第四章圆与方程单元测试题及答案
人教A版高中数学必修2第四章《圆与方程》测试题(含答案)

由于 ,故O在线段PM的垂直平分线上,又P在圆N上,从而 .
因为ON的斜率为3,所以 的斜率为 ,故 的方程为 .
又 ,O到 的距离为 , ,所以 的面积为 .
21.(1).由已知得过点 的圆的切线斜率的存在,
设切线方程为 ,即 .
则圆心 到直线的距离为 ,
A. B.
C. D.
5.一条光线从点 射出,经 轴反射后与圆 相切,则反射光线所在直线的斜率为()
A. 或 B. 或 C. 或 D. 或
6.已知圆 截直线 所得线段的长度是 ,则圆 与圆 的位置关系是( )
A.内切B.相交C.外切D.相离
7.已知方程 ,则 的最大值是( )
A.14- B.14+ C.9D.14
A.4B.6C. D.
12.已知直线 : 是圆 的对称轴.过点 作圆 的一条切线,切点为 ,则 ( )
A.2B. C.6D.
二、填空题
13.已知两点 ,以线段 为直径的圆的方程为________________.
14.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______
15.已知 为直线 上一点,过 作圆 的切线,则切线长最短时的切线方程为__________.
当 的斜率不存在, 的斜率等于0时, 与圆 不相交, 与圆 不相交.
当 、 的斜率存在且都不等于0,两条直线分别与两圆相交时,设 、 的方程分别为 ,即 .
因为 到 的距离 ,
到 的距离 ,所以 到 的距离与 到 的距离相等.
所以圆 与圆 的半径相等,所以 被圆 截得的弦长与 被圆 截得的弦长恒相等.
综上所述,过点 任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.
人教版高一数学必修二第四章圆与方程(单元测试,含答案).doc

与方程姓名:班级:一、选择题(共8小题;共40分)1Mx2 +尸一4x + 6y = 0的圆心坐标是()A (2,3)B (-2,3) C(-2,-3) D(2,-3)2OO的百径是3,百线1与OO相交,圆心0到百线1的距离是d,贝M应满足()Ad > 3 B 15 < d < 3 C 0 < d < 15 Dd < 0 3圆(x — 2)2 + (y- l)2 = 4与圆(x + l)2 + (y- 2)2 = 9的公切线有()条A1 B 2 C3 D4 4从原点向圆x2 + y2 一12y + 27 = 0作两条切线,则该圆夹在两条切线间的劣弧长为()A nB 2nC 4TTD 6TT5过点(1,1)的直线与圆(x - 2)2 + (y - 3)2 = 9相交于A, B两点,贝lj| AB |的最小值为() A2V3 B4 C2V5 D5 6已知圆C的半径为2, |员|心在x轴的正半轴上,直线3x + 4y + 4 = 0与圆C相切,贝I」圆C的方程为()Ax2 4-y2 - 2x - 3 = 0 B x2 4- y2 + 4x = 0Cx2 +y2 + 2x - 3 = 0 D x2 + y2 - 4x = 07耍在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个喷水龙头的喷洒范閘都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()A6 B 5 C4 D38 已知圆:C1:(x-2)2 + (y-3)3 = 1,圆:C2:(x-3)2 + (y-4)2 = 9, M、N分别是圆C〔、C?上的动点,P为x轴上的动点,贝OIPMI + IPNI的最小值为()A5V2-4 B V17- 1 C6-2V2 D V17二、填空题(共7小题;共35分)9过点A(3,—4)与闘x2 +y2 = 25相切的直线方程是_______ .10如果单位圆X? +y2 = 1与圆C: (x — a)2 + (y - a)2 = 4相交,则实数a的取值范围为 ________ 11在空间直角坐标系,已知点A(l,0,2), B(l,-3,1),点M在y轴上,且M到A与到B的距离相等,则点M的坐标是 _____ ・12已知圆C: (x-2)2+y2 = l.若直线y二k(x+l)上存在点P,使得过P向圆C所作的州条切线所成的角为夕则实数k的取值范闌为 _______ .13如图,以棱长为a的止方体的三条棱所在的直线为坐标轴建立空间百角坐标系,若点P为对角线AB的点,点Q在棱CD上运动,则PQ的最小值为 .14在圆C:(x-2)2 + (y-2)2 = 8内,过点P(l,0)的最长的弦为AB,最短的弦为DE,贝9以边形ADBE的面积为____ •15据气象台预报:在A城正东方300km的海而B处有一台风心,正以每小时40km的速度向術北方向移动,在距台风心250km以内的地区将受其影响.从现在起经过约__________ h,台风将影响A城, 持续时间约为_______ h.(结果精确到Olh)三、解答题(共5小题;共65分)16若关于x, y的方程X? + y? - 4x + 4y + m = 0表示圆C.(1)求实数m的取值范围;(2)若圆C与圆M:x2 4-y2 = 2相离,求m的取值范囤.17已知圆C:x? + y? + 4x + 4y + m = 0,直线l:x + y 4- 2 = 0.(1)若I员IC与直线1相离,求m的取值范围;(2)若I员1D过点P(l,l), H.与恻C关丁•直线1对称,求I処D的方程.18如图,在平面直角坐标系xOy,点A(0,3),直线l:y = 2x-4.设圆C的半径为1,圆心在1上.(1)若圆心C也在直线y = x-l上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA = 2M0,求圆心C的横坐标a的取值范|节|・19已知直线啲方程为2x+(l + m)y+2m = 0, m€R,点P的坐标为(-1,0).(1)求证:直线1恒过定点,并求出定点坐标;(2)求点P到直线1的距离的最大值;(3)设点P在直线1上的射影为点M, N的坐标为(2,1),求线段MN长的取值范闱.20 在平面直角坐标系xOy,已知圆Ci: (x + 3)2 + (y - I)2 = 4和圆C?: (x 一4)2 + (y — 5)2 = 4.(1)若直线1过点A(4,0), £L被圆C]截得的弦长为2孙,求直线啲方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂肖的肖线h和12,它们分别与圆C1 和圆C2相交,且直线h被圆C]截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点p的坐标.答案第一部分I D 2 C 3 B 4 B 5 B 6 D 7 C 8 A第二部分9 3x-4y = 2510 -—< a < H J C —< a < —」 2 22 2 II (0,-1,0) 12 [一普,晋]13 yal4 4V615 20; 66第三部分 16 (1) |w|C 化简为(x- 2)2 4-(y + 2)2 = 8-m,所以8 — m > 0,即m V 8.(2)圆C 的圆心为(2,-2),半径为V8^ (m<8),圆M 的圆心为(0,0),半径为返,由题意,得圆心距大于两圆的半径和,则“22 + 22 + 解得6<m<8.17 (1)圆Ux?+y2+4x + 4y + m = 0即(x 4- 2)2 + (y + 2)2 = 8 - m.圆心C(-2,—2)到直线啲距离d =三|旦=V2,若圆C 与直线1相离,则d > r,所以 * = 8 — m < 2即 m > 6乂严=8 - m > 0即m V 8.故m 的取值范围是(6,8).(2)设圆D 的圆心D 的坐标为(xo ,y ()),由于圆C 的圆心C(_2,_2), 依题意知点D 和点C 关于直线1对称,解牡:0 所以圆D 的方程为x 2+y 2 = r 2,而r=|DP |=V2,因此,圆D 的方程为x 2+y 2 = 2.18 (1)由题设,I 员I 心C 是直线y = 2x- 4和y = x- 1的交点, 解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方稈为y = kx + 3由题意,得解得:k=0或—孑 4故所求切线方程为{Xo-2 Yo+2Xo+2 + 竽+2 = 0x (-1) = -1I 3k + 1 |Vk 2 + 1y = 3 或3x + 4y — 12 = 0(2)因为圆心在直线y = 2x —4上,所以圆C的方程为(x — a)2 3 + [y — 2 (a — 2)]2 = 1 设点M(x,y),因为MA = 2M0,所以Jx2 + (y — 3)2 = 2jx2 +y2, 化简得x? + y2 + 2y — 3 = 0,即x2 + (y + l)2 = 4, 所以点M在以D(0,-l)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆(:与圆D有公共点,贝I」12-11 < CD <2 + 1, 即l<Va2 + (2a-3)2<3 整理,得—8 S 5a2— 12a S 0由5a2-12a + 8>0,得a G R;S5a2 - 12a < 0,得12所以点C的横坐标a的取值范闌为[0,y .19(1)由2x + (l + m)y+2m = 0得2x + y + m(y + 2) = 0,所以直线1恒过直线2x + y= 0与直线y + 2 = 0交点Q.解方程组炸暮律得Q(l,-2),所以直线1恒过定点,且定点为Q(l,-2).2 设点P在直线1上的射影为点M,贝IJIPMI < |PQ|,当且仅当直线1与PQ垂直时,等号成立, 所以点P到直线1的距离的最大值即为线段PQ的长度为2逅.3因为直线1绕着点Q(l,-2)旋转,所以点M在以线段PQ为直径的I员1上,其I员I心为点C(O.-l),半径为说,因为N的坐标为(2,1),所以|CN| = 2V2,从而V2 < |MN| < 3V2.20(1)由于直线x = 4与圆C]不相交,所以直线1的斜率存在.设直线1的方程为y = k(x - 4),圆C]的I员I心到直线1的距离为d, 乂因为直线1被I员©截得的弦长为2箱,所以|l-k(-3-4)| d = ------- , ----Vl + k 2 y = 0 或 7x + 24y - 28 = 0 (2)设点P(a,b)满足条件,不妨设直线h 的方程为y — b = k(x — a), k H 0, 则直线】2的方程为山点到直线的距离公式得 d = J22 - (V3)2 = 1从而即所以直线1的方程k(24k + 7) = 0, 7 241因为圆Ci和C2的半径相等,及宜线I】被圆C]截得的弦长与直线-被【员丄2截得的弦长相等,所以I 员IC]的|员]心到直线1]的距离和圆C2的國心到直线】2的距离相等,即|1 一k(-3 - a) - b| |5 + £ (4 — a) — b|整理得|1 + 3k + ak — bl = |5k + 4 — a — bk|,从而1 + 3k + ak — b = 5k + 4 — a - bk,(a + b — 2)k — b — a + 3, 因为k的取值有无穷多个,所以(a + b — 2 = 0,戒(a — b + 8 = 0, (b - a + 3 = 0 严ia + b-5 = 0 解得这样点P只可能是点P] (I,-扌)或点卩2 (-!,¥)• 经检验点P]和P2满足题口条件.。
高中数学第四章圆与方程检测试题含解析新人教A版必修2

第四章圆与方程检测试题(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题4分,共40分)1.经过圆x2+2x+y2=0的圆心C,且与直线x+y=0垂直的直线方程是( C )(A)x+y+1=0 (B)x+y-1=0(C)x-y+1=0 (D)x-y-1=0解析:易知点C为(-1,0),因为直线x+y=0的斜率是-1,所以与直线x+y=0垂直直线的斜率为1,所以要求直线方程是y=x+1,即x-y+1=0.2.空间直角坐标系Oxyz中的点P(1,2,3)在xOy平面内射影是Q,则点Q的坐标为( A )(A)(1,2,0) (B)(0,0,3)(C)(1,0,3) (D)(0,2,3)解析:因为空间直角坐标系Oxyz中,点P(1,2,3)在xOy平面内射影是Q,所以点Q的坐标为(1,2,0).3.若方程x2+y2-x+y+m=0表示圆,则实数m的取值范围是( A )(A)m< (B)m>(C)m<0 (D)m≤解析:由题意得1+1-4m>0,得m<.4.圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0的位置关系是( D )(A)相交 (B)相离 (C)内含 (D)内切解析:把圆O1:x2+y2-4x-6y+12=0与圆O2:x2+y2-8x-6y+16=0分别化为标准式为(x-2)2+(y-3)2=1和(x-4)2+(y-3)2=9,两圆心间的距离d==2=|r1-r2|,所以两圆的位置关系为内切,故选D.5.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为,则a的值为( C )(A)-2或2 (B)或(C)2或0 (D)-2或0解析:圆x2+y2-2x-4y=0的圆心是(1,2).点(1,2)到直线x-y+a=0的距离是=,所以|a-1|=1,所以a=2或a=0.选C.6.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( D )(A)-,4 (B),4(C)-,-4 (D),-4解析:直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则直线2x+y+b=0一定过圆(x-2)2+y2=1的圆心(2,0),代入得b=-4,同时直线y=kx与直线2x+y+b=0垂直,可得-2×k=-1,解得k=,故选D.7.点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( A )(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4(C)(x+4)2+(y-2)2=1 (D)(x+2)2+(y-1)2=1解析:设圆上任意一点坐标为(x1,y1),其与点P所连线段的中点坐标为(x,y),则即代入x2+y2=4,得(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.故选A.8.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是( A )(A) (B)1 (C) (D)解析:如图所示,当直线l上恰好只存在一个圆与圆C相切时,直线l的斜率最大,此时,点C(4,0)到直线l的距离是2.即=2.解得k=或k=0.所以k的最大值是.9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( A )(A)x+y-2=0 (B)y-1=0(C)x-y=0 (D)x+3y-4=0解析:欲使两部分的面积之差最大,需直线与OP垂直,因为k OP=1,所以所求的直线方程为y-1=-(x-1),即x+y-2=0.10.过点P(-4,0)作直线l与圆x2+y2+2x-4y-20=0交于A,B两点,若|AB|=8,则直线l的方程为( C )(A)5x+12y+20=0(B)5x-12y+20=0(C)5x+12y+20=0或x+4=0(D)5x-12y+20=0或x+4=0解析:x2+y2+2x-4y-20=0可化为(x+1)2+(y-2)2=25,当直线l的斜率不存在时,符合题意;当直线l的斜率存在时,设l的方程为y=k(x+4),由题意得==3,得k=-.所以直线l的方程为y=-(x+4),即5x+12y+20=0,综上,符合条件的直线l的方程为5x+12y+20=0或x+4=0.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.圆x2+y2-4x+6y=0的圆心坐标是,半径是.解析:圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径为.答案:(2,-3)12.如图所示,在单位正方体ABCDA1B1C1D1中,以DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1C和A1C1的长度分别为, .解析:易得A1(1,0,1),C(0,1,0),C1(0,1,1),所以|A1C|==,|A1C1|==.答案:13.圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0与直线l2:x+3y=0都对称,则D= ,E= .解析:由题设知直线l1,l2的交点为已知圆的圆心.由得所以-=-3,D=6,-=1,E=-2.答案:6 -214.若直线mx+2ny-4=0(m,n∈R)始终平分圆x2+y2-4x-2y-4=0的周长,则m+n的值等于,mn的取值范围是.解析:圆心(2,1),则m×2+2n×1-4=0,即m+n=2,m=2-n,于是mn=(2-n)n=-n2+2n=-(n-1)2+1≤1,故mn的取值范围是(-∞,1].答案:2 (-∞,1]15.若直线y=x+b与曲线x=恰有一个公共点,则实数b的取值范围是.解析:将曲线x=变为x2+y2=1(x≥0).如图所示,当直线y=x+b与曲线x2+y2=1相切时,则满足=1,|b|=,b=±.观察图象,可得当b=-,或-1<b≤1时,直线与曲线x=有且只有一个公共点.答案:(-1,1]∪{-}16.若集合A={(x,y)|x2+y2≤16},B={(x,y)|x2+(y-2)2≤a-1},且A∩B=B,则a的取值范围是.解析:A∩B=B等价于B⊆A.当a>1时,集合A和B中的点的集合分别代表圆x2+y2=16和圆x2+(y-2)2=a-1的内部,如图,容易看出当B对应的圆的半径小于2时符合题意.由0<a-1≤4,得1<a≤5;当a=1时,满足题意;当a<1时,集合B为空集,也满足B⊆A,所以当a≤5时符合题意.答案:(-∞,5]17.已知直线l1:x+y-=0,l2:x+y-4=0,☉C的圆心到l1,l2的距离依次为d1,d2且d2=2d1,☉C与直线l2相切,则直线l1被☉C所截得的弦长为.解析:当圆心C在直线l1:x+y-=0与l2:x+y-4=0之间时,d1+d2=3且d2=2d1,☉C与直线l2相切,此时r=d2=2,d1=1,则直线l1被☉C所截得的弦长为2=2=2;同理,当圆心C不在直线l1:x+y-=0与l2:x+y-4=0之间时,则d2-d1=3且d2=2d1,☉C与直线l2相切,此时r=d2=6,d1=3,则直线l1被☉C所截得的弦长为2=2=6.故直线l1被☉C所截得的弦长为2或6.答案:2或6三、解答题(本大题共5小题,共74分)18.(本小题满分14分)一直线 l 过直线 l1:2x-y=1 和直线 l2:x+2y=3 的交点 P,且与直线 l3:x-y+1=0 垂直.(1)求直线 l 的方程;(2)若直线 l 与圆 C:(x-a)2+y2=8 (a>0)相切,求 a.解:(1)由解得P(1,1),又直线l与直线l3:x-y+1=0垂直,故l的斜率为-1,所以l:y-1=-(x-1),即直线l的方程为x+y-2=0.(2)由题设知C(a,0),半径r=2,因为直线l与圆C:(x-a)2+y2=8(a>0)相切,所以C到直线l的距离为2,所以=2,又a>0,得a=6.19.(本小题满分15分)已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.(1)求直线CD的方程;(2)求圆P的方程.解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2),所以直线CD的方程为y-2=-(x-1),即x+y-3=0.(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①又直径|CD|=4,所以|PA|=2,所以(a+1)2+b2=40,②由①②解得或所以圆心P(-3,6)或P(5,-2),所以圆P的方程为(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.20.(本小题满分15分)已知圆C:x2+y2+4x-4ay+4a2+1=0,直线l:ax+y+2a=0.(1)当a=时,直线l与圆C相交于A,B两点,求弦AB的长;(2)若a>0且直线l与圆C相切,求圆C关于直线l的对称圆C′的方程.解:(1)因为圆C:(x+2)2+(y-2a)2=()2,又a=,所以圆心C为(-2,3),直线l:3x+2y+6=0,圆心C到直线l的距离d==,所以|AB|=2=.(2)将y=-ax-2a代入圆C的方程化简得(1+a2)x2+4(1+2a2)x+16a2+1=0,(*)所以Δ=[4(1+2a2)]2-4(1+a2)(16a2+1)=4(3-a2)=0,因为a>0,所以a=,所以方程(*)的解为x=-,所以切点坐标为(-,),根据圆关于切线对称的性质可知切点为CC′的中点,故圆心C′的坐标为(-5,),所以圆C′的方程为(x+5)2+(y-)2=3.21.(本小题满分15分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;(2)从圆C外一点P(x1,y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.解:(1)由方程x2+y2+2x-4y+3=0知,圆心为(-1,2),半径为.当切线过原点时,设切线方程为y=kx,则=.所以k=2±,即切线方程为y=(2±)x.当切线不过原点时,设切线方程为x+y=a,则=.所以a=-1或a=3,即切线方程为x+y+1=0或x+y-3=0.所以切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)设P(x1,y1).因为|PM|2+r2=|PC|2,即|PO|2+r2=|PC|2,所以++2=(x1+1)2+(y1-2)2,即2x1-4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x-4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(-,).22.(本小题满分15分)圆C:x2+y2+2x-3=0内有一点P(-2,1),AB为过点P且倾斜角为α的弦.(1)当α=135°时,求AB的长;(2)当弦AB被点P平分时,写出直线AB的方程;(3)若圆C上的动点M与两个定点O(0,0),R(a,0)(a≠0)的距离之比恒为定值λ(λ≠1),求实数a的值.解:(1)由题意知,圆心C(-1,0),半径r=2,直线AB的方程为x+y+1=0,直线AB过圆心C,所以弦长AB=2r=4.(2)当弦AB被点P平分时,AB⊥PC,k AB·k PC=-1,又k PC=-1, 所以k AB=1,直线AB的方程为x-y+3=0.(3)设M(x0,y0),则满足++2x0-3=0, ①由题意得,=λ,即=λ.整理得+=λ2[-2ax0+a2+], ②由①②得,3-2x0=λ2[3-2x0-2ax0+a2]恒成立,所以又a≠0,λ>0,λ≠1,解之得a=3.。
高一数学必修二第四章圆与方程基础练习题及答案

高一数学(必修2)第四章 圆与方程[基础训练]一、选择题1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( )A .22(2)5x y -+=B .22(2)5x y +-=C .22(2)(2)5x y +++=D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是()A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( )A .37-或B .2-或8C .0或10D .1或11 5.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B距离为2的直线共有( )A .1条B .2条C .3条D .4条6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x二、填空题1.若经过点(1,0)P -的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________.2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 。
3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 .4.已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ⋅的值为________________。
圆与方程测试题及答案

圆与方程测试题及答案一、选择题1. 已知圆心在原点的圆的方程为 \( x^2 + y^2 = r^2 \),其中\( r \) 为圆的半径。
若圆的半径为5,则圆的方程为:A. \( x^2 + y^2 = 25 \)B. \( x^2 + y^2 = 5 \)C. \( x^2 + y^2 = 10 \)D. \( x^2 + y^2 = 50 \)2. 若圆的方程为 \( (x-3)^2 + (y-4)^2 = 16 \),该圆的圆心坐标为:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)二、填空题3. 圆心在点 \( P(2, -3) \) 上,半径为4的圆的标准方程为:\( (x-2)^2 + (y+3)^2 = \) ________。
4. 若圆的一般方程为 \( x^2 + y^2 + 2gx + 2fy + c = 0 \),其中\( g \) 和 \( f \) 分别为圆心的 \( x \) 和 \( y \) 坐标,则圆心坐标为:\( (-g, -f) \)。
三、解答题5. 已知圆 \( C \) 的圆心为 \( (2, -1) \),半径为3,求圆 \( C \) 的方程。
6. 给定圆的一般方程 \( x^2 + y^2 + 6x - 8y + 16 = 0 \),求圆心坐标和半径。
四、证明题7. 证明:若点 \( P(x_0, y_0) \) 在圆 \( (x-a)^2 + (y-b)^2 =r^2 \) 上,则 \( (x_0-a)^2 + (y_0-b)^2 = r^2 \)。
五、应用题8. 一个圆与 \( x \) 轴相切,圆心在直线 \( y = x \) 上,且圆经过点 \( A(2, 3) \)。
求该圆的方程。
答案:一、选择题1. A2. A二、填空题3. \( 16 \)4. \( (-g, -f) \)三、解答题5. 圆 \( C \) 的方程为 \( (x-2)^2 + (y+1)^2 = 9 \)。
第四章圆与方程综合检测-附答案

第四章综合检测题时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下面表示空间直角坐标系的直观图中,正确的个数为( )A .1个B .2个C .3个D .4个2.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围为( )A .m <12B .m <0C .m >12D .m ≤123.已知空间两点P 1(-1,3,5),P 2(2,4,-3),则|P 1P 2|等于( ) A.74 B .310C.14D.534.圆x 2+y 2+2x -4y =0的圆心坐标和半径分别是( )A .(1,-2),5B .(1,-2), 5C .(-1,2),5D .(-1,2), 55.圆心为(1,-1),半径为2的圆的方程是( )A .(x -1)2+(y +1)2=2B .(x +1)2+(y -1)2=4C .(x +1)2+(y -1)2=2D .(x -1)2+(y +1)2=46.直线l :x -y =1与圆C :x 2+y 2-4x =0的位置关系是( )A .相离B .相切C .相交D .无法确定7.当点P 在圆x 2+y 2=1上变动时,它与定点Q (3,0)连线段PQ 中点的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=18.(2011~2012·北京东城区高三期末检测)直线l过点(-4,0),且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l 的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=09.一束光线从点A(-1,1)发出,并经过x轴反射,到达圆(x-2)2+(y-3)2=1上一点的最短路程是()A.4 B.5C.32-1 D.2 610.(2012·广东卷)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点,则弦AB的长等于() A.3 3 B.2 3C. 3 D.111.方程4-x2=lg x的根的个数是()A.0 B.1C.2 D.无法确定12.过点M(1,2)的直线l与圆C:(x-2)2+y2=9交于A、B两点,C为圆心,当∠ACB最小时,直线l的方程为()A.x=1 B.y=1C.x-y+1=0 D.x-2y+3=0二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.点P(3,4,5)关于原点的对称点是________.14.已知△ABC的三个顶点为A(1,-2,5),B(-1,0,1),C(3,-4,5),则边BC上的中线长为________.15.已知圆C:(x-1)2+(y+2)2=4,点P(0,5),则过P作圆C 的切线有且只有________条.16.与直线x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)求经过点P(3,1)且与圆x2+y2=9相切的直线方程.[分析]提示一:将点P(3,1)代入圆的方程得32+12=10>9,所以点P在圆外,可设过点P的圆的切线斜率为k,写出点斜式方程再化为一般式.根据圆心到切线的距离等于圆的半径这一性质,由点到直线的距离公式列出含k的方程,由方程解得k,然后代回所设切线方程即可.提示二:直线与圆相切,就是直线与圆有唯一公共点,于是将两曲线方程联立所得的方程组有唯一解,从而方程判别式Δ=0,由此解得k值,然后回代所设切线方程即可.18.(本题满分12分)(2011~2012·宁波高一检测)如图,正方体ABCD-A1B1C1D1的棱长为a,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,试求MN的长.19.(本小题满分12分)已知实数x、y满足方程(x-3)2+(y-3)2=6,求x+y的最大值和最小值.20.(本题满分12分)已知直线l1:x-y-1=0,直线l2:4x+3y +14=0,直线l3:3x+4y+10=0,求圆心在直线l1上,与直线l2相切,截直线l3所得的弦长为6的圆的方程.[分析]设出圆心坐标和半径,利用圆的几何性质求解.21.(本题满分12分)已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过P作圆C的切线,设切点为M.(1)若点P运动到(1,3)处,求此时切线l的方程;(2)求满足条件|PM|=|PO|的点P的轨迹方程.[分析](1)对切线的斜率是否存在分类讨论;(2)设出P的坐标,代入平面内两点间的距离公式,化简得轨迹方程.22.(本题满分12分)已知圆P:(x-a)2+(y-b)2=r2(r≠0),满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1.求在满足条件①②的所有圆中,使代数式a2-b2-2b+4取得最小值时,圆的方程.[分析]根据条件可以判断出圆P被x轴截得的劣弧的圆心角为90°,建立起r ,a ,b 之间的方程组,然后解出相应的a ,b ,r 间的关系,最后借助于一元二次函数解决.详解答案1[答案] C[解析] 根据空间直角坐标系的规定可知(1)(2)(4)都正确,(3)中,Oy 轴的正向应为负向,∴选C.2[答案] A[解析] (-1)2+12-4m >0,∴m <12,故选A.3[答案] A[解析] |P 1P 2|=(-1-2)2+(3-4)2+(5+3)2=74.4[答案] D[解析] 圆的方程化为标准方程为(x +1)2+(y -2)2=5,则圆心是(-1,2),半径为 5.5[答案] D[解析] 由圆的标准方程得圆的方程为(x -1)2+(y +1)2=4. 6[答案] C[解析] 圆C 的圆心为C (2,0),半径为2,圆心C 到直线l 的距离d =|2-1|2=22<2,所以圆与直线相交. 7[答案] C[解析] 设PQ 中点坐标为(x ,y ),则P (2x -3,2y )代入x 2+y 2=1得(2x -3)2+4y 2=1,故选C.8[答案] D[解析] 由题意,得圆心C (-1,2),半径r =5,当直线l 的斜率不存在时,直线l 的方程为x +4=0,解方程组⎩⎪⎨⎪⎧ (x +1)2+(y -2)2=25,x +4=0,得⎩⎪⎨⎪⎧ x =-4,y =-2或⎩⎪⎨⎪⎧x =-4,y =6,即此时与圆C 的交点坐标是(-4,-2)和(-4,6),则|AB |=8,即x +4=0符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x +4),即kx-y +4k =0,圆心C 到直线l 的距离d =|-k -2+4k |k 2+1=|3k -2|k 2+1,又|AB |=2r 2-d 2,所以225-(|3k -2|k 2+1)2=8,解得k =-512,则直线l 的方程为-512x -y +4×(-512)=0,即5x +12y +20=0.9[答案] A[解析] 点A 关于x 轴的对称点是A ′(-1,-1),圆心C (2,3),半径r =1,则|A ′C |=(-1-2)2+(-1-3)2=5,则最短路程是|A ′C |-r =5-1=4.10[答案] B[解析] 圆x 2+y 2=4的圆心O (0,0)到直线3x +4y -5=0的距离d =|-5|5=1,弦AB 的长|AB |=2r 2-d 2=2 3.11[答案] B[解析] 设f (x )=4-x ,g (x )=lg x ,则方程根的个数就是f (x )与g (x )两个函数图象交点的个数.如图所示,在同一平面直角坐标系中画出这两个函数的图象.由图可得函数f (x )=4-x 2与g (x )=lg x 仅有1个交点,所以方程仅有1个根.12[答案] D[解析] 当CM ⊥l ,即弦长最短时,∠ACB 最小,∴k l ·k CM =-1,∴k l =12,∴l 的方程为:x -2y +3=0.[点评] 过⊙C 内一点M 作直线l 与⊙C 交于A 、B 两点,则弦AB 的长最短⇔弦AB 对的劣弧最短⇔弦对的圆心角最小⇔圆心到直线l 的距离最大⇔CM ⊥l ⇔弦AB 的中点为M ,故以上各种说法反映的是同一个问题.13[答案] (-3,-4,-5)[解析] ∵点P (3,4,5)与P ′(x ,y ,z )的中点为坐标原点, ∴P ′点的坐标为(-3,-4,-5).14[答案] 2[解析] BC 的中点为D (1,-2,3),则|AD |=(1-1)2+(-2+2)2+(5-3)2=2.15[答案] 2[解析] 由C (1,-2),r =2,则|PC |=12+(-2-5)2=52>r =2,∴点P 在圆C 外,∴过P 作圆C 的切线有两条.16[答案] (x -2)2+(y -2)2=2[解析] ∵⊙A :(x -6)2+(y -6)2=18的圆心A (6,6),半径r 1=32,∵A 到l 的距离52,∴所求圆B 的直径2r 2=22,即r 2= 2.设B (m ,n ),则由BA ⊥l 得n -6m -6=1, 又∵B 到l 距离为2,∴|m +n -2|2=2, 解出m =2,n =2.故其方程为(x -2)2+(y -2)2=2.17[解析] 解法一:当过点P 的切线斜率存在时,设所求切线的斜率为k ,由点斜式可得切线方程为y -1=k (x -3),即kx -y -3k +1=0, ∴|-3k +1|k 2+1=3,解得k =-43. 故所求切线方程为-43x -y +4+1=0,即4x +3y -15=0.当过点P 的切线斜率不存在时,方程为x =3,也满足条件. 故所求圆的切线方程为4x +3y -15=0或x =3.解法二:设切线方程为y -1=k (x -3),将方程组⎩⎪⎨⎪⎧y -1=k (x -3),x 2+y 2=9,消去y 并整理得 (k 2+1)x 2-2k (3k -1)x +9k 2-6k -8=0.因为直线与圆相切,∴Δ=0,即[-2k (3k -1)]2-4(k 2+1)(9k 2-6k -8)=0.解得k =-43.所以切线方程为4x +3y -15=0.又过点P (3,1)与x 轴垂直的直线x =3也与圆相切,故所求圆的切线方程为4x +3y -15=0或x =3.[点评] 若点在圆外,所求切线有两条,特别注意当直线斜率不存在时的情况,不要漏解.18[解析] 以D 为原点建立如图所示坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M (a 2,a 2,a 2),取A 1C 1中点O 1,则O 1(a 2,a 2,a ),因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N (a 4,34a ,a ).由两点间的距离公式可得:|MN |=(a 2-a 4)2+(a 2-34a )2+(a 2-a )2=64a .[点评] 空间中的距离可以通过建立空间直角坐标系通过距离公式求解.19[解析] 设x +y =t ,则直线y =-x +t 与圆(x -3)2+(y -3)2=6有公共点∴|3+3-t |2≤6,∴6-23≤t ≤6+2 3 因此x +y 最小值为6-23,最大值为6+2 3.20[解析] 设圆心为C (a ,a -1),半径为r ,则点C 到直线l 2的距离d 1=|4a +3(a -1)+14|5=|7a +11|5.点C 到直线l 3的距离是d 2=|3a +4(a -1)+10|5=|7a +6|5. 由题意,得⎩⎨⎧|7a +11|5=r ,(|7a +6|5)2+32=r 2.解得a =2,r =5,即所求圆的方程是(x -2)2+(y -1)2=25. 21[解析] 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |.∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.22[解析] 如下图所示,圆心坐标为P (a ,b),半径为r ,则点P 到x 轴,y 轴的距离分别为|b |,|a |. ∵圆P 被x 轴分成两段圆弧,其弧长的比为3:1,∴∠APB =90°.取AB的中点D,连接PD,则有|PB|=2|PD|,∴r=2|b|.取圆P截y轴的弦的中点C,连接PC,PE.∵圆截y轴所得弦长为2,∴|EC|=1,∴1+a2=r2,即2b2-a2=1.则a2-b2-2b+4=b2-2b+3=(b-1)2+2.∴当b=1时,a2-b2-2b+4取得最小值2,此时a=1,或a=-1,r2=2.对应的圆为:(x-1)2+(y-1)2=2,或(x+1)2+(y-1)2=2.∴使代数式a2-b2-2b+4取得最小值时,对应的圆为(x-1)2+(y-1)2=2,或(x+1)2+(y-1)2=2.[点评](1)当直线与圆相离时,圆上的点到直线的最大距离为d +r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,设弦长为l,弦心距为d,半径为r,则有(l2)2+d2=r2.。
必修圆的方程测试题有答案

必修圆的方程测试题有答案Last updated on the afternoon of January 3, 2021圆的方程单元练习高二数学组一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知圆22:4C x y +=,若点()00,P x y 在圆外,则直线00:4l x x y y +=与圆C 的位置关系为() A.相离B.相切C.相交D.不能确定2.圆2220x y ax +-+=与直线l 相切于点()3,1A ,则直线l 的方程为().250x y --=210x y --=20x y --=40x y +-=若220x y x y m +-+-=,表示一个圆的方程,则m 的取值范围是().12m <-12m ≥-12m >-2m >-直线30x y -+=被圆()()22222x y ++-=截得的弦长等于()2已知点()2,1P -为圆()22125x y -+=的弦AB 的中点,则直线AB 的方程为().30x y --=230x y +-=210x y +-=250x y --=圆2220x y x +-=与圆2240x y y ++=的位置关系是(A.相离B.外切C.相交D.内切7.若直线y x b =+与曲线3y =b 的取值范围是()1⎡-+⎣1⎡⎤-⎣⎦1,1⎡-+⎣1⎡⎤-⎣⎦若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( )x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.已知圆C 过点M (1,1),N (5,1),且圆心在直线y =x -2上,则圆C 的方程为( ) +y 2-6x -2y +6=+y 2+6x -2y +6=0 +y 2+6x +2y +6=+y 2-2x -6y +6=011.若圆222660x y x y ++-+=有且仅有三个点到直线10x ay ++=的距离为1,则实数a 的值为()(1)若过点M 有且只有一条直线与圆O 相切,求实数a 的值,并求出切线方程;(2)若a =M 的圆的两条弦AC BD 、互相垂直,求AC BD +的最大值.20.(12分)已知:如图,两同心圆:221x y +=和224x y +=.P 为大圆上一动点,连结OP (O 为坐标原点)交小圆于点M ,过点P 作x 轴垂线PH (垂足为H ),再过点M 作直线PH 的垂线MQ ,垂足为Q .(1)当点P 在大圆上运动时,求垂足Q 的轨迹方程;(2)过点,03⎛⎫⎪ ⎪⎝⎭的直线l 交垂足Q 的轨迹于A B 、两点,若以AB 为直径的圆与x 轴相切,求直线l 的方程.21.(12分)在平面直角坐标系xOy 中,点()0,3A ,直线l :24y x =-与直线m :1y x =-的交点为圆C 的圆心,设圆C 的半径为1.(1)过点A 作圆C 的切线,求切线的方程;(2)过点A 作斜率为12-的直线l 交圆于A ,B 两点,求弦AB 的长.22.(12分)已知与曲线22:2210C x y x y +--+=相切的直线I ,与x 轴,y 轴交于,A B 两点,O 为原点,OA a =,OB b =,(2,2a b >>).(1)求证::I 与C 相切的条件是:()()222a b --=. (2)求线段AB 中点的轨迹方程; (3)求三角形AOB 面积的最小值.参考答案1.C2.D3.C4.D5.A6.C7.D8.B9.D10.A11.B12.B13.414.9415.)+∞ 16.[﹣]17.解:(1)由题意设圆C 的方程为()224,(0)x a y a -+=>, ∵圆与直线3440x y ++=相切, ∴圆心(),0a到直线的距离2d ==,解得2a =或143a =-(舍去), ∴圆C 的方程为()2224x y -+=.(2)圆心()2,0到直线:210L x y -+=距离1d =所以弦长为5= 18.解:(1)将曲线C 的方程化为22420x y ax y a+--=,整理得()222224x a y a a a ⎛⎫-+-=+ ⎪⎝⎭, 可知曲线C 是以点2,a a ⎛⎫⎪⎝⎭为半径的圆.(2)AOB ∆的面积S 为定值.证明如下:在曲线C 的方程中令0y =,得()20ax x a -=,得()2,0A a ,在曲线C 方程中令0x =,得()40y ay -=,得40,B a ⎛⎫⎪⎝⎭,所以1142422S OA OB a a=⋅=⋅=(定值).(3)直线l 与曲线C 方程联立得()225216816160ax a a x a -+-+-=, 设()11,M x y ,()22,N x y ,则21221685a a x x a +-+=,1216165a x x a-=,()12121212858165OM ON x x y y x x x x ⋅=+=-++=-,即28080161286480855a a a a a ---++=-,即22520a a -+=,解得2a =或12a =, 当2a =时,满足0∆>;当12a =时,满足0∆>. 故2a =或12a =.19.解:(1)由条件知点M 在圆O 上,所以214a +=,则a =当a =M 为(,OM k =,k =切,此时切线方程为)13y x =--,即40x +-=.当a =M 为(1,,OM k =,k =切.此时切线方程为)1y x +=-,即40x -=.所以所求的切线方程为40x +-=或40x -= (2)设O 到直线,AC BD 的距离分别为()1212,,0d d d d ≥,则222123d d OM +==.又有AC BD ==所以AC BD +=.则()(22212444AC BD d d +=⨯-+-+(45=⨯+.因为22121223d d d d ≤+=,所以221294d d ≤,当且仅当12d d ==52≤, 所以()25452402AC BD ⎛⎫+≤⨯+⨯= ⎪⎝⎭.所以AC BD +≤,即AC BD +的最大值为20.解:(1)设垂足(),Q x y ,则(),2P x y 因为(),2P x y 在224x y +=上,所以2244x y +=,所以2214x y +=故垂足Q 的轨迹方程为2214x y +=(2)设直线l的方程为()()1122,,,,3x my A x y B x y =+, 则有21AB y y ==-,又因为圆与x 轴相切,所以12212y y y +=-即()()()()22121222212121214y y y y m y y y y y y +++==-+-(*) 由22{14x my x y =+=消去x 整理得()2244039m y +++=,因为直线l 与椭圆交于A B、两点,所以()22241446444099m m ⎫-∆=-⨯+⨯=>⎪⎪⎝⎭,解得249m >。
人教A版高中数学必修二第四章《圆与方程》测试题(含答案)

由于圆心 到该直线的距离为 ,
故 ,解得 ,
∴直线 的方程为 ,即 .
综上可得,直线 的方程为 或 .
18.解:(1)因为直线 的方程可化为 ,
所以 过直线 与 的交点 .
又因为点 到圆心 的距离 ,
所以点 在圆内,所以过点 的直线 与圆 恒交于两点.
参考答案
1.B2.D3.D4.C5.A6.C7.A8.B9.D10.D11.A12.A
13. .
14.
15.
16.
17.解:(1)设圆 的方程为 ,
因为圆 过 三点,
所以有 ,解得 , ,
∴ 外接圆 的方程为 ,
即 .
(2)当直线 的斜率不存在时,直线 的方程为 ,
联立 ,
得 或 ,此时弦长为 ,满足题意;
(2)由(1)可知:过点 的所有弦中,弦心距 ,
因为弦心距、半弦长和半径 构成直角三角形,
所以当 时,半弦长的平方的最小值为 ,
所以弦长的最小值为 .
此时, .
因为 ,所以 ,解得 ,
所以当 时,得到最短弦长为 .
19.解:将方程 化为标准方程为 ,
此方程表示以 为圆心,2为半径的圆.
(1) 表示圆上的点 与定点 连线的斜率,
A. B.
C. D.
6.在空间直角坐标系中,点 关于平面 对称的点的坐标为()
A. B. C. D.
7.圆 的圆心到直线 的距离为1,则 ( )
A. B. C. D.2
8.已知直线l:y=x+m与曲线 有两个公共点,则实数m的取值范围是( )
A.[-1, )B.(- ,-1]C.[1, )D.(- ,1]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《圆与方程》单元测试题
(时间:60分钟,满分:100分)
班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为
(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2
3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )
(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)
1±=a
4.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( )
(A)
5 (B) 3 (C)
10 (D) 5
5.已知M (-2,0), N (2,0), 则以MN 为斜边的直角三角形直角顶点P 的轨迹方程是( )
(A) 222=+y x (B) 422=+y x (C) )2(222±≠=+x y x (D) )2(422±≠=+x y x
6.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为
A 、1,-1
B 、2,-2
C 、1
D 、-1
7.过原点的直线与圆x 2+y 2+4x+3=0相切,若切点在第三象限,则该直线的方程是
A 、x y 3=
B 、x y 3-=
C 、x y 33=
D 、x y 3
3-= 8.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是
A 、(x-3)2+(y+1)2=4
B 、(x+3)2+(y-1)2=4
C 、(x-1)2+(y-1)2=4
D 、(x+1)2+(y+1)2=4 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是
A 、
6π B 、4π C 、3π D 、2
π 10.M (x 0,y 0)为圆x 2+y 2=a 2(a>0)内异于圆心的一点,则直线x 0x+y 0y=a 2与 该圆的位置关系是( )
A 、相切
B 、相交
C 、相离
D 、相切或相交
选择题答题表
二、填空题(本大题共4小题,每小题5分,共20分)
11.以点A(1,4)、B(3,-2)为直径的两个端点的圆的方程为 .
12.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 13.过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________. 14.过圆x 2+y 2-x+y-2=0和x 2+y 2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程
为 .
15.过原点O 作圆x 2+y 2
-8x=0的弦OA 。
16.已知圆与y 轴相切,圆心在直线x-3y=0,
(1)求弦OA 中点M 的轨迹方程; 且这个圆经过点A (6,1),求该圆的方程. (2)延长OA 到N ,使|OA|=|AN|, 求N 点的轨迹方程.
17.圆8)1(22=++y x 内有一点P(-1,2),AB 过点P,
① 若弦长72||=AB ,求直线AB 的倾斜角α;
②若圆上恰有三点到直线AB 的距离等于2
,求直线AB 的方程.
参考答案:
1. B;
2.C;
3.A;
4.B;
5.D;
6.D;
7.C;
8.C;
9.C;10.C
11.(x-2)2+(y-1)2
=10; 12.
2
2
25+; 13.x=-1或3x-4y+27=0;
14.(x+1)2+(y-1)2
=13;
15.(1)x 2+y 2-4x=0;(2)x 2+y 2
-16x=0
16.(x-3)2+(y-1)2=9或(x-101)2+(y-37)2=1012
17.(1)3
π或32π;(2)x+y-1=0或x-y+3=0.
谢谢大家。