泊松方程

合集下载

泊松方程的推导公式

泊松方程的推导公式

泊松方程的推导公式泊松方程是数学物理中的一个重要方程,描述了二维空间中的电势分布。

它是由法国数学家泊松于19世纪初提出的,被广泛应用于电磁场、流体力学、热传导等领域中。

泊松方程的推导公式如下:∇²φ = -ρ/ε₀其中,φ表示电势,ρ表示电荷密度,ε₀表示真空介电常数。

这个公式可以用来计算电势场中的电势分布。

在二维情况下,泊松方程可以简化为:∂²φ/∂x² + ∂²φ/∂y² = -ρ/ε₀接下来,我们来推导一下泊松方程的解。

假设在一个有限区域Ω内有一些电荷,我们想要求解这些电荷在区域Ω中的电势分布。

我们可以将Ω分成很多小的网格,然后在每个网格上求解电势的值。

假设第i个网格的电势为φᵢ,那么根据泊松方程,我们可以得到:∂²φᵢ/∂x² + ∂²φᵢ/∂y² = -ρᵢ/ε₀其中,ρᵢ表示在第i个网格内的电荷密度。

我们可以将二阶偏导数离散化,用差分来表示。

假设Δx和Δy分别表示网格在x和y方向上的间距,那么可以得到:(φᵢ₊₁ⱼ- 2φᵢⱼ+ φᵢ₋₁ⱼ)/Δx² + (φᵢⱼ₊₁- 2φᵢⱼ+ φᵢⱼ₋₁)/Δy² = -ρᵢⱼ/ε₀我们可以进一步化简上述公式,得到:φᵢ₊₁ⱼ + φᵢ₋₁ⱼ + φᵢⱼ₊₁ + φᵢⱼ₋₁ - 4φᵢⱼ = -Δx²Δy²ρᵢⱼ/ε₀这个公式可以用于求解电势的值。

我们可以通过迭代的方式,从初值开始,逐步更新每个网格的电势值,直到达到收敛条件为止。

在每次迭代中,我们可以根据上述公式来更新每个网格的电势值。

泊松方程还有一种边界条件,即边界上的电势值是已知的。

在实际问题中,我们通常会给定一些边界条件,例如,某些区域的电势值是已知的,或者电势在边界上的法向导数是已知的。

这些边界条件可以帮助我们更好地求解泊松方程。

总结一下,泊松方程是描述二维空间中电势分布的重要方程。

数学物理方程泊松方程

数学物理方程泊松方程
保险精算
在保险精算中,泊松方程可以用来预测未来的风险和 损失。
股票市场预测
在股票市场中,泊松方程可以用来预测股票价格的波 动和趋势。
泊松方程的扩展
04
非线性泊松方程
ห้องสมุดไป่ตู้
非线性泊松方程
在泊松方程的基础上,引入非线 性项,使其能够描述更复杂的物 理现象。
求解方法
由于非线性项的存在,求解非线 性泊松方程的难度增加,需要采 用迭代法、有限元法等数值解法。
泊松方程的来源和重要性
泊松方程的起源可以追溯到18世纪的数学和物理学领域。它是由法国数学家和物理学家西莫恩·德尼· 泊松在研究电场和重力场问题时提出的。
泊松方程在数学物理、工程技术和科学计算等领域具有广泛的应用价值。它涉及到许多物理现象和工 程问题的建模与求解,如静电场、位势论、量子力学和流体动力学等。因此,掌握泊松方程的基本理 论和方法对于深入理解和解决实际问题至关重要。
应用领域
非线性泊松方程在物理学、工程 学等领域有广泛的应用,如描述 晶体生长、流体动力学等。
泊松方程的数值解法
有限差分法
将泊松方程转化为差分方程,通过迭代求解。
有限元法
将求解区域划分为若干个小的单元,对每个单元进行近似求解,再 通过求解全局方程得到最终结果。
应用领域
数值解法广泛应用于实际问题的求解,如工程设计、物理模拟等。
泊松方程的应用
03
在物理中的应用
描述粒子在势场中的运动
泊松方程可以描述粒子在势场中的运 动,例如在量子力学和经典力学中, 粒子在势能场中的运动可以用泊松方 程来描述。
电磁波传播
热传导问题
在热传导问题中,泊松方程可以用来 描述温度场的变化和分布。

泊松方程

泊松方程

泊松方程
泊松方程(法语:Équation de Poisson)是数学中一个常见于静电学、机械工程和理论物理的偏微分方程,因法国数学家、几何学家及物理学家泊松而得名的。

泊松方程为
在这里代表的是拉普拉斯算子,而和可以是在流形上的实数或复数值的方程。

当流形属于欧几里得空间,而拉普拉斯算子通常表示为,因此泊松方程通常写成
在三维直角坐标系,可以写成
如果有恒等于0,这个方程就会变成一个齐次方程,这个方程称作“拉普拉斯方程”。

泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考屏蔽泊松方程。

现在也发展出很多种数值解,如松弛法(一种迭代法)。

通常泊松方程表示为
这里代表拉普拉斯算子,为已知函数,而为未知函数。

当时,这个方程被称为拉普拉斯方程。

为了解泊松方程我们需要更多的信息,比如狄利克雷边界条件:
其中为有界开集。

这种情况下利用基础函数构建泊松方程的解,拉普拉斯方程的基础函数为:
其中为n维欧几里得空间中单位球面的体积,此时可通过卷积得到的解。

为了使方程满足上述边界条件,我们使用格林函数
为一个校正函数,它满足
通常情况下是依赖于。

通过可以给出上述边界条件的解
其中表示上的曲面测度。

此方程的解也可通过变分法得到。

泊松方程

泊松方程

泊松方程是在数学中的静电学,机械工程学和理论物理学中常见的偏微分方程。

它以法国数学家,几何学家和物理学家Poisson的名字命名。

泊松首先获得没有重力源的泊松方程△Φ= 0(即拉普拉斯方程);考虑重力场时,△Φ= f(f为重力场的质量分布)。

后来,它扩展到了电场,磁场和热场分布。

该方程通常用格林函数法求解,但也可以用分离变量法和特征线法求解。

泊松方程为△φ=f
在这里△代表的是拉普拉斯算符(也就是哈密顿算符▽的平方),而f 和φ 可以是在流形上的实数或复数值的方程。

当流形属于欧几里得空间,而拉普拉斯算子通常表示为,
因此泊松方程通常写成
在三维直角坐标系,可以写成
如果没有f,这个方程就会变成拉普拉斯方程△φ=0.
泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考screened Poisson equation[1] 。

现在有很多种数值解。

像是松弛法,不断回圈的代数法,就是一个例子。

数学上,泊松方程属于椭圆型方程(不含时线性方程)。

折叠编辑本段静电场的泊松方程
泊松方程是描述静电势函数V与其源(电荷)之间的关系的微分方程。

▽^2V=-ρ/ε
其中,ρ为体电荷密度(ρ=▽·D,D为电位移矢量。

),ε为介电常
数绝对值εr*εo。

泊松方程的数值解法

泊松方程的数值解法

泊松方程是偏微分方程的一种常见形式,描述的是电荷分布与电场分布之间的关系。

在二维情况下,它通常被写为:$$\nabla^2 u = \frac{1}{r}\frac{\partial}{\partial r}(r \frac{\partial u}{\partial r}) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} = -4 \pi \rho(\mathbf{r})$$其中$u(\mathbf{r})$ 是电势,$\rho(\mathbf{r})$ 是电荷密度,$\mathbf{r} = (r,\theta)$ 是位置向量。

一般来说,直接求解泊松方程是困难的,因此我们常常需要借助数值方法。

常见的数值方法包括有限差分法(Finite Difference Method,FDM),有限元法(Finite Element Method,FEM)和有限体积法(Finite V olume Method,FVM)等。

以下我们给出有限差分法和有限元法的基本步骤。

**有限差分法(FDM)**1. 将求解区域划分为网格。

2. 用差分近似替代偏导数。

例如,$\frac{\partial u}{\partial x} \approx \frac{u(i+1,j) - u(i-1,j)}{2 \Delta x}$,其中$\Delta x$ 是网格尺寸。

3. 将原方程写成差分方程的形式,然后求解这个离散方程。

例如,对于二维的泊松方程,我们可以写成一个线性方程组。

4. 对于边界条件,通常需要将边界条件离散化。

例如,如果边界条件是$u(x,y) = g(x,y)$,那么我们可以将其写为$u(i,j) = g(i,j)$。

5. 使用迭代法(如Jacobi迭代法,Gauss-Seidel迭代法等)或者直接求解器(如Gauss消元法)来求解这个线性方程组。

**有限元法(FEM)**1. 将求解区域划分为网格,每个网格称为一个元素。

第4节(泊松方程)

第4节(泊松方程)

最后,可得泊松方程的一般解为: 最后,可得泊松方程的一般解为:
8
u(x, y) = x(x − a) + w(x, y) cosh[( k −1)π ( y −b / 2) / a] (2k −1)πx 2 = x(x − a) − 3 ∑ sin 3 a π k=1 (2k −1) cosh[( k −1)πb / 2a] 2 8a2
例2 在矩形域 0 ≤ x ≤ a,0 ≤ y ≤ b 上求解泊松方程的
∆ 2u = −2 边值问题 u | x =0 = 0, u | x = a = 0 u | = 0, u | = 0 y =b y =0
4
解: 先找泊松方程的一特解v,显然v=- =-x 先找泊松方程的一特解 ,显然 =- 2满足方程 ∆ 2 v = −2 则v=-x2+c1x+c2(c1和c2为积分常数 也满足 ∆ 2 v = −2 可以选取 为积分常数)也满足 适当的c 使得v满足一对齐次边界条件 满足一对齐次边界条件, 适当的 1和c2使得 满足一对齐次边界条件,c1=a,c2=0,则: 则
m

比较系数可得 a 2 b 2 A0 = c − ρ 0 , A2 = − ρ0 , Am = 0(m ≠ 0,2); Bm = 0 4 12 方程的一般解为: 方程的一般解为:
a 2 b 2 2 2 2 u = v + w = c + ( ρ − ρ 0 ) + ρ ( ρ − ρ 0 ) cos 2ϕ 4 12
Ae nπb / a − e − nπb / a e e
− nπb / 2 a nπb / 2 a
+e
− nπb / 2 a
Cn =
e

物理学中的泊松方程及其应用研究

物理学中的泊松方程及其应用研究在物理学中,泊松方程是一个非常重要的数学模型。

它的形式比较简单,但是却有着广泛的应用。

在本文中,我们将讨论泊松方程的基本性质以及它在物理学中的一些应用研究。

1. 泊松方程的基本概念泊松方程是一种偏微分方程,它描述了在给定边界条件下,一个标量场在欧几里德空间中的变化情况。

它的形式如下:∇2ψ = f(x,y,z)其中,ψ是标量场(比如电势场),f(x,y,z)是一个已知的函数,∇2表示拉普拉斯算子。

在三维空间中,拉普拉斯算子的形式如下:∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2泊松方程的解决方案可以用来描述许多物理现象,比如电场与电势,流体动力学,量子力学等等。

2. 泊松方程的数学性质泊松方程有许多比较简单易懂的数学性质。

其中一些性质如下:1. 泊松方程的解是唯一的。

这就是说,如果两个解不同,则它们的差也是一个满足泊松方程的解。

但是,如果差在给定区域的边界上为零,则这两个解相同。

2. 如果f(x,y,z)是一个常数,则泊松方程退化为拉普拉斯方程。

这种情况下,解的形式比较简单,也更容易求解。

3. 泊松方程是一个线性方程。

这意味着,如果ψ1和ψ2是满足泊松方程的解,任何线性组合aψ1 + bψ2也是满足泊松方程的解。

这个性质对于理解许多物理学中的现象非常重要。

3. 泊松方程在电势场中的应用电势场是物理学中一个非常重要的概念。

它用来描述带电粒子周围存在的电场。

在这种情况下,泊松方程可以用来求解电势场。

电势场的核心方程是库仑定律,它用来描述在两个带电粒子之间存在的相互作用力。

这个定律的形式如下:F = kq1q2/r^2其中F是两个带电粒子之间的相互作用力,q1和q2是两个带电粒子的电荷,r是两个粒子之间的距离,k是一个常数。

库仑定律可以用来计算电势场中的电场强度。

但是,如果我们想求解整个电势场分布,就需要求解泊松方程了。

4. 泊松方程在流体动力学中的应用流体动力学是物理学中一个涉及流体运动的分支。

泊松方程的推导

泊松方程的推导泊松方程是数学中的一类偏微分方程,描述了物理系统中的势能分布。

它在物理学、工程学和计算机图形学等领域中具有重要的应用。

本文将从基本概念出发,逐步推导泊松方程的表达式和求解方法。

我们来了解一下泊松方程的定义。

泊松方程是指具有以下形式的偏微分方程:∇²φ = f,其中∇²表示拉普拉斯算子,φ是待求解的函数,f是已知的函数。

泊松方程可以用来描述许多物理系统中的平衡状态,比如电势、温度和流体静压力等。

为了推导泊松方程,我们首先考虑一个二维情形。

假设我们有一个平面上的区域Ω,且函数φ在Ω上满足泊松方程。

我们希望找到一个函数u(x, y),使得u满足以下条件:1. u在Ω上连续可微;2. u在Ω的边界上满足一定的边界条件。

为了满足这些条件,我们引入一个辅助函数v(x, y),定义为:v(x, y) = u(x, y) - φ(x, y)。

根据辅助函数v的定义,我们可以得到以下两个结论:1. 辅助函数v满足拉普拉斯方程∇²v = 0;2. 辅助函数v在Ω的边界上满足边界条件v = 0。

现在,我们的目标是找到满足上述条件的辅助函数v。

为此,我们可以利用格林公式,将拉普拉斯方程在Ω内部积分,得到:∫∫Ω(∇²v)dxdy = ∫∫∂Ω(∇v·n)dS,其中∂Ω表示Ω的边界,n表示边界的外法向量,dS表示面积元素。

根据边界条件v = 0,上式右侧为0。

因此,我们得到:∫∫Ω(∇²v)dxdy = 0。

为了进一步推导,我们可以将拉普拉斯算子表示为二阶偏导数的形式,即∇²v = ∂²v/∂x² + ∂²v/∂y²。

将这个表达式代入上式,得到:∫∫Ω(∂²v/∂x² + ∂²v/∂y²)dxdy = 0。

根据积分的线性性质,我们可以将上式分解为两个积分:∫∫Ω(∂²v/∂x²)dxdy + ∫∫Ω(∂²v/∂y²)dxdy = 0。

泊松方程

泊松方程是数学中的偏微分方程,通常用于静电学,机械工程和理论物理学中。

它以法国数学家,几何学家和物理学家泊松命名。

泊松首先获得没有重力源的泊松方程△Φ= 0(即拉普拉斯方程); 当考虑重力场时,有△Φ= f(F是重力场的质量分布)。

然后扩展到电场,磁场和热场分布。

该方程通常通过格林函数法求解,也可以通过变量分离和特征线法求解。

泊松方程表明,电场是由电荷产生的:电势的二阶导数与电荷密度成正比。

近似的条件是在PIN结中没有载流子,也就是说,载流子被完全耗尽并且施主和受主被完全电离。

PIN结的泊松方程
(0 <x <xn)d ^ 2V(x)/ DX ^ 2 =-nd /ε,(-XP <x <0)d ^ 2V(x)/ DX ^ 2 =-Na /ε边界条件e(0)= e(xn)=-DV(x)/ DX(x =-XP,xn)= 0,V(x =-XP)= 0,V(x = xn)= 0
通过积分电场的符号,我们可以再次获得电场的分布。

扩展数据:
泊松方程可以用格林函数求解。

如何使用格林函数求解泊松方程可以参考屏蔽泊松方程。

有许多数值解。

例如,松弛法,迭代代数法就是一个例子。

泊松首先获得没有重力源的泊松方程△Φ= 0(即拉普拉斯方程);当考虑重力场时,有△Φ= f(F是重力场的质量分布)。

然后扩展到电场,磁场和热场分布。

该方程通常通过格林函数法求解,也可以通过变量
分离和特征线法求解。

泊松方程公式

泊松方程公式泊松方程是一种重要的偏微分方程,在数学、物理和工程学科中都有广泛的应用。

它描述了一个标量函数在定义域内的拉普拉斯算子与另一个函数的乘积之和的关系。

在这篇文章中,我们将详细介绍泊松方程,并阐述其数学原理和物理意义,同时探讨它在各个领域中的应用。

一、泊松方程的数学原理泊松方程的数学表示为:∇²u = f其中,u为定义在R³上的标量函数,∇²为拉普拉斯算子,f是同样定义在R³上的标量函数。

此方程也可以写成:∇·(∇u) = f其中,∇指的是梯度算子,∇u为u的梯度。

这个形式更直观地表明泊松方程的本质:一个标量函数的梯度的散度等于另一个标量函数。

这种关系为泊松方程的求解提供了一个有力的工具。

二、泊松方程的物理意义泊松方程的物理意义也很重要。

在物理学中,它描述了许多自然现象,例如电磁场、流体力学、热传导等等。

对于电磁场而言,泊松方程可以表示电势(标量)在给定电荷分布(标量)下的分布情况。

在流体力学领域,泊松方程可以描述速度势(标量)在给定源项(标量)下的运动情况。

在热传导领域,泊松方程可以描述温度(标量)在给定热源分布(标量)下的传递规律。

三、泊松方程的应用领域泊松方程广泛应用于数学、物理和工程学科中。

在数学领域,泊松方程是偏微分方程理论的重要组成部分,可以用于描述许多数学问题。

在物理学领域,泊松方程是电势、速度势等物理量的重要描述方程。

在工程学领域,泊松方程可以用于计算机模拟、地震勘探、材料分析等领域中。

总之,泊松方程是一种十分重要的偏微分方程,具有广泛的应用领域。

掌握泊松方程的基本知识可以为我们在数学、物理和工程学科中的研究和实践提供很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泊松方程是数学中一个常见于静电学、机械工程和理论物理的偏微分方程。

是因法国数学家、几何学家及物理学家泊松而得名的。

泊松首先在无引力源的情况下得到泊松方程,△Φ=0(即拉普拉斯方程);当考虑引力场时,有△Φ=f(f为引力场的质量分布)。

后推广至电场磁场,以及热场分布。

该方程通常用格林函数法求解,也可以分离变量法,特征线法求解。

泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考屏蔽泊松方程。

有很多种数值解。

像是松弛法,不断回圈的代数法,就是一个例子。

泊松方程为:
在三维直角坐标系,可以写成:
泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考屏蔽泊松方程。

有很多种数值解。

像是松弛法,不断回圈的代数法,就是一个例子。

相关文档
最新文档