圆与方程基础练习题.

合集下载

圆的方程练习题

圆的方程练习题

圆的⽅程练习题圆的⽅程【基础练习】A 组1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的⽅程为2.过点A (1,-1)、B (-1,1)且圆⼼在直线x +y -2=0上的圆的⽅程是3.已知圆C 的半径为2,圆⼼在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的⽅程4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆⼼为P ,若∠APB=120°,则实数c 值为_ _5.如果⽅程220x y Dx Ey F ++++=()2240D E F +->所表⽰的曲线关于直线y x =对称,那么必有__ _6.设⽅程22242(3)2(14)1690x y m x m y m +-++-++=,若该⽅程表⽰⼀个圆,求m 的取值范围及这时圆⼼的轨迹⽅程。

7.⽅程224(1)40ax ay a x y +--+=表⽰圆,求实数a 的取值范围,并求出其中半径最⼩的圆的⽅程。

8.求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的⽅程.9.设圆满⾜:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的⽐为3:1,在满⾜条件①、②的所有圆中,求圆⼼到直线l :x -2y =0的距离最⼩的圆的⽅程.10.在平⾯直⾓坐标系xoy 中,已知圆⼼在第⼆象限、半径为C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的⼀个交点到椭圆两焦点的距离之和为10. (1)求圆C 的⽅程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.【基础练习】B 组1.关于x,y 的⽅程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表⽰⼀个圆的充要条件是2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆⼼坐标是3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是4.已知圆⼼为点(2,-3),⼀条直径的两个端点恰好落在两个坐标轴上,则这个圆的⽅程是5.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是6.⽅程1x -=表⽰的曲线是_7.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的⽅程是8.如果实数x 、y 满⾜等式()2223x y -+=,那么y x的最⼤值是 9.已知点)1,1(-A 和圆4)7()5(:22=-+-y x C ,求⼀束光线从点A 经x 轴反射到圆周C 的最短路程为______10.求经过点A(5,2),B(3,2),圆⼼在直线2x─y─3=0上的圆的⽅程;11. ⼀圆与y 轴相切,圆⼼在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的⽅程直线与圆的位置关系【基础练习】A 组1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是2.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于3.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的⽅程为 .4..设集合(){}22,|25=+≤M x y x y ,()(){}22,|9=-+≤N x y x a y ,若M ∪N=M ,则实数a 的取值范围是5.M (2,-3,8)关于坐标平⾯x O y 对称点的坐标为6.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最⼩时l 的⽅程.7.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外⼀点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满⾜|PA|=|PB|.(1)求实数a 、b 间满⾜的等量关系;(2)是否存在以P 为圆⼼的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的⽅程;若不存在,说明理由.8.已知圆C 与两坐标轴都相切,圆⼼C 到直线y x =-(1)求圆C 的⽅程.(2)若直线:1x y l m n +=(2,2)m n >>与圆C相切,求证:6mn ≥+9.如图,在平⾯直⾓坐标系x O y 中,平⾏于x 轴且过点A(33,2)的⼊射光线l 1被直线l :y =33x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切.(1)求l 2所在直线的⽅程和圆C 的⽅程;(2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最⼩值及此时点P 的坐标.【基础练习】B 组1.圆x 2+y 2-4x=0在点P(1,3)处的切线⽅程为2.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆⼼⾓为3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是4.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为5.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为6.点P 从(1,0)出发,沿单位圆122=+y x 逆时针⽅向运动32π弧长到达Q 点,则Q 的坐标为 7.若圆04122=-++mx y x 与直线1-=y 相切,且其圆⼼在y 轴的左侧,则m 的值为 8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内⼀点则过点P 的最短弦所在直线⽅程是,过点P 的最长弦所在直线⽅程是9.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最⼩值为 .10. 已知与曲线C :x 2+y 2-2x-2y+1=0相切的直线L 交x 轴、 y 轴于A 、B 两点, O 为原点, 且|OA|=a, |OB|=b (a>2,b>2)(1)求证曲线C 与直线L 相切的条件是(a-2)(b-2)=2 (2)求ΔAOB ⾯积的最⼩值..11.已知平⾯区域00240x y x y ≥??≥??+-≤?恰好被⾯积最⼩的圆222:()()C x a y b r -+-=及其内部所覆盖.(1)试求圆C 的⽅程.(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满⾜CA CB ⊥,求直线l 的⽅程.12、已知⊙O :221x y +=和定点(2,1)A ,由⊙O 外⼀点(,)P a b 向⊙O 引切线PQ ,切点为Q ,且满⾜||||PQ PA =.(1) 求实数a b 、间满⾜的等量关系;(2) 求线段PQ 长的最⼩值;(3) 若以P 为圆⼼所作的⊙P 与⊙O 有公共点,试求半径取最⼩值时的⊙P ⽅程.。

高二数学圆的方程练习题

高二数学圆的方程练习题

高二数学圆的方程练习题1. 某圆的半径为3,圆心坐标为(2, -1),求该圆的方程。

解析:设该圆的方程为(x-a)² + (y-b)² = r²(a为圆心横坐标,b为圆心纵坐标,r为半径)根据已知条件得到:(x-2)² + (y+1)² = 3²将方程展开得:x² - 4x + 4 + y² + 2y + 1 = 9整理得:x² + y² - 4x + 2y - 4 = 0所以该圆的方程为x² + y² - 4x + 2y - 4 = 02. 某圆的直径的两个端点分别为A(1, 2)和B(5, 6),求该圆的方程。

解析:首先求出圆心坐标:圆心的横坐标为直径的中点的横坐标,纵坐标为直径的中点的纵坐标圆心的横坐标 = (1+5)/2 = 3圆心的纵坐标 = (2+6)/2 = 4所以该圆的圆心为(3, 4)然后求出半径:半径的长度等于直径的长度的一半直径AB的长度= √[(5-1)² + (6-2)²] = 2√2所以半径等于直径的一半:r = (2√2)/2 = √2圆心坐标为(3, 4),半径为√2,所以该圆的方程为:(x-3)² + (y-4)² = (√2)²展开得:x² + y² - 6x - 8y + 13 = 0所以该圆的方程为:x² + y² - 6x - 8y + 13 = 03. 已知圆的方程为:x² + y² + 2x - 4y - 4 = 0,求该圆的圆心坐标和半径。

解析:根据已知方程可得:(x+1)² + (y-2)² = 9将方程展开得:x² + y² + 2x - 4y + 1 + 4 - 9 = 0整理得:x² + y² + 2x - 4y - 4 = 0可见,已知的方程与题目中给出的方程相同,所以该圆的圆心坐标为(-1, 2),半径为3。

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。

以下是圆的方程专题练习,请考生查缺补漏。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。

圆与方程+练习题-2023届高考数学一轮复习

圆与方程+练习题-2023届高考数学一轮复习

高考数学一轮复习《圆与方程》练习题(含答案)一、单项选择题1.已知圆221:1C x y +=与圆()()222:121C x y -++=,则圆1C 与2C 的位置关系是( )A .内含B .相交C .外切D .外离2.已知点(1,1)在圆(x ﹣a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .(﹣1,1)B .(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .{1,﹣1}3.以点A (-5,4)为圆心,4为半径的圆的方程是 A . B . C .D .4.在平面直角坐标系xOy 中,过点()2,0P -的直线l 与圆O :221x y +=相切,且直线l 与圆C :()(22433x y -+=相交于A ,B 两点,则AB =( )A 5B 3C .2D 25.已知圆()()22:341C x y -+-=和两点(),0A m -,(),0B m ,()0m >.若圆C 上存在点P ,使得90APB ∠=︒,则m 的最小值和最大值分别为( ) A .4,7B .4,6C .5,7D .5,66.若虚数..i,,z x y x y R =+∈,且1|1|2z -=,则yx的取值范围为( ) A .33⎡⎢⎣⎦B .330,3⎡⎫⎛⎤⎪ ⎢⎥⎪ ⎣⎭⎝⎦C .[3,3]D .[3,0)3]-⋃7.已知两定点(3,0),(3,0)A B -,点P 在直线230x y --=上,使得PA PB ⊥,则这样的P 点个数有( )A .0个B .1 个C .2个D .3个8.圆是中华民族传统文化的形态象征,象征着“圆满”和“饱满”,是自古以和为贵的中国人所崇尚的图腾.如图,AB 是圆O 的一条直径,且 4.,AB C D =是圆O 上的任意两点,2CD =,点P 在线段CD 上,则PA PB ⋅的取值范围是( )A .3,2⎡⎤⎣⎦B .[]1,0-C .[]3,4D .[]1,29.已知直线20x y ++=和圆22220x y x y a ++-+=相交于,A B 两点.若||4AB =,则实数a 的值为( ) A .-2B .-4C .-6D .-810.设过点1,0A 的直线l 与圆()()22:344C x y -+-=交于,E F 两点,线段EF 的中点为M .若l 与y 轴的交点为N ,则AM AN的取值范围是( )A .(]0,2B .160,5⎛⎫ ⎪⎝⎭C .162,5⎫⎡⎪⎢⎣⎭D .162,5⎡⎤⎢⎥⎣⎦11.圆221:(1)(1)28O x y -+-=与222:(4)18O x y +-=的公共弦长为( )A .23B .26C .32D .6212.平面直角坐标系中,动圆T 与x 轴交于两点A ,B ,与y 轴交于两点C ,D ,若|AB |和CD 均为定值,则T 的圆心轨迹一定是( ) A .椭圆(或圆)B .双曲线C .抛物线D .前三个答案都不对二、填空题13.以双曲线C :()222103x y a a -=>的一个焦点F 为圆心的圆与双曲线的渐近线相切,则该圆的面积为________.14.过点()1,2M -作圆225x y +=圆的切线l ,则l 的方程是___________.15.若圆222430x y x y +++-=上到直线20x y a ++= 2 的点恰有3个,则实数a 的值为___________.16.已知()11,A x y 、()22,B x y 为圆22:4M x y +=上的两点,且121212x x y y +=-,设00(,)P x y为弦AB 的中点,则00|3410|x y +-的最小值为________.三、解答题17.求经过三点()0,0A ,()3,0B ,()1,2C -的圆的方程.18320x y +-=与圆2220x y y =++的位置关系.19.已知圆C :22230x y y ++-=,直线l :30x y ++=. (1)求圆C 的圆心及半径;(2)求直线l 被圆C 截得的弦AB 的长度.20.已知圆221:(6)(7)25C x y -+-=及其上一点()2,4A .(1)设平行于OA 的直线l 与圆1C 相交于,B C 两点,且BC OA =,求直线l 的方程; (2)设圆2C 与圆1C 外切于点A ,且经过点()3,1P ,求圆2C 的方程.21.已知圆C :2240x y mx ny ++++=的圆心在直线10x y ++=上,且圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.已知抛物线E :22x py =过点()1,1,过抛物线E 上一点()00,P x y 作两直线PM ,PN 与圆C :()2221x y +-=相切,且分别交抛物线E 于M 、N 两点. (1)求抛物线E 的方程,并求其焦点坐标和准线方程; (2)若直线MN 的斜率为3-P 的坐标.23.已知椭圆E :2213x y +=上任意一点P ,过点P 作PQ y ⊥轴,Q 为垂足,且33QM QP =.(1)求动点M 的轨迹Γ的方程;(2)设直线l 与曲线Γ相切,且与椭圆E 交于A ,B 两点,求OAB 面积的最大值(O 为坐标原点).24.已知椭圆()2222:10x y E a b a b +=>>330x y -=过E 的上顶点A 和左焦点1F .(1)求E 的方程;(2)设直线l 与椭圆E 相切,又与圆22:4O x y +=交于M ,N 两点(O 为坐标原点),求OMN面积的最大值,并求出此时直线l 的方程。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。

在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。

本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。

练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。

解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。

代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。

2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。

解析:首先求得半径,半径的长度等于圆心到过点的距离。

利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。

然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。

练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。

将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。

因此,这个方程是圆的标准方程。

2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。

因此,这个方程不是圆的标准方程。

(完整版)圆的一般方程练习题

(完整版)圆的一般方程练习题

(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。

圆的标准方程-练习题

圆的标准方程-练习题

一、选择题1. 圆心是(4, -1),且过点(5.2)的圆的标准方程是( )Λ. α-4)2+(y+l)2=10 B. (A ^+4)2+(y-l)2=10 C. (χ-4)2+(y÷l)2=100D. (%-4)2÷ (y+1)2=√W2. 已知圆的方程是(χ-2)2+(y-3)2=4,则点P(3,2)满足() A.是圆心B.在圆上C.在圆内3. 圆(A -+1)2+(7-2)2=4的圆心坐标和半径分别为() Λ. (-1,2), 2B. (1, -2), 2C. (-1,2), 44. (2016 •锦州高一检测)若圆C 与圆(x+2)2÷(y-l)2= 1关于原点对称,则圆C 的方程是()Λ. α-2)2+(y+l)2=l B. (χ-2)2+(y-l)2=l C. U-l)2+(y+2)2=lD. (A ÷1)2÷(7+2)2=15. (2016 •全国卷II)圆√+∕-2χ-8y+13=0的圆心到直线ax+y-1 =0的距离为1,则日=()6. 若Pa 一1)为圆(χ-l)2+y=25的弦/矽的中点,则直线/矽的方程是(Λ )二、 填空题7. 以点(2, — 1)为圆心且与直线x+y=6相切的圆的方程是8. 圆心既在直线x —y=0上,又在直线x+y —4=0上,且经过原点的圆的方程是三、 解答题9. 圆过点 Atl 9 一2)、B(-l,4).求 (1) 周长最小的圆的方程;⑵圆心在直线2x —y —4 = 0上的圆的方程.10. 已知圆川的标准方程为(%-5)2+(y-6)2=a 2(a>0).Λ.B.C. √3D. 2 D.在圆外D. (h -2), 4A. X —y —3=0B ・ 2x+ y — 3 = 0C ・ x+ y — 1 =0D. 2%—y —5=0(1)若点M6.9)在圆上,求。

的值;(2)已知点A3,3)和点0(5.3),线段図(不含端点)与圆再有且只有一个公共点,求臼的取值范围.B级素养提升一、选择题1. (2016〜2017-宁波高一检测)点与圆√+∕=j的位置关系是Λ.在圆上 B.在圆内 C.在圆外 D.不能确定2.若点(2o, a-l)在圆√÷(y+l)2=5的内部,则&的取值范围是( )Λ. (一8, 1] B. (一1・1) C. (2.5) D・(1, +∞)3.若点P(l, 1)为圆α-3)2+72=9的弦的中点,则弦聽V所在直线方程为( )Λ. 2x+y—3=0 B・X—2y+l=0 C. x+2y—3=0 D・(IX—y—1=04.点"在圆(Λ--5)2+(7-3)2=9上,则点J/到直线3x+4y-2=0的最短距离为( )Λ. 9B・8 C・5 D・2二、填空题5.已知圆C经过力(5∙1). 0(1∙3)两点,圆心在才轴上,则C的方程为6.以玄线2x+y-4 = 0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为C级能力拔高1・如图,矩形力仇0的两条对角线相交于点M2,0), /矽边所在直线的方程为χ-3y-6=0, 边所在的直线上•求力〃边所在直线的方程・2.求圆心在直线4x+y=0上,且与直线才+y—l =0切于点Λ3, 一2)的圆的方程,并找出圆的圆心及半径.一、选择题1・圆z÷√-4x+6y= O的圆心坐标是( )Λ. (2.3) B. (-2,3) C. (一2, -3) D. (2, -3)2・(2016〜2017 •曲靖高一检测)方程√+∕÷2^r-Λy÷c= 0表示圆心为67(2,2),半径为2的圆,则血b、C 的值依次为( )Λ. —2,4.4 B. —2, —4,4 C. 2, —4,4 D. 2, —4, —43.(2016〜2017 •长沙高一检测)已知圆C过点J∕(l,l), A r(5,1),且圆心在直线y=x~2上,则圆C的方程为 ( )A・ X ÷y-6A r-2y÷6 = 0 B. x ÷y÷6%-2y÷6=0[C・ x'÷y ÷6x÷2y÷6=0 D・ A r÷y —2χ-6y÷6=04.设圆的方程是Y÷y2+2ax÷2y+(a-l)2=0,若O<X1,则原点与圆的位置关系是( )Λ.在圆上 B.在圆外 C.在圆内 D.不确定5・若圆√+∕-2χ-4y= 0的圆心到直线AT-y÷5= 0的距离为专,则日的值为( )1 3A. —2 或2B. §或O C・ 2 或0 D. —2 或06.圆Z÷∕-2y-l =O关于直线y=x对称的圆的方程是( )Λ. (X—1)^+y =2 B. (x+l)'+y i=2C. (A-I)2+y =4D. (^+l)2+y=4二、填空题7.圆心是(-3,4),经过点.f∕(5,l)的圆的一般方程为______________________ .8.设圆√+y-4,r+2y-ll= 0的圆心为儿点P在圆上,则刊的中点〃的轨迹方程是一三、解答题9.判断方程X + y -4^+ 2my+ 20/»-20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点J(-l,0). g(3∙0)和C(0.1)的圆的方程.B级素养提升一、选择题1.若圆x2+y2-2ax÷36y= 0的圆心位于第三象限,那么直线x+ay+b =0—定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2•在圆√+y2-2-γ-6y =0内,过点F(OJ)的最长弦和最短弦分别为和加,则四边形/处9的面只为( )Λ. 5√2 B. 10√5 C. 15√2D・20√23.若点(2o, a— 1)在圆x2÷y2—(Iy-5a'=0的内部,则日的取值范围是( )4 4 4 Q QΛ. ( — 8, -] B. (―-, ξ) C. (―[, +∞) D. (丁,+∞)4.若直线7:乩γ+by+l=O始终平分圆J/: z+y+4x÷2y÷l=0的周长,则(a-2)2+(Z,-2)2的最小值为)二、填空题5.已知圆C: √+∕+2,γ+ay-3 = 0U为实数)上任意一点关于直线/:χ-y+2=0的对称点都在圆C上,则。

高中数学必修2圆的方程练习题(基础训练)

高中数学必修2圆的方程练习题(基础训练)

专题:直线与圆1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交B .外切C .内切D .相离2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条B .2条C .3条D .4条3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=14.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0D .2x -y ±5=05.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2B .2C .22D .426.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ).A .x 2+y 2+4y -6=0B .x 2+y 2+4x -6=0C .x 2+y 2-2y =0D .x 2+y 2+4y +6=07.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( ). A .30B .18C .62D .528.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2D .(a +b )2=2r 29.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ). A .14或-6B .12或-8C .8或-12D .6或-1410.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ). A .453B .253 C .253 D .21311.若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________.12.已知直线x =a 与圆(x -1)2+y 2=1相切,则a 的值是_________. 13.直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长为_________.14.若A(4,-7,1),B(6,2,z),|AB|=11,则z=_______________.15.已知P是直线3x+4y+8=0上的动点,P A,PB是圆(x-1)2+(y-1)2=1的两条切线,A,B是切点,C是圆心,则四边形P ACB面积的最小值为.三、解答题16.求下列各圆的标准方程:(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).17.棱长为1的正方体ABCD-A1B1C1D1中,E是AB的中点,F是BB1的中点,G是AB1的中点,试建立适当的坐标系,并确定E,F,G三点的坐标.18.圆心在直线5x―3y―8=0上的圆与两坐标轴相切,求此圆的方程.19.已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线P A,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.20.求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.参考答案一、选择题 1.A解析:C 1的标准方程为(x +1)2+(y +4)2=52,半径r 1=5;C 2的标准方程为(x -2)2+(y +2)2=(10)2,半径r 2=10.圆心距d =224 - 2+ 1 + 2)()(=13. 因为C 2的圆心在C 1内部,且r 1=5<r 2+d ,所以两圆相交. 2.C解析:因为两圆的标准方程分别为(x -2)2+(y +1)2=4,(x +2)2+(y -2)2=9, 所以两圆的圆心距d =222 - 1 -+ 2 + 2)()(=5. 因为r 1=2,r 2=3,所以d =r 1+r 2=5,即两圆外切,故公切线有3条. 3.A解析:已知圆的圆心是(-2,1),半径是1,所求圆的方程是(x -2)2+(y +1)2=1. 4.D解析:设所求直线方程为y =2x +b ,即2x -y +b =0.圆x 2+y 2―2x ―4y +4=0的标准方程为(x -1)2+(y -2)2=1.由221+ 2 + 2 - 2 b =1解得b =±5.故所求直线的方程为2x -y ±5=0. 5.C解析:因为圆的标准方程为(x +2)2+(y -2)2=2,显然直线x -y +4=0经过圆心. 所以截得的弦长等于圆的直径长.即弦长等于22. 6.A解析:如图,设直线与已知圆交于A ,B 两点,所求圆的圆心为C . 依条件可知过已知圆的圆心与点C 的直线与已知直线垂直. 因为已知圆的标准方程为(x -1)2+y 2=1,圆心为(1,0), 所以过点(1,0)且与已知直线x +2y -3=0垂直的直线方程为y =2x -2.令x =0,得C (0,-2).联立方程x 2+y 2-2x =0与x +2y -3=0可求出交点A (1,1).故所求圆的半径r =|AC |=223 + 1=10.所以所求圆的方程为x 2+(y +2)2=10,即x 2+y 2+4y -6=0.(第6题)解析:因为圆的标准方程为(x -2)2+(y -2)2=(32)2,所以圆心为(2,2),r =32. 设圆心到直线的距离为d ,d =210>r ,所以最大距离与最小距离的差等于(d +r )-(d -r )=2r =62. 8.B解析:由于两圆半径均为|r |,故两圆的位置关系只能是外切,于是有 (b -a )2+(a -b )2=(2r )2. 化简即(a -b )2=2r 2. 9.A解析:直线y =3x +c 向右平移1个单位长度再向下平移1个单位. 平移后的直线方程为y =3(x -1)+c -1,即3x -y +c -4=0. 由直线平移后与圆x 2+y 2=10相切,得221+ 34 - + 0 - 0 c =10,即|c -4|=10,所以c =14或-6. 10.C解析:因为C (0,1,0),容易求出AB 的中点M ⎪⎭⎫ ⎝⎛3 ,23 ,2, 所以|CM |=2220 - 3 + 1 -23 + 0 - 2)()(⎪⎭⎫⎝⎛=253. 二、填空题11.x 2+y 2+4x -3y =0.解析:令y =0,得x =-4,所以直线与x 轴的交点A (-4,0). 令x =0,得y =3,所以直线与y 轴的交点B (0,3). 所以AB 的中点,即圆心为⎪⎭⎫ ⎝⎛23 2, -. 因为|AB |=223 + 4=5,所以所求圆的方程为(x +2)2+223 - ⎪⎭⎫ ⎝⎛y =425.即x 2+y 2+4x -3y =0. 12.0或2.解析:画图可知,当垂直于x 轴的直线x =a 经过点(0,0)和(2,0)时与圆相切, 所以a 的值是0或2.解析:令圆方程中x =0,所以y 2―2y ―15=0.解得y =5,或y =-3. 所以圆与直线x =0的交点为(0,5)或(0,-3).所以直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长等于5-(-3)=8. 14.7或-5.解析:由2221 - + 7 + 2 + 4 - 6)()()(z =11得(z -1)2=36.所以z =7,或-5. 15.22.解析:如图,S 四边形P ACB =2S △P AC =21|P A |·|CA |·2=|P A |,又|P A |=12-||PC ,故求|P A |最小值,只需求|PC |最小值,另|PC |最小值即C 到直线3x +4y +8=0的距离,为2243843+|++|=3.于是S 四边形P ACB 最小值为132-=22. 三、解答题16.解:(1)由已知设所求圆的方程为(x -a )2+y 2=r 2,于是依题意,得⎪⎩⎪⎨⎧.=+)(,=+)(2222 4 - 3 16 - 1r a r a 解得⎪⎩⎪⎨⎧.,-20 = 1 = 2r a 故所求圆的方程为(x +1)2+y 2=20.(2)因为圆与直线x +y -1=0切于点M (2,-1),所以圆心必在过点M (2,-1)且垂直于x +y -1=0的直线l 上. 则l 的方程为y +1=x -2,即y =x -3. 由⎪⎩⎪⎨⎧.=+,-=023 y x x y 解得⎪⎩⎪⎨⎧.- =,=2 1 y x 即圆心为O 1(1,-2),半径r =222 + 1 -+ 1 - 2)()(=2. 故所求圆的方程为(x -1)2+(y +2)2=2.17.解:以D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长为单位长,建立空间直角坐标系Dxyz ,E 点在平面xDy 中,且EA =21. 所以点E 的坐标为⎪⎭⎫⎝⎛0 ,21 ,1, (第15题)又B 和B 1点的坐标分别为(1,1,0),(1,1,1),所以点F 的坐标为⎪⎭⎫ ⎝⎛21 ,1 ,1,同理可得G 点的坐标为⎪⎭⎫ ⎝⎛21 21 1,,. 18.解:设所求圆的方程为(x -a )2+(y -b )2=r 2, 因为圆与两坐标轴相切,所以圆心满足|a |=|b |,即a -b =0,或a +b =0. 又圆心在直线5x ―3y ―8=0上,所以5a ―3b ―8=0.由方程组⎪⎩⎪⎨⎧,=-,=--00835b a b a 或⎪⎩⎪⎨⎧,=+,=--00835b a b a解得⎪⎩⎪⎨⎧,=,44b a =或⎪⎩⎪⎨⎧.=-,11=b a 所以圆心坐标为(4,4),(1,-1).故所求圆的方程为(x -4)2+(y -4)2=16,或(x -1)2+(y +1)2=1.19.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,1+ 3 - - 2k k =2, 解得k =7,或k =-1.故所求的切线方程为7x ―y ―15=0,或x +y -1=0.(2)在Rt △PCA 中,因为|PC |=222 - 1 -+ 1 - 2)()(=10,|CA |=2, 所以|P A |2=|PC |2-|CA |2=8.所以过点P 的圆的切线长为22.(3)容易求出k PC =-3,所以k AB =31.如图,由CA 2=CD ·PC ,可求出CD =PC CA 2=102.设直线AB 的方程为y =31x +b ,即x -3y +3b =0.由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍).所以直线AB 的方程为x -3y +3=0.(3)也可以用联立圆方程与直线方程的方法求解.20.解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ), 圆心(a ,3a )到直线x -y =0的距离为d =22 - a .又圆与x 轴相切,所以半径r =3|a |,(第19题)设圆的方程为(x -a )2+(y -3a )2=9a 2, 设弦AB 的中点为M ,则|AM |=7. 在Rt △AMC 中,由勾股定理,得 22 2 - ⎪⎪⎭⎫⎝⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆的方程练习题1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( )A 、(1,-1)B 、(21,-1)C 、(-1,2)D 、(-21,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( )A .(x -3)2+(y+1)2=4B .(x -1)2+(y -1)2=4C .(x+3)2+(y -1)2=4D .(x+1)2+(y+1)2=43.方程()22()0x a y b +++=表示的图形是( )A 、以(a,b)为圆心的圆B 、点(a,b)C 、(-a,-b)为圆心的圆D 、点(-a,-b)4.两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为( )A .x+y+3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y+7=05.方程052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<<m B .141><m m 或 C .41<m D .1>m 6.圆x 2+y 2+x -y -32=0的半径是( )A .1 B . 2 C .2 D .2 2 7.圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2-4y =0的位置关系是( )A .外离 B .相交C .外切 D .内切8.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有( )A .4 B .3 C .2 D .19.设直线过点(a,0),其斜率为-1,且与圆x 2+y 2=2相切,则a 的值为( )A .± 2 B .±2C.±2 2 D .±410.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =011.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ|的最小值为( )A .6B .4C .3D .212.已知三点A(1,0),B(0,3),C(2,3),则△ABC 外接圆的圆心到原点的距离为( )A .53 B .213C .253 D .4313.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=014.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 15.若直线ax+by+c=0在第一、二、四象限,则有( )A 、ac>0,bc>0B 、ac>0,bc<0C 、ac<0,bc>0D 、ac<0,bc<0 16.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( )A .-1<a <1B . 0<a <1C .–1<a <51D .-51<a <1 17.点P (5a+1,12a )在圆(x -1)2+y2=1的内部,则a 的取值范围是( )A.|a |<1B.a |a |a18.求经过点A(-1,4)、B(3,2)且圆心在y轴上的圆的方程19.已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:230x y--=上,求此圆的标准方程.20.已知圆C:()()252122=-+-yx及直线()()47112:+=+++mymxml.()Rm∈(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l与圆C所截得的弦长的最短长度及此时直线l的方程.21.如果实数x、y满足x2+y2-4x+1=022.∆ABC的三个顶点分别为A(-1,5),(-2,-2),(5,5),求其外接圆方程参考答案1.D【解析】方程(1)(2)(2)(4)0x x y y -++-+=化为222100x x y y +++-=;则圆的标准方程是22145()(1).24x y +++=所以圆心坐标为1(,1).2--故选D 2.B【解析】试题分析:设圆的标准方程为(x-a )2+(y-b )2=r 2,根据已知条件可得(1-a )2+(-1-b )2=r 2,①(-1-a )2+(1-b )2=r 2,②a+b-2=0,③联立①,②,③,解得a=1,b=1,r=2.所以所求圆的标准方程为(x -1)2+(y -1)2=4.故选B 。

另外,数形结合,圆心在线段AB 的中垂线上,且圆心在直线x+y -2=0上,所以圆心是两线的交点,在第一象限,故选B 。

考点:本题主要考查圆的标准方程.点评:待定系数法求圆的标准方程是常用方法。

事实上,利用数形结合法,结合选项解答更简洁。

3.D【解析】由()22()0x a y b +++=知00,.x a y b x a y b +=+=∴=-=-且且故选D4.C【解析】试题分析:两圆x 2+y 2-4x+6y=0和x 2+y 2-6x=0的圆心分别为(2,-3),(3,0),所以连心线方程为3x -y -9=0,选C.考点:本题主要考查圆与圆的位置关系、圆的性质。

点评:数形结合,由圆心坐标确定连心线方程。

5.B【解析】试题分析:圆的一般方程要求220x y Dx Ey F ++++=中2240D E F +->。

即22(4)(2)450m m +--⋅>,解得141><m m 或,故选B 。

考点:本题主要考查圆的一般方程。

点评:圆的一般方程要求220x y Dx Ey F ++++=中2240D E F +->。

6.A【解析】考查直线斜率和倾斜角的关系。

7.A【解析】试题分析:22220x y x y +-+=,所以周长为,故选A 。

考点:本题主要考查圆的一般方程与标准方程的转化。

点评:简单题,明确半径,计算周长。

8.D【解析】直线斜率为负数,纵截距为正数,选D9.D【解析】试题分析:因为点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,所以将点(1,2-a a )的坐标代入圆的方程左边应小于0,即22(2)(1)2(1)0a a a +--⋅-<,解得-51<a <1,故选D 。

考点:本题主要考查点与圆的位置关系。

点评:点在圆的内部、外部,最终转化成解不等式问题。

10.D【解析】点P 在圆(x -1)2+y 2=1内部⇔(5a +1-1)2+(12a )2<1⇔ |a 11.4 【解析】方程x 2+y 2+Dx+Ey+F=0配方得22224()().224D E D E F x y +-+++=根据条件得:22242,4,4;224D E D E F +--=-=-=解得 4.F = 12.3140x y +-=,2100x y +-=,4y = 【解析】∵线段AB 的中点为(15)-,,线段BC 的中点为(34),,线段AC 的中点为(43),, ∴三角形各边上中线所在的直线方程分别是,4y =, 即3140x y +-=,2100x y +-=,4y =.13.见解析【解析】试题分析:证明一:由A ,B 即:02=+-y x ①把C (5,7)代入方程①的左边:左边==+-=0275右边∴C 点坐标满足方程①∴C 在直线AB 上∴A ,B ,C 三点共线A ,B ,C 三点共线.考点:本题主要考查直线方程、斜率公式、两点间距离公式的应用。

点评:多种方法证明三点共线,一题多解的典型例题。

14.(1)2x+3y-1=0 (2)2x-y+5=0(3)4x+y-6=0或3x+2y-7=0(4)03=+y x 或04=+-y x .【解析】略15.圆的方程为x2+y2-8x +8y +12=0【解析】解:由题意可设圆的方程为x2+y2+Dx +Ey +F =0 (D2+E2-4F >0)∵圆过点A (2,0)、B (6,0)、C (0,-2)∴⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧=+-=++=++81280240636024F E D F E F D F D∴圆的方程为x2+y2-8x +8y +12=016.所求圆的方程为x 2+(y -1)2=10【解析】设圆的方程为x 2+(y -b)2=r 2∵圆经过A 、B 两点,∴ 222222(1)(4)3(2)b r b r ⎧-+-=⎨+-=⎩解得2110b r =⎧⎨=⎩ 所以所求圆的方程为x 2+(y -1)2=10 17.22(1)(2)10x y +++=【解析】试题分析:解:因为A (2,-3),B (-2,-5),所以线段AB 的中点D 的坐标为(0,-4),又 5(3)1222AB k ---==--,所以线段AB 的垂直平分线的方程是24y x =--.联立方程组23024x y y x --=⎧⎨=--⎩,解得12x y =-⎧⎨=-⎩.所以,圆心坐标为C (-1,-2),半径||r CA === 所以,此圆的标准方程是22(1)(2)10x y +++=.考点:本题主要考查圆的方程求法。

点评:求圆的方程,常用待定系数法,根据条件设出标准方程或一般方程。

有时利用几何特征,解答更为简便。

18.(1)见解析;(2)().052,321=---=-y x x y 即【解析】试题分析:(1)直线方程()()47112:+=+++m y m x m l ,可以改写为()0472=-++-+y x y x m ,所以直线必经过直线04072=-+=-+y x y x 和的交点.由方程组⎩⎨⎧=-+=-+04,072y x y x 解得⎩⎨⎧==1,3y x 即两直线的交点为A )1,3( 又因为点()1,3A 与圆心()2,1C 的距离所以该点在C 内,故不论m 取什么实数,直线l 与圆C 恒相交.(2)连接AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D .BD 为直线被圆所截得的最短弦长.此时又直线AC 的斜率,所以直线BD 的斜率为 2.此时直线方程为:().052,321=---=-y x x y 即考点:本题主要考查直线与圆的位置关系、直线方程。

点评:研究直线与圆的位置关系,可根据条件灵活选用“代数法”或‘几何法。

19【解析】,得y=kx ,所以k 为过原点的直线的斜率。

相关文档
最新文档