司经商议后,决定将工作效率比原计划提高25%,结果按预期刚好提前5天完成任务,求原计划每天生产的零件个数和规定的天数.能力拓展一.选择题(共3小题)1.(2021•大渡口区自主招生)如果关于x 的分式方程+=1有非负整数解,关于y 的不等式组有且只有三个整数解,则所有符合条件的整数m的个数为()A.0B.1C.2D.32.(2020•渝北区自主招生)若a为整数,关于x 的不等式组有且只有两个整数解,且关于y的分式方程﹣=1有整数解,则满足上述条件的整数a的和为()A.﹣1B.﹣3C.﹣5D.﹣63.(2020•武昌区校级自主招生)若关于x 的方程++=0只有一个实数根,则实数a的所有可能取值的和为()A.7B.15C.31D.以上选项均不对二.填空题(共4小题)4.(2021•黄州区校级自主招生)黄冈首届半程马拉松于5月6日在遗爱湖公园起跑,小林与小雨两名同学为参加比赛,在学校运动场400米环形跑道上进行训练,两人各自以恒定的速度沿逆时针方向跑步,已知每隔12分钟小林追上小雨一次,小林每圈花费的时间比小雨少10秒,则小林跑步的速度为每秒米.5.(2019•顺庆区校级自主招生)已知x满足﹣x2﹣2x=1,那么x2+2x=.6.(2020•巴南区自主招生)若关于x的分式方程﹣=4有正整数解,且关于y的不等式组有解,则所有符合条件的整数a的值的积是.7.(2019•达州自主招生)已知a2﹣6a+1=0且=2,则m=.三.解答题(共5小题)8.(2020•宝山区校级自主招生)解关于x的方程a(x﹣1)++3=0.9.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?10.(2020•浙江自主招生)已知关于x的方程﹣=恰好有一个实数解,求k的值及方程的解.11.(2020•渝中区校级自主招生)2020年2月,因新冠肺炎确诊病例不断增加,湖北某医疗救治中心计划购买一批无创呼吸机和双向呼吸机,两款共200台,预算分别为56万元和156万元.已知每台双向呼吸机的售价是每台无创呼吸机售价的2倍少1000元.(1)求该救治中心计划分别购进无创呼吸机和双向呼吸机各多少台?(2)为了表达对湖北疫区人民支持,呼吸机生产厂家立即对两款呼吸机均进行打折零利润销售,实际售价均在原售价的基础上下降了a%,根据救治中心一线医护人员的实际需求,双向呼吸机的实际购买量比原计划增加了a%,结果购买双向呼吸机比购买无创呼吸机多花费了90.4万元,求a的值.12.(2020•谷城县校级自主招生)若关于x的方程只有一个解(相等的解也算作一个),试求k的值与方程的解.分层提分题组A 基础过关练一.选择题(共5小题)1.(2021秋•樊城区期末)随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x套,根据题意,下列方程正确的是()A .B .C .D .2.(2021秋•河西区期末)方程的解为()A.1B.3C.4D.无解3.(2021秋•惠州期末)把分式方程=转化成整式方程时,方程两边同乘()A.x B.x﹣2C.x(x﹣2)D.3x(x﹣2)4.(2021秋•公安县期末)已知关于x 的方程的解为正数,则k的取值范围为()A.k>﹣2且k≠﹣1B.k>﹣2C.k>0且k≠1D.k<﹣25.(2021秋•德江县期末)关于x 的方程有增根,则m的值是()A.0B.2或3C.2D.3二.填空题(共5小题)6.(2021秋•孟村县期末)现有6000米的钢轨需要铺设,为确保通车时间,实际施工时每天铺设的长度是原计划的2倍,结果提前15天完成任务.设原计划每天铺设钢轨x米.(1)根据题意,可列分式方程为;(2)实际施工时每天铺设钢轨的长度为米.7.(2022•仁寿县模拟)已知关于x的方程=5的解不是正数,则m的取值范围为.8.(2021秋•宜城市期末)若关于x的分式方程无解,则m的值为.9.(2021秋•新田县期末)解关于x的分式方程=时不会产生增根,则m的取值范围是.10.(2021秋•曲阳县期末)A、B两地相距1350km,两辆汽车从A开往B地,大汽车比小汽车晚到30min,已知小汽车与大汽车的速度之比为5:3,求两车的速度,设大汽车的速度为3xkm/h,小汽车的速度为5xkm/h,所列方程是.三.解答题(共2小题)11.(2021秋•昌吉市校级期末)解方程:(1)=;(2)﹣=1.12.(2022•淮北模拟)解分式方程:+3=.题组B 能力提升练一.选择题(共5小题)1.(2022•开州区模拟)若关于x的一元一次不等式组的解集为x<﹣2,且关于y的分式方程的解为负整数,则所有满足条件的整数a的值之和是()A.﹣15B.﹣13C.﹣7D.﹣52.(2021秋•钢城区期末)若关于x的分式方程有正数解,则m的取值范围为()A.m<2B.m≠3C.﹣3<m<﹣2D.m<2且m≠﹣33.(2021秋•平舆县期末)若关于x的方程=a无解,则a的值为()A.1B.﹣1C.0D.±14.(2022•北碚区校级开学)若关于x的一元一次不等式组的解集恰好有3个负整数解,且关于y的分式方程=1有非负整数解,则符合条件的所有整数a的和为()A.6B.9C.﹣1D.25.(2021秋•晋安区期末)若关于x的分式方程=无解,则k的值为()A.1或4或﹣6B.1或﹣4或6C.﹣4或6D.4或﹣6二.填空题(共2小题)6.(2022•任城区一模)关于x的分式方程的解是正数,则a的取值范围是.7.(2021秋•绵阳期末)若关于x的方程的解为整数,则满足条件的所有整数a的和等于.三.解答题(共8小题)8.(2021秋•江源区期末)学习分式方程应用时,老师板书的问题和两名同学所列的方程如下:15.3分式方程甲乙两个工程队,甲队修路400米与乙队修路600米所用时间相等,乙队每天比甲队多修20米,求甲队每天修路的长度?聪聪:=明明:﹣=20根据以上信息,解答下列问题:(1)选择:聪聪同学所列方程中的x表示,明明同学所列方程中的y表示;A.甲队每天修路的长度;B.乙队每天修路的长度;C.甲队修路400米所用的时间.(2)你喜欢列的方程,该方程的等量关系为;(3)解(2)中你所选择的方程,并回答老师提出的问题.9.(2021秋•濮阳期末)为了做好防疫工作,保障员工安全健康,某公司用480元购进一批某种型号的口罩.由于质量较好,公司又用720元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜4元,问第一批口罩每包的价格是多少元?公司前后两批一共购进多少包口罩?10.(2021秋•密山市期末)(1)已知x(x﹣1)﹣(x2﹣y)=﹣6,求﹣xy的值.(2)虎林市政府倡导开展“共建绿色家园”,八年级甲、乙两个班的同学参加植树活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?(用方程解答)11.(2021秋•青县期末)为响应“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲种足球2个,乙种足球1个,购买足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?12.(2021秋•老河口市期末)某商家预测一种商品能畅销市场,就用4000元购进一批这种商品,这种商品面市后果然供不应求,商家又用8800元购进了第二批这种商品,所购数量是第一批购进数量的2倍,但单价贵了4元.该商家购进的两批商品的数量分别是多少件?13.(2021秋•渌口区期末)某商场在端午节来临之际用3000元购进A、B两种玩具110个,购买A玩具与购买B玩具的费用相同.已知A玩具的单价是B玩具单价的1.2倍.(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个?14.(2021秋•普兰店区期末)一项工程需要限期完成,若用甲工程队单独做正好如期完成,若用乙工程队单独做,需要逾期3天才能完成(比期限多3天).现在甲、乙两工程队合做2天,余下由乙工程队单独做,刚好如期完成,求甲、乙两工程队单独完成工程各需要多少天?15.(2021秋•民权县期末)某商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少4元,其用200元购进甲种牛奶的数量与用220元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的2倍少4件,该商场甲种牛奶的销售价格为每件45元,乙种牛奶的销售价格为每件50元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于364元,请通过计算求出该商场购进甲、乙两种牛奶各多少件?题组C 培优拔尖练一.选择题(共1小题)1.(2021春•福田区校级期中)如果关于x的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m的和是()A.13B.15C.20D.22二.填空题(共2小题)2.(2022春•渝中区校级月考)某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵树相同且大于3棵小于10棵,高二年级平均每人植树的棵树为初一、初二平均每人植树的棵树之和的2倍,上午四个年级平均每人植树的棵树总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵树都有所降低,高一年级平均每人植树的棵树降低50%,高二年级平均每人植树的棵树降为原来的.若初一年级人数及人均植树的棵树不变,高一高二年级人数不变,且四个年级平均每人植树的棵树为整数,则四个年级全天一共植树棵.3.(2020秋•滨州月考)若=+++++,则a的值是.三.解答题(共10小题)4.(2021秋•望城区期末)已知,关于x的分式方程=1.(1)当a=2,b=1时,求分式方程的解;(2)当a=1时,求b为何值时分式方程=1无解;(3)若a=3b,且a、b为正整数,当分式方程=1的解为整数时,求b的值.5.(2021秋•临河区期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?某校初二年级的甲、乙两个班的同学以班级为单位分别乘坐大巴车去某基地参加拓展活动,此基地距离该校90千米,甲班的甲车出发10分钟后,乙班的乙车才出发,为了比甲车早到5分钟,乙车的平均速度是甲车的平均速度的1.2倍,求乙车的平均速度.7.(2021春•射洪市月考)已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.8.(2021秋•宜城市期末)有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?为了提升阅读速度,某中学开设了“高效阅读”课.小敏经过一段时间的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同.求小敏原来每分钟阅读的字数.10.(2021秋•饶平县期末)在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a天完成,乙做另一部分用了y天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?11.(2021秋•上思县期末)为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?12.(2020秋•庆云县校级期末)进入防汛期后,某地驻军在河堤加固的工程中出色完成任务,下面是记者与驻军工程指挥官的对话:记者:“你们是用9天时间完成4800米长的大坝加固任务的?”驻军指挥官:“我们加固600米后,采用新的加固模式,这样每天加固长度是原来的2倍.”通过上面的对话,请你求出该驻军原来每天加固河堤的米数.13.(2021春•南浔区期末)某商场在一楼至二楼间安装了一部自动扶梯,以匀速向上行驶.甲、乙两同学同时从扶梯上匀速走到二楼,且甲每分钟走动的级数是乙的两倍.已知甲走了24级到扶梯顶部,乙走了16级到扶梯顶部(甲、乙两同学每次只跨一级台阶).(1)扶梯露在外面的部分有多少级?(2)如果与扶梯并排有一从二楼到一楼的楼梯道,台阶数与扶梯级数相同,甲、乙各自到扶梯顶部后按原速再下楼梯到楼梯底部再乘扶梯,若楼梯与扶梯之间的距离忽略不计,问甲第1次追上乙时是在扶梯上还是在楼梯上?他已经走动的级数是多少级?。
新人教版八年级数学下册知识点总结

新人教版八年级数学下册知识点总结第十六章 分式1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A叫做分式。
2. 分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3. 分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
(分式的值是在分式有意义的前提下才可以考虑的,所以使分式A B为0的条件是A =0,且B ≠0.) (分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4. 分式的基本性质:分式的分子及分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为 (0≠C ),其中A 、B 、C 是整式注意:(1)“C 是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;C B C A B A ⋅⋅=CB C A B A ÷÷=(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。
5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
专题5.16 分式与分式方程(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题5.16分式与分式方程(全章复习与巩固)(知识讲解)【学习目标】1.理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系.5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.特别说明:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.特别说明:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式➽➼分式的意义✭✭分式的基本性质1.已知分式2x nx m+-(m ,n 为常数)满足表格中的信息,则下列结论中错误..的是()x 的取值-22pq分式的值无意义012A .2n =B .2m =-C .6p =D .q 的值不存在【答案】A【分析】根据分式有意义的条件可得m ,n 的值,进而可知p ,q 的值,选出符合要求的选项即可.解:∵x 为﹣2时方程无意义,∴x -m =0,解得:m =﹣2,故B 正确,故分式为:22x n x ++,当x =2时,分式的值为0,故2×2+n =0,n =﹣4,故A 错误,故分式为:242x x -+,当分式值为1时,2x -4=x +2,解得:x =6,故6p =,故C 正确,当2422x x -=+时,2x -4=2x +4,此等式不成立,则q 的值不存在,故D 正确,故选:A .【点拨】本题考查分式有意义的条件,方程思想,能够熟练掌握分式有意义的条件时解决本题的关键.举一反三:【变式1】若不论x 取何实数时,分式22ax x a-+总有意义,则a 的取值范围是()A .1a ≥B .1a >且0a ≠C .1a >D .1a <【答案】C 【分析】分式22ax x a-+总有意义,则分母永远不等于0,即22x x a -+的最小值大于0,据此解题即可.解:∵分式22ax x a-+总有意义,∴()22211x x a x a -+=-+-的最小值10a ->,解得1a >.【点拨】本题主要考查分式有意义的条件及二次函数的最值问题,能够熟练利用条件列不等式是解题关键.【变式2】若分式||3(3)(2)a a a --+的值为0,则a 满足的条件是()A .3a =B .3a =-C .3a =±D .3a =或2a =-【答案】B【分析】由分式的值为0的条件可得:()()30320a a a ì-=ïí-+¹ïî①②,再解方程与不等式即可.解:∵分式||3(3)(2)a a a --+的值为0,()()30320a a a ì-=ï\í-+¹ïî①②由①得:3,a =±由②得:3a ≠且2,a ≠-∴ 3.a =-故选B【点拨】本题考查的是分式的值为0的条件,掌握“分式的值为0,则分子为0,而分母不为0”是解本题的关键.2.不改变分式的值,下列各式变形正确的是()A .11x x y y +=+B .1x yx y-+=--C .22x y x y x y-=++D .22233x x y y ⎛⎫= ⎪⎝⎭【答案】B【分析】根据分式的基本性质即可一一判定.解:A.11x x y y ++≠,故该选项错误,不符合题意;B.()1x y x y x y x y---+==---,故该选项正确,符合题意;C.22x y x y x y-=-+,故该选项错误,不符合题意;D.22239x x y y ⎛⎫= ⎪⎝⎭,故该选项错误,不符合题意;【点拨】本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质.举一反三:【变式1】下列各式从左边到右边的变形正确的是()A .22x y y xx y x y--=++B .a b a bc c-+-=-C .0.220.22a b a ba b a b++=++D .1x yx y--=+【答案】B【分析】根据分式的基本性质作答.解:A 、22x y y xx y x y--=-++,此选项变形错误;B 、a b a bc c -+-=-,此选项变形正确;C 、0.22100.2102a b a ba b a b++=++,此选项变形错误;D 、1x yx y--=-+,此选项变形错误;故选B .【点拨】本题主要考查了分式的变形,解答此类题一定要熟练掌握分式的基本性质.【变式2】如果把分式xyx y+中的x 和y 都扩大10倍,则分式的值()A .扩大20倍B .扩大10倍C .不变D .缩小10倍【答案】B【分析】根据分式的基本性质即可求出答案;解:()x y xy xyx y x y x y==+++101010010101010 故选:B .【点拨】本题考查了分式的基本性质;解题的关键是熟练运用分式的基本性质进行化简比较.类型二、分式➽➼相关概念➽➼最简分式✭✭约分✭✭最简公分母✭✭通分3.分式122m +与11m +的最简公分母是()A .22m +B .2m +C .1m +D .21m -【答案】A【分析】根据最简公分母的概念,求解即可.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.解:分式122m +与11m +的最简公分母22m +,故选:A【点拨】此题考查了最简公分母的概念,解题的关键是熟练掌握最简公分母的概念.举一反三:【变式】分式212x y 和216xy 的最简公分母是()A .2xyB .222x y C .226x y D .336x y 【答案】C【分析】根据最简公分母的确定方法解答即可.解:分式212x y 和216xy的最简公分母是226x y .故选:C .【点拨】本题主要考查了最简公分母的确定方法,确定最简公分母的一般方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.4.下列分式中,属于最简分式的是()A .2xB .22x x C .42xD .11x x --【答案】A【分析】根据最简分式的定义逐一判断即可.解:A.2x,是最简分式,符合题意;B.22x x =12x,不是最简分式,不合题意;C.422x x=,不是最简分式,不合题意;D.111xx -=--,不是最简分式,不合题意,故选:A .【点拨】本题考查最简分式的定义,一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.举一反三:【变式】下列分式中是最简分式的是()A .224x x B .22x y x y++C .2211x x x +++D .242x x -+【答案】B【分析】分子分母不含公因式的分式叫做最简分式,对四个选项逐一检查是否还能化简即可求得结果.解:A 选项22142x x x=,故不是最简分式;B 选项不能再化简,故是最简分式;C 选项()22121111x x x x x x +++==+++,故不是最简分式;D 选项()()2224222x x x x x x +--==-++,故不是最简分式.故选:B .【点拨】本题考查了分式的约分,解决本题的关键是找到分子分母中的公因式.类型三、解分式方程➽➼根的情况➽➼增根✭✭无解5.(1)通分:()22xyx y +和22x x y -;(2)约分:22416m mm --.【答案】(1)()()()()2222xy x y xyx y x y x y -=++-,()()()222x x y x x y x y x y +=-+-;(2)4m m +【分析】(1)找出两分母的最简公分母,通分即可;(2)原式变形后,约分即可得到结果.解:(1)()()()()2222xy x y xyx y x y x y -=++-,()()()222x x y xx y x y x y +=-+-;(2)()()()224416444m m m m m m m m m --==-+-+.【点拨】此题考查了通分及约分,通分的关键是找出各分母的最简公分母,约分的关键是找出分子分母的公因式.举一反三:【变式】(1)约分:236a bab;(2)通分:223b a 与abc 【答案】(1)2a ;(2)2223b c a bc 与3233a a bc【分析】(1)直接利用分式的性质化简,进而得出答案;(2)首先得出最简公分母,进而得出答案.解:(1)2336322a b ab a aab ab ⨯==⨯;(2)223b a与abc 最简公分母为:23a bc ,则:2222222333b b bc b ca a bc a bc ⨯==⨯,23223333a a a a bc bc a a bc⨯==⨯.【点拨】本题主要考查了通分与约分,正确掌握分式的性质是解题关键.6.若分式方程1x aa x -=+有增根,则a 的值为________.【答案】1-【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母10x +=,得到=1x -,然后代入整式方程算出a 的值即可.解:方程两边同时乘以1x +得,()1x a a x -=+,∵方程有增根,∴10x +=,解得=1x -.∴10a --=,解得1a =-.故答案为:1-.【点拨】本题考查了分式方程的增根,先根据增根的定义得出x 的值是解答此题的关键.举一反三:【变式】如果关于x 的方程2133mx x =---有增根,那么m 的值为________.【答案】2-【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根,得到最简公分母为0求出x 的值,最后代入整式方程求出k 的值即可.解:分式方程去分母得:23x m =--,由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程得:2m =-.故答案为:2-.【点拨】本题主要考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.类型四、解分式方程➽➼根的情况➽➼正(负)数解✭✭非负(正)数解7.若关于x的不等式组341227x xa x+⎧-≥⎪⎨⎪->⎩无解,且关于y的分式方程3122y a yy y+=---的解为非负整数,则符合条件的所有整数a的和为______.【答案】16【分析】首先根据不等式组无解求得a的取值范围,再解分式方程,根据分式方程的解为非负整数得出a为整数,23a+为非负整数,然后确定出符合条件的所有整数a,即可得出答案.解:341227x xa x+⎧-≥⎪⎨⎪->⎩①②,解不等式①得:3x≥,解不等式②得:7x a<-,∵不等式组341227x xa x+⎧-≥⎪⎨⎪->⎩无解,∴73a-≤,∴10a≤,分式方程3122y a yy y+=---去分母,得32y y a y-=---,∴23ay+=,∵分式方程3122y a yy y+=---的解为非负整数,∴0y≥且20y-≠,∴203a+≥且4a≠,∵a为整数,23a+为非负整数,∴2a=-,1,7,10,∴整数a的和为2171016-+++=.故答案为:16.【点拨】此题考查的是解分式方程、解一元一次不等式组,掌握分式方程、一元一次不等式组的解法是解决此题关键.举一反三:【变式】若关于x 的方程301ax x+=-无解,则a 的值为______.【答案】0或-3【分析】先去分母化为整式方程,根据分式方程无解得到x =0或x =1或3+a =0,将解代入整式方程求出a 即可.解:去分母,得3x +a (x -1)=0,∴(3+a )x-a =0,∵原分式方程无解,∴x =0或x =1或3+a =0,当x =0时,a =0;当x =1时,3+0=0,无解;∴a =0,当3+a =0时,解得a =-3,故答案为:0或-3.【点拨】此题考查了根据分式方程解的情况求参数,正确掌握解分式方程的解法是解题的关键.8.若关于x 的分式方程3121m x +=-的解为非负数,则m 的取值范围是____.【答案】4m ≥-且3m ≠-【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是非负数”建立不等式求m 的取值范围.解:去分母得,m +3=2x ﹣1,∴x =42+m ,∵方程的解是非负数,∴m +4≥0即m ≥﹣4,又因为2x ﹣1≠0,∴x ≠12,∴42+m ≠12,∴m ≠-3,则m 的取值范围是m ≥﹣4且m ≠-3.故答案为:m ≥﹣4且m ≠-3.【点拨】本题考查了分式方程的解及分式有意义的条件,理解题意得出相应不等式求解即可.举一反三:【变式】关于x 的方程1233x m x x -=+--有正数解,则m 取值范围是______.【答案】5m <且2m ≠【分析】先解分式方程求出方程的解,再根据这个方程有正数解和3x ≠建立不等式,由此即可得.解:1233x m x x -=+--,方程两边同乘以()3x -,得()123x m x -=+-,去括号,得126x m x -=+-,移项、合并同类项,得5x m -=-,系数化为1,得5=-+x m ,关于x 的方程1233x m x x -=+--有正数解,50m ∴-+>,且53m -+≠,解得:5m <且2m ≠,故答案为:5m <且2m ≠.【点拨】本题考查了解分式方程,熟练掌握方程的解法是解题关键,需注意的是,分式方程有正数解隐含方程不能有增根.类型五、分式➽➼化简✭✭求值9.关于x 的分式方程334111ax x x x +-+=--的解为正整数,则满足条件的整数a 的值为____________.【答案】-3【分析】求得分式方程的解,利用方程的解的特征确定整数a 的值.解:分式方程334111ax x x x +-+=--的解为:24x a =+,∵分式方程有可能产生增根1,又∵关于x 的分式方程334111ax x x x +-+=--的解为正整数,且24x a =+≠1,∴满足条件的所有整数a 的值为:-3,∴a 的值为:-3,故答案为:-3.【点拨】本题主要考查了分式方程的解,方程的整数解,考虑分式方程可能产生增根的情况是解题的关键.举一反三:【变式】对于关于x 的分式方程()2141111k k x x x +=≠-+--①若k =1,则方程的解为________;②若方程有增根且无解,则k 的值为________;③若方程的解为负数,请你写出符合条件的且互为相反数的两个k 的值________.【答案】2x =k =2|k|>5即可,如6±【分析】①若k =1,得到分式方程为2114111x x x +=+--,解分式方程即可求解;②根据方程有增根且无解,可得x =±1,然后把x 的值代入整式方程中进行计算即可解答;③根据题意可得51k x k -=+,利用方程的解为负数求出k 的取值范围,再求出互为相反的两个k 值.解:①若k =1,得到分式方程为2114111x x x +=+--,去分母得114x x -++=,解得2x =.故答案为:2x =;②将()2141111k k x x x +=≠-+--去分母得()114x k x -++=,解得51k x k-=+.∵方程有增根且无解,∴210x -=,解得1x =±,当x =1时,511k k-=+,解得:2k =,当x =-1时,511k k -=-+无解,∴k 的值为2.故答案为:2k =;③∵方程的解为负数,∴x <0且x ≠±1,∴501k k-<+且511k k -≠±+,解得5k <-或5k >,∴符合条件的且互为相反数的两个k 的值可以是±6.故答案为:5k <-或5k >,如±6.【点拨】本题考查了分式方程的增根,分式方程的解法,根据题意求出x 的值后,代入整式方程中进行计算是解题的关键.10.计算:(1)211a a a ---;(2)4222⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭a a a a 【答案】(1)11a -(2)a 【分析】(1)先对原式通分变为同分母的分式,再相减即可解答本题;(2)先将括号内的进行计算,再将除法转换为乘法后,再约分即可得到答案.解:(1)211a a a ---=2(1)(1)11a a a a a +----=2(1)(1)1a a a a -+--=22(1)1a a a ---=22+11a a a --=11a -(2)4222⎛⎫⎛⎫+-÷ ⎪ ⎪--⎝⎭⎝⎭a a a a =4222a a a a ⎛⎫⎛⎫++÷ ⎪ ⎪--⎝⎭⎝⎭=24422a a a a -+⎛⎫÷ ⎪--⎝⎭=222a a a a-⨯-=a【点拨】本题主要考查了分式的混合运算,解题的关键是明确分式混合运算的计算方法.举一反三:【变式】计算:(1)22122x x x x-+÷;(2)2126339x x x x --++--.(3)22241123x x x x x ---÷+--.(4)2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭.【答案】(1)12x -;(2)2239x x --;(3)52x +;(4)22m m --+.【分析】(1)根据分式的加减运算以及乘除运算法则进行计算;(2)根据分式的加减运算以及乘除运算法则进行计算;(3)根据分式的加减运算以及乘除运算法则进行计算;(4)根据分式的加减运算以及乘除运算法则进行计算.解:(1)22122x x x x-+÷解:原式()()()1121x x x x x +-=⋅+12x -=;(2)2126339x x x x --++--解:原式()()1263333x x x x x -=+++-+-()()()()()()()()2336333333x x x x x x x x x -+-=+++--++-()()236633x x x x x -++-+=+-22239x x x +-=-()()()()3133x x x x +-=+-13x x -=-;(3)22241123x x x x x ---÷+--解:原式()()()()3121122x x x x x x -+-=-⋅+-+2322x x x x +-=-++()232x x x +--=++(4)2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭解:原式()()()22113111m m m m m m -+-⎡⎤=÷-⎢⎥---⎣⎦()()2231211m m m m ⎡⎤---⎢⎥=÷--⎢⎥⎣⎦()222411m m m m -⎡⎤-=-÷⎢⎥--⎣⎦()()()221122m m m m m --=-⋅--+22m m -=-+.【点拨】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.类型五、解分式方程➽➼运算✭✭化简✭✭求值11.先化简,再求值:2224124421x x x x x x x x ⎛⎫-+-÷--- ⎪-+--⎝⎭,然后从1-,0,1,2中选择一个合适的数作为x 的值代入求值.【答案】21--x x,1x =-时,12-【分析】先根据分式的运算法则把所给代数式化简,然后从所给数中取一个使分式有意义的数代入计算.解:原式()()()22222412212x x x x x x x x x ⎛⎫+--+-=÷- ⎪----⎝⎭()22224412212x x x x x x x x ⎛⎫-+--=÷-- ⎪----⎝⎭()2222441212x x x x x x x -+--+=÷----12121x x x x -=⋅---111x x =---21x x =--20x -≠ ,且10x -≠,且0x ≠2x ∴≠,且1x ≠,且0x ≠取=1x -时,原式12=-【点拨】本题考查了分式的计算和化简,解决这类题目关键是把握好通分与约分;关键是掌握分式加减的本质是通分,乘除的本质是约分,同时注意在进行运算前要尽量保证每个分式最简.举一反三:【变式】先化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,从不等式组()3421213212x x x x ⎧-≤-⎪⎪⎨+⎪-<⎪⎩的整数解中,选取一个你最喜欢的x 的值代入求值.【答案】82x +,1x =时,83【分析】根据分式的乘除法法则和约分法则把原式化简,根据解一元一次不等式组的步骤解出不等式组,从解集中选取使分式有意义的值代入计算即可.解:22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭22(2)22(2)(2)x x x x x x x ⎡⎤-=+÷⎢⎥-⎣⎦-++-22(2)(2)(2)(2)(2)2(2)x x x x x x x x ⎡⎤-=-÷⎢⎥-+-+-⎣⎦+2428x x x x =÷--2482x x x x -=⋅-82x =+,由()34212x x -≤-,2863x x -≤-,解得:54x ≥-;由13212x x +-<,4132x x --<,解得:3x <,故不等式组的解集为:534x -≤<,0,2,2x ≠- 当1x =时,原式83=.【点拨】本题考查的是分式的化简求值和一元一次不等式组的解法,掌握分式的乘除法法则和约分法则是解题的关键.12.解分式方程.(1)33122x x x-+=--;(2)214111x x x -+=+-【答案】(1)1x =(2)无解【分析】(1)分式方程两边同乘以(2)x -去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(1)(1)x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:(1)33122x x x-+=--323x x -+-=-3+23x x +=-22x =解得,1x =经检验,1x =是原方程的解,所以,原方程的解为:1x =(2)214111x x x-+=+-2(1)4(1)(1)x x x --=+-222141x x x -+-=-22x -==1x -经检验,=1x -是增根,原方程无解.【点拨】此题主要考查了解分式方程,正确找出分式方程的最简公分母是解答本题的关键.举一反三:【变式】解分式方程(1)432x x =+;(2)217133x x x+=---【答案】(1)6x =(2)无解【分析】(1)等号两边同时乘以(2)x x +将原方程转换为整式方程,然后求解验根即可;(2)等号两边同时乘以(3)x -将原方程转换为整式方程,然后求解验根即可.(1)解:432x x=+,去分母得:43(2)x x =+,解得:6x =,经检验6x =是原方程的解;(2)217133x x x+=---去分母得:2137x x +=-+,解得:3x =,经检验3x =是原方程的增根,故原方程无解.【点拨】本题考查了解分式方程,熟练掌握解分式方程的一般步骤是解本题的关键,注意解分式方程需要验根.类型五、分式方程的应用➽➼列方程✭✭解方程✭✭求值13.(1)解方程:411233x x x -=+--;(2)先化简,再求值:222(2)5242x x x x x x ++-÷---+,其中x 从2-,2和3中选一个合适的值.【答案】(1)2x =-(2)72x +,75【分析】(1)将分式方程化为整式方程,再解整式方程,最检验整式方程的解是不是分式方程的解即可;(2)根据分式的运算法则化简,再代入一个使原方式有意义的值求解即可.(1)解:411233x x x -=+--,方程两边同乘3x -,得()41231x x -=-+,解得2x =-,检验:当2x =-时,30x -≠,∴原分式方程的解是2x =-;(2)解:222(2)5242x x x x x x ++-÷---+()()222252(2)2x x x x x x x +-+-=⋅--++512x x -=-+252x x x +-+=+72x =+,2x =- 或2时,原分式无意义,3x ∴=,当3x =时,原式77325==+.【点拨】本题考查了解分式方程,分式的化简求值,分式有意义的条件,熟练掌握知识点是解题的关键.举一反三:【变式】解方程:(1)2232122x x x x x --+=--(2)()32011x x x x +-=--【答案】(1)1x =(2)无解【分析】(1)根据解分式方程的步骤求解即可;(2)根据解分式方程的步骤求解即可.解:(1)2232122x x x x x--+=--去分母,得()22322x x x x ---=-,解得1x =,经检验,1x =是原方程的根,∴原方程的解为:1x =;(2)()32011x x x x +-=--去分母,得()320x x -+=,解得1x =,经检验,1x =是原方程的增根,∴原方程无解.【点拨】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键,注意验根.14.小状元书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、15元,甲种图书每本的售价是乙种图书每本售价的1.5倍,若用1800元在该店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(假设购进的两种图书全部销售完)【答案】(1)甲种图书售价每本30元,乙种图书售价每本20元(2)甲种图书进货400本,乙种图书进货800本时利润最大【分析】(1)根据题意,列出分式方程即可;(2)先用进货量表示获得的利润,求函数最大值即可.(1)解:设乙种图书售价每本x 元,则甲种图书售价为每本1.5x 元,,由题意得:14001800101.5x x-=,解得:20x =,经检验,20x =是原方程的解,∴甲种图书售价为每本1.52030⨯=元,答:甲种图书售价每本30元,乙种图书售价每本20元;(2)设甲种图书进货a 本,总利润W 元,则(30203)(20152)(1200)48400W a a a =--+---=+∵2015(1200)20000a a +⨯-≤,解得400a ≤,∵W 随a 的增大而增大,∴当a 最大时W 最大,∴当400a =本时,W 最大,此时,乙种图书进货本数为1200400800-=(本),答:甲种图书进货400本,乙种图书进货800本时利润最大.【点拨】本题分别考查了分式方程和一次函数最值问题,注意研究利润最大分成两个部分,先表示利润再根据函数性质求出函数最大值.举一反三:【变式1】为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多5元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液,(1)求甲、乙两种消毒液的零售价分别是每桶多少元?(2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共100桶,且甲种消毒液的桶数不少于乙种消毒液桶数的12,由于是第二次购买,商家给予八折优惠.求甲种消毒液购买多少桶时,所需资金总额最少最少总金额是多少元?【答案】(1)甲种消毒液的零售价为25元/桶,乙种消毒液的零售价为20元/桶(2)当甲种消毒液购买34桶时,所需资金总额最少,最少总金额是1736元【分析】(1)设乙种消毒液的零售价为x 元/桶,则甲种消毒液的零售价为()+5x 元/桶,结合该单位分别用900元和720元采购相同桶数的甲、乙两种消毒液,即可列出关于x 的分式方程,进而求解即可.(2)设购买甲种消毒液m 桶,则购买乙种消毒液为()100m -桶,根据甲种消毒液的桶数不少于乙种消毒液的桶数的12,即可得出关于m 的一元一次不等式,解得m 的取值范围,然后设所需资金总额为w 元,根据题意列出函数关系式,再利用函数性质即可解决最值.(1)解:设乙种消毒液的零售价为x 元/桶,则甲种消毒液的零售价为()5+x 元/桶,依题意得:9007205x x =+,解得:=20x ,经检验,=20x 是原方程的解,且符合题意,525x ∴+=.答:甲种消毒液的零售价为25元/桶,乙种消毒液的零售价为20元/桶:(2)解:设购买甲种消毒液m 桶,则购买乙种消毒液()100m -桶,依题意得:()11002m m ≥-,解得:1003m ≥,设所需资金总额为w 元,则()250.8201000.841600w m m m =+-=+ ,40> ,w ∴随m 的增大而增大,∴当34m =时,w 取得最小值,最小值43416001736=⨯+=,答:当甲种消毒液购买34桶时,所需资金总额最少,最少总金额是1736元.【点拨】此题考查了分式方程的运用、一元一次不等式以及一次函数运用,解题关键是找准等量关系,正确列出方程.【变式2】某水果店一次购进了若干箱水蜜桃和李子,已知购进水蜜桃花费800元,购进李子花费1680元,所购李子比水蜜桃多10箱,李子每箱的进价是水蜜桃每箱进价的1.4倍.(1)水蜜桃和李子每箱进价分别为多少元?水蜜桃和李子各多少箱?(2)根据市场情况,每箱李子可以比每箱水蜜桃的利润多5元,这批水果全部售完后,店家若想获得不少于800元的利润,应该如何确定每箱水蜜桃和李子的售价?【答案】(1)水蜜桃和李子每箱进价分别为40元和56元,各20箱和30箱(2)每箱水蜜桃和李子的售价分别不少于53元和74元【分析】(1)设水蜜桃每箱x 元,则李子每箱1.4x 元,由题意列出分式方程,解之,再根据进货费用算出多少箱即可;(2)设水蜜桃每箱利润y 元,则李子每箱利润(5)y +元,由题意列出不等式,解不等式即可.(1)解:设水蜜桃每箱x 元,则李子每箱1.4x 元,根据题意得:1680800101.4x x -=,解得:40x =,经检验40x =是原方程的解,则1.4 1.44056x =⨯=,8004020÷=,16805630÷=,答:水蜜桃和李子每箱进价分别为40元和56元,各20箱和30箱;(2)设水蜜桃每箱利润y 元,则李子每箱利润(5)y +元,根据题意得:8001680(5)8004056y y ++≥,解得:13y ≥,134053+=,1355674++=,答:每箱水蜜桃和李子的售价分别不少于53元和74元.【点拨】本题考查了分式方程的应用以及一元一次不等式的应用;理解题意,列出分式方程和一元一次不等式是解题的关键.【变式3】为预防新冠疫情的反弹,桐君阁大药房派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使桐君阁大药房销售这批A 、B 两种品牌口罩的利润不低于8800元,则A 品牌口罩每个的售价至少定为多少元?【答案】(1)A 品牌每个口罩的进价为1.8元,则B 品牌每个口罩的进价为2.5元(2)3元【分析】(1)设A 品牌每个口罩的进价为x 元,则B 品牌每个口罩的进价为()0.7x +元,根据用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍列分式方程解答;(2)先求出两种品牌口罩购买的数量,设每个A 品牌口罩的售价定为y 元,则每个B 品牌口罩的定价为1.5y 元,列不等式求解即可.(1)解:设A 品牌每个口罩的进价为x 元,则B 品牌每个口罩的进价为()0.7x +元,720050020.7x x =⨯+,解得 1.8x =,经检验, 1.8x =是原方程的解,且符合题意,∴0.7 2.5x +=,答:A 品牌每个口罩的进价为1.8元,则B 品牌每个口罩的进价为2.5元;(2)购进B 品牌口罩的数量为5000 2.52000÷=(个),购进A 品牌口罩的数量为200024000⨯=(个),设每个A 品牌口罩的售价定为y 元,则每个B 品牌口罩的定价为1.5y 元,依题意得:()()4000 1.82000 1.5 2.58800y y ⨯-+⨯-≥,解得3y ≥,答:A 品牌口罩每个的售价至少定为3元.【点拨】此题考查了分式方程的应用,一元一次不等式的应用,正确理解题意列得方程或不等式是解题的关键.。
(完整版)初中数学分式方程典型例题讲解
第十六章分式知识点和典型例习题【知识网络】【思想方法】 1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd ac ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;am●a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a mb n, (a m)n= amn7.负指数幂: a-p=1pa a 0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义(一)分式的概念: 形如AB(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.【例1】下列代数式中:yx yx y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:1、分母中字母的取值不能使分母值为零,否则分式无意义2、当分子为零且分母不为零时,分式值为零。
2023学年华东师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)
2022-2023学年华东师大版八年级数学下册《16.3可化为一元一次方程的分式方程》同步练习题(附答案)一.填空题1.下列方程:①=2;②;③;④.其中分式方程是(填序号).2.有下列方程:①x2=1;②﹣x2=1;③=x;④;⑤=2;⑥2x ﹣3y=0;⑦﹣3=;⑧+3;⑨=,其中是分式方程的是.(填序号)3.当a=时,方程无解.4.已知分式方程的解为负数,则k的取值范围是.5.分式方程的根为.6.分式方程的解为.7.若关于x的方程有增根,实数m的值为.8.如果分式的值为0,那么x的值为;若关于x的分式方程有增根,则m的值为.二.解答题9.若关于x的不等式组有解,且使得关于y的分式方程有非负整数解,求所有的整数m的和.10.若关于x的方程无解,求m的值.11.解分式方程:.12.解方程:;.13.解方程:.14.已知关于x的方程有增根,则k为多少?15.若关于方程有增根,求m的值.16.2010年五月,某厂职工到距15千米的世博园参观,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同刚到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x千米/时,则所列方程为.17.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?18.一项工作由甲单独做需a天完成;如果甲、乙合做,则可提前b天完成.问乙每天可完成这项工作的几分之几?19.周末,两骑行爱好者甲和乙刚相约从A地沿着相同路线骑行到距离A地20千米的B地,已知甲的速度是乙的速度的1.5倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发24分钟后追上乙,求甲每小时骑行多少千米?(2)若乙先骑行50分钟,甲才开始从A地出发,则甲乙同时到达B地,求甲每小时骑行多少千米?20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产480万剂疫苗所用的时间比原来生产440万剂疫苗所用的时间少1天.问原来每天生产多少万剂疫苗?参考答案一.填空题1.解:下列方程:①=2;②;③;④.其中分式方程是①④,整式方程为②③.故答案为:①④.2.解:①x2=1不是分式方程;②﹣x2=1不是分式方程;③=x是分式方程;④是分式方程;⑤=2是分式方程;⑥2x﹣3y=0不是分式方程;⑦﹣3=不是分式方程;⑧+3不是方程;⑨=是分式方程.故答案为:③④⑤⑨.3.解:方程两边同时乘以(x﹣2)(x﹣3),得:ax+(a﹣1)(x﹣3)=(x﹣2)(x﹣3)﹣x(x﹣2),ax+ax﹣3a﹣x+3=x2﹣5x+6﹣x2+2x,(2a+2)x=3+3a,即,当a=﹣1时,原方程无解,当a≠﹣1时,解得,故答案为:﹣1.4.解:解分式方程得x=k﹣1,由分式方程的解是负数,得k﹣1<0,且k﹣1≠﹣1,解得k<1且k≠0.故答案为:k<1且k≠0.5.解:去分母,得3=x+1﹣3,解得x=5,经检验,x=5是原方程的根,故答案为:x=5.6.解:去分母得:3x﹣(x+2)=4,去括号得:3x﹣x﹣2=4,移项,合并同类项得:2x=6,∴x=3.经检验:x=3是原方程的根,故答案为:x=3.7.解:去分母,得2mx﹣(m+1)=x+1,∵关于x的方程有增根,将增根为x=﹣1代入2mx﹣(m+1)=x+1,得﹣2m﹣(m+1)=0,解得m=﹣,将增根为x=0代入2mx﹣(m+1)=x+1,得﹣(m+1)=1,解得m=﹣2,∴m的值为﹣或﹣2,故答案为:﹣或﹣2.8.解:∵分式的值为0,∴,解得:x=1;去分母,可得:2x﹣(x﹣3)=﹣m,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:2×3﹣(3﹣3)=﹣m,解得:m=﹣6.故答案为:1;﹣6.二.解答题9.解:整理不等式组,得,∵不等式组有解,∴不等式组的解集为m﹣2≤x≤﹣2m+1,即m﹣2≤﹣2m+1,解得m≤1.化简分式方程,得1+m﹣y=2(y﹣2),解得y=,∵由题意知,分式方程有意义,∴m≠1,∴m<1,即5+m<6,∵分式方程有非负整数解,∴5+m是3的非负整数倍,∴5+m=0或3∴m=﹣5或﹣2,∴所有的整数m的和为(﹣5)+(﹣2)=﹣7.10.解:方程两边都乘以(x﹣2)得:4x﹣5((x﹣2)=﹣mx,整理得:(1﹣m)x=10,∴当x=2时,分母为0,方程无解,即2(1﹣m)=10,∴m=﹣4时方程无解;当1﹣m=0时,方程无解,此时m=1.综上所述,当m=﹣4或1时方程无解.11.解:,﹣=﹣,方程两边都乘x(x+1)(x﹣1),得7(x﹣1)﹣6x=﹣3(x+1),解得:x=1,检验:当x=1时,x(x+1)(x﹣1)=0,所以x=1是增根,即分式方程无解.12.解:(1)﹣8=,方程两边都乘x﹣7,得x﹣8﹣8(x﹣7)=﹣1,解得:x=7,检验:当x=7时,x﹣7=0,所以x=7是增根,即分式方程无解;(2)=,=,方程两边都乘x(x+1),得5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即分式方程无解.13.解:设3x﹣1=y则原方程可化为:3y﹣2=5,解得y=,∴有3x﹣1=,解得x=,将x=代入最简公分母进行检验,6x﹣2≠0,∴x=是原分式的解.14.解:∵关于x的方程有增根,∴x﹣3=0,则x=3,∵原方程可化为4x=13﹣k,将增根x=3代入得k=1.15.解:去分母得:3(x+3)+m=2(x﹣3),∵分式方程有增根,∴(x+3)(x﹣3)=0,即x=3或x=﹣3,把x=3代入整式方程得:18+m=0,即m=﹣18;把x=﹣3代入整式方程得:m=﹣12.16.解:若设自行车的速度为x千米/时,那么骑自行车用的时间为:,而坐汽车用的时间为:;根据骑自行车多用了40分钟即小时,那么方程可表示为:.故答案为:.17.解:设水流速度是x千米/时,由题意,得+1+=7.25.18.解:根据分析可以得到:﹣=.故答案为.19.解:(1)设乙每小时骑行x千米,则甲每小时骑行1.5x千米,依题意得:×1.5x=2+x,解得:x=10,∴1.5x=1.5×10=15,答:甲每小时骑行15千米;(2)设乙每小时骑行y千米,则甲每小时骑行1.5y千米,依题意得:﹣=,解得:y=8,经检验,y=8是原方程的解,且符合题意,∴1.5y=1.5×8=12,答:甲每小时骑行12千米.20.解:设原来每天生产x万剂疫苗,则实际每天生产(1+20%)x=1.2x万剂疫苗,由题意得:,解得x=40,经检验,x=40是原方程的解,∴原来每天生产45万剂疫苗,答:原来每天生产45万剂疫苗.。
八年级下册全书章节复习
第十六章分式复习复习目标:1. 理解分式的概念,掌握分式有意义的条件。
2. 掌握分式的基本性质,会利用其进行约分。
3. 了解分式值的正负或为零的条件。
1.分式的概念::练习:(1) 在、、、、、 、 3a 2-b 、中是分式的有分式有意义的条件练习:(2)当x 取何值时下列分式有意义?, , ,2.分式的基本性质分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式的值不变.练习:(1)下列等式成立的是( )A .B .C .D .(2). 下列化简结果正确的是( )A. B.=0 C.=3x3D.=a 33.分式值的正负或为零的条件=0 的条件________ >0 的条件________ <0的条件________ 练习: (1). 当x=时,分式的值是零(2) 若分式的值为负数,则x 的取值范围是( ) A.x >3B.x <3C.x <3且x ≠0D.x >-3且x ≠0(3).已知x =-1时,分式无意义,x =4时分式的值为零,则a +b =________. 4.整数指数幂 负指数幂: a -p = a 0=1(a 0≠)1.计算: ; ;x 121212+x πxy 3y x +3m a 1+1223m m23x x -+211x x --211x x -+22mn m n =)0(≠++=a a m a n m n )0(≠--=a a m an m n )0(≠=a manam n 222222z y z x y x -=+-))((22b a b a b a -+--yx y x 26312-+m m aa A B A B AB12(1)x x --23x x -a x bx +-1p a=-321)(b a =+-203π()的整式不等于0,M M B M A B A M B M A B A ÷÷=⨯⨯=2.用科学记数法表示:(1)0.00150=_____________;(2)-0.000004020=___________. 5.分式乘法:练习:(1)= (2). = 6. 分式除法:练习:(1). = (2). = 7.分式通分: 练习: (1). 通分 8.分式加减:练习:计算(1) (2) 9.化简,求值。
(完整word版)人教八年级数学下册同步练习题及答案
1第十六章、分式 16.1.1从分数到分式(第一课时)一、课前小测:1、________________________统称为整式.2、23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.二、基础训练:1、分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零; 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 2、有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④23、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1三、综合训练:1、当x______时,分式2134x x +-无意义. 2、当x_______时,分式2212x x x -+-的值为零. 3、当x 取何值时,下列分式有意义?(1) (2)2323x x +-16.1.2分式的基本性质(第二课时)一、课前小测:23+x31.如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x 2. 当_____时,分式4312-+x x 无意义.当______时,分式68-x x 有意义 二、基础训练:1、分式的基本性质为:_________ ___.用字母表示为:_____________________.2、判断下列约分是否正确:(1)c b c a ++=b a , (2)22y x y x --=y x +1, (3)nm n m ++=0。
3、根据分式的基本性质,分式a a b --可变形为( ) A .a a b-- B .a a b + C .-a a b - D .a a b + 4、填空:4 (1) x x x 3222+= ()3+x , (2) 32386b b a =()33a , 5、约分:(1)c ab b a 2263 (2)532164xyz yz x - 三、综合训练:1、通分:(1)231ab 和b a 272 (2)xx x --21和x x x +-21 2、若a =23,则2223712aa a a ---+的值等于______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页眉内容
16.3分式方程
一、基础知识:
1、分式方程:分母中含有未知数的方程叫分式方程。
下列关于x 的方程哪1900015003004801232,,4,20,,,45030002321x x x x x x x x x x x x
-+==-=-===-=+-些是整式方程,哪些是分式方程?
2、分式方程的解法:
(1)去分母,方程两边乘最简公分母,化成整式方程。
(2)解整式方程。
(3)检验:把解带入最简公分母,使最简公分母不等于0的解是方程的解,否
则原分式方程无解。
例一、解分式方程:
(1) (2)30048042x x -=21233x x x
-=---(3) (4)2236111x x x +=+--32322
x x x +=+-3、分式方程的应用。
(列方程解应用题)
(1)关于工程问题。
某工程,原计划由52人在一定时间内完成,后来决定自开工之日起采用新
技术,工作效率提高,现只派40人去工作,结果比原计划提前6天完成,求50%采用新技术后完成这项工程所需的天数。
(2)关于行程问题
从甲地到乙地共50千米,其中开始的10千米是平路,中间的20千米是上坡路,余下的20千米又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度。
(假设小明在平路上和上坡路上均保持匀速)
练习:
一、选择题
1.方程=的解为( )23+x 1
1+x A .x=B .x= - C .x=-2 D .无解542
12.(2009·山西中考)解分式方程11222x x x
-+=--,可知方程( )A .解为2x = B .解为4x = C .解为3x = D .无解3.关于x 的方程
211x a x +=-的解是正数,则a 的取值范围是( ).A .a >-1 B .a >-1且a≠0 C .a <-1
D .a <-1且a≠-2 4.用换元法解分式方程时,如果设,将原方程化为关于的整式方13101
x x x x --+=-1x y x -=y 程,那么这个整式方程是( )
A .
B .
C .
D .230
y y +-=2310y y -+=2310y y -+=2310y y --=二、填空题
5.方程 = 的解是
1x –22
x 6.当x =___________时,分式 的值等于2.
x +3
x -17.分式方程的解为 。
1
211-=+x x 8.方程
2512x x
=-的解是 .9.若关于x 的分式方程311x a x x --=-无解,则a = .
10.请你给x 选择一个合适的值,使方程成立,你选择的x =________。
2112-=-x x 11.已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为___ .12.(2008·烟台中考)请选择一组,a b 的值,写出一个关于x 的形如2a b x =-的分式方程,
使它的解是0x =,这样的分式方程可以是______________.
三、解分式方程
1、─ ─ 1 = 0
2、x x ─ 1 2 x ─ 2
x 13222
x x x --=--3、 4、14143=-+--x
x x 1321x x =+13.若关于x 的方程无解,求m 的值。
12212(1)(2)
m m x x x x ++=----18.设,当为何值时,与的值相等?23111
x A B x x ==+--x A B
分式方程的应用
一、选择题
1.(2009·安徽中考)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
A .8 B.7 C .6 D .5
2.(2009·泰安中考)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( )
A .
B .18%)201(400160=++x x 18%)201(160400160=+-+x
x C.
D.18%20160400160=-+x x 18%)201(160400400=+-+x x 3.(2007·河北中考)炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,
两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )
A.
B.66602x x =-66602x x =-
C.
D.66602x x =+66602x x
=+二、填空题4.在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小
林多跳20下,设小林每分钟跳下,则可列关于的方程为 .
x x 5.(2008·青岛中考)为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为,则根据题意可列方程为 .
x 6.某市处理污水,需要铺设一条长为1000M 的管道,为了尽量减少施工对交通所造成的影
响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务。
设原计划每天
铺设管道xm,则可得方程。
三、解答题
7.(2010·潼南中考)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队
单独施工比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能
使施工费不超过64万元?
8. (2009·长春中考)孙明与李丽共同帮助校图书馆清点图书,李丽平均每分钟比孙明多清
点10本.已知孙明清点完200本图书所用的时间与李丽清点完300本所用的时间相同,求孙明平均每分钟清点图书多少本.
9.(2009·梧州中考)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?。