2014年全国高中数学青年教师展评课:杨辉三角中的一些秘密课件(浙江宁波正始中学陈碧文)

合集下载

高中数学_杨辉三角中的一些秘密教学课件设计

高中数学_杨辉三角中的一些秘密教学课件设计
……
Cnm CCnm1011C11Cnm1
C
0 2
C
1 2
C
2 2
C
0 3
C
1 3
C
2 3
C
3 3
C
0 4
C
1 4
C
2 4
C
3 4
C44
C50
C51
C
2 5
C
3 5
C
4 5
C55
C60 61
C
2 6
C
3 6
C
4 6
C
5 6
C66
(a+b)0 (a+b)1 (a+b)2 (a+b)3 (a+b)4 (a+b)5
(a+b)6
……
Cnm Cnm1111Cnm1
1 21 1 3 31 14641 1 5 10 10 5 1 1 6 15 20 15 6 1
((aa++bb))C10 0n
C1n
C
2 n
1
11
C
n n
2n1
2
(a+b)2
1 21
4
(a+b)3
1 3 31 8
(a+b)4
1 4 6 4 1 16
1 6 15 20 15 6 1
例1:在(a+b)n展开式中,
(a
b)n
C
0 n
a
n
Cn1a n1b Cn2a n2b2
Cnk a nk bk Cnnbn
(1)若第3项与第13项的二项式系数相等,求n;
(2)若只有第10项二项式系数最大,求n; (3)若第10项二项式系数最大,求n。

高中数学《杨辉三角》课件

高中数学《杨辉三角》课件
三 角
杨辉三角
例1.证明在(a+b)n的展开式中,奇数项的 二项式系数和等于偶数项的二项式系数和.
解: 令a=1,b=-1 即
赋值法
例2.已知(x2 -1)n的展开式的各项二项式系数和 是1024,求展开式中含x6的项. 解:
例3.求(1- x)8的展开式中二项式系数的最大项. 解:
目标检测
杨辉三角
杨辉三角
杨辉三角
南宋数学家、数学教育家
数学著作有《日用算法》、《杨辉算法》、 《详解九章算法》等
在欧洲,杨辉三角被认为是法国数学家、 物理学家帕斯卡首先发现的,称帕斯卡三角 杨辉三角的发现要比欧洲早500年左右
课后作业
课本P30,第1、2、4题 查阅资料,尝试探究:
杨辉三角虽然也叫帕斯卡三角,但是两 者有区别吗?给出自己的观点 .

高中数学探究与发现 “杨辉三角”中的一些秘密课件

高中数学探究与发现 “杨辉三角”中的一些秘密课件
PPT模板下载:www.1p pt.co m/ moban / 节日PPT模板:www.1p pt.co m/ jieri/ PPT背景图片:www.1p pt.co m/ beijing / 优秀PPT下载:www.1p pt.co m/ xiazai/ Word教程: /word/ 资料下载:www. 1ppt.co m/zilia o/ 范文下载:www. 1ppt.co m/fan wen/ 教案下载:www. 1ppt.co m/jiao an/
原型——路径问题

不同路径 相同步数 殊途同归
C150 252 C63 20

【数学的灵动美】——做中思玩中学
路径问题
甲 1 1 1 111
1 2 3 456
1 3 6 10 15 21
14 15
10 20 35 56 15 35 70 126
1 6 21 56 126 252乙
理论
实践
【数学的灵动美】——做中思玩中学
............
C C C 0
1
2
n1 n-1 n-1
...
Cr 1 n-1
Cr n-1
...
Cn2 n-1
C0 n1
Cn0 Cn1 Cn2
... Cnr ...
Cn1 n
C n0
杨辉三角中,第n行第r+1个数为
an,r1 Cnr
【数学的规律美】——回顾旧知
对称
Cnr
C nr n
正难则反

121 13 31
C11 1C21 2 C331 C4415C516C7612C871 C82
向 求 和
146 41 1 5 10 10 5 1 1 6 15 20 15 6 1

杨辉三角上课用PPT课件

杨辉三角上课用PPT课件

(a+b)6…1 6 15 20 15 6 1
观察每一行的第一个和最后一个数有什么特点?
(1)对称性: Cn0 1,Cnn 1
与首末两端“等距离”的两个二项式系数相等.
这就是组合数的性质
1: Cnm
C nm n
第2页/共32页
(a性+b质)1…………… 1 1
(2)递推性:
除(a1+以b)外2…的…每…一个…数…都1等2于它1肩上两个数的和.
第15页/共32页
题型 证明不等式
例20.证明: 当n N*且n 1 2 (1 1)n 3
n
证明 (1
1 )n n
1 Cn1
1 n
Cn2
1 n2
11 Cn2
1 n2
2
通项
Cnk
1 nk
n(n
1)
k
(n !
k
1)
1 nk
nk k!
1 nk
1 k!
(1
1)n n
1
C
1 n
1 n
Cn2
1,1,2,3,5,8,13,21,34,...
第21页/共32页
探究:横行规律
第0行
1 2 3
4 5 6 7
8 9 10 11 12 13 14
15
1)杨辉三角中的第1,3,7,15,…行,即第 2n-1行的 各个数字为奇数?
则第2n行的数字有什么特点?除两端的1之外都是偶数.
第22页/共32页
解:?1二项式系数之和为C90 C91 C92 C99 29 512.
解 : 设2x 3y9 a0x9 a1x8y a2x7y2 a9y9. 2令x y 1得各项系数之和为a0 a1 a2 a9 21 319 1.

高二数学人教A版选择性必修第三册第六章数学探究 杨辉三角的性质与应用 课件(共20张PPT)

高二数学人教A版选择性必修第三册第六章数学探究 杨辉三角的性质与应用 课件(共20张PPT)
2
ห้องสมุดไป่ตู้
在欧洲直到1623年以后,法国数学家帕斯卡在31岁时发现了“帕斯卡三角”. 布莱士·帕斯卡的著作Traité du triangle arithmétique(1655年)介绍了这个三角 形.帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响 面广泛,Pierre Raymond de Montmort(1708年)和亚伯拉罕·棣·美弗(1730年)都用 帕斯卡来称呼这个三角形. 21世纪以来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三 角形”(Chinese triangle) 历史上曾经独立绘制过这种图表的数学家有:
数学探究 杨辉三角的性质与应用
相关知识阅读 杨辉三角的历史沿革 北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算.
1
杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中, 记录了如上所示的三角形数表,称之为“开方作法本源”图,并说明此表引自 11 世 纪 中 叶 ( 约 公 元 1050 年 ) 贾 宪 的 《 释 锁 算 术 》 , 并 绘 画 了 “ 古 法 七 乘 方 图”.故此,杨辉三角又被称为“贾宪三角”. 元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘 方图”. 意大利人称之为“塔塔利亚三角形”(Triangolo di Tartaglia)以纪念在16世纪发 现一元三次方程解的塔塔利亚.
3
贾宪 中国北宋 11世纪 《释锁算术》 杨辉 中国南宋1261 《详解九章算法》 记载之功 朱世杰 中国元代 1299 《四元玉鉴》 级数求和公式 阿尔·卡西 阿拉伯 1427 《算术的钥匙》 阿皮亚纳斯 德国 1527 米歇尔.斯蒂费尔 德国 1544 《综合算术》 二项式展开式系数 薛贝尔 法国 1545 B·帕斯卡 法国 1654 《论算术三角形》 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古 代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.

(展示)杨辉三角ppt_高三数学

(展示)杨辉三角ppt_高三数学
r n r −1 n−1
C = C +C …… …… 2 r n−2 r −1 1 … Cn−1 Cn−1 … Cn−1 第n-1行 1 Cn−1 Cn−1 行 r n−1 2 1 … … Cn Cn 第n行 1 Cn Cn 行 …… … …
r n−1
一.简介:杨辉三角的基本性质 简介: 表中每个数都是组合数, 1)表中每个数都是组合数,第n行的第 n ! r r+1个数是 r+1个数是 C =
3.杨辉三角与“纵横路线图” 3.杨辉三角与“纵横路线图” 杨辉三角与 “纵横路线图”是数学中的一类有趣 纵横路线图” 纵横路线图 的问题:如图是某城市的部分街道图, 的问题:如图是某城市的部分街道图, 纵横各有五条路,如果从A处走到 处走到B处 纵横各有五条路,如果从 处走到 处 (只能由北到南,由西向东 ,那么有多 只能由北到南, 只能由北到南 由西向东), 少种不同的走法? 少种不同的走法?
(2)斜看杨辉三角中各数的和,又有何规律? 斜看杨辉三角中各数的和,又有何规律?
列斜线上的前Q个数之和等于第 列斜线上的第Q个数 第P列斜线上的前 个数之和等于第 列斜线上的前 个数之和等于第(P+1)列斜线上的第 个数。 列斜线上的第 个数。
(3)如图,写出斜线上各行数字的和,有什么规律? 如图,写出斜线上各行数字的和,有什么规律?
= (C a + C a b +⋯+ C a b +⋯+ C )(a + b) 0 k+1 1 k r +1 k−r b+1 k k = Ck a + Cka b +⋯+ Ck a b +⋯+ Ck ab +
0 k k 1 k −1 1 k r k k −r r k k

杨辉三角中的一些秘密(浙江省优质课一等奖)

杨辉三角中的一些秘密(浙江省优质课一等奖)

Cnr 1-1Cnr1- Cnr 杨辉恒等式 8
第 1行 1 第 2行 1 1 第 3行 1 2 1 第 4行 1 3 3 1 第 5行 1 4 6 4 1 第 6行 1 5 10 10 5 1 第 7行 1 6 15 20 15 6 1 第 8行 1 7 21 35 35 21 7 1 第 9行 1 8 28 56 70 56 28 8 1 第10行 1 9 36 84 126126 84 36 9 1
0 n
藏 ( a b ) n C n 0 a n C n 1 a n 1 b . C .n r a . n r b r . C .n n 1 . a n 1 C b n n b n
》者 贾皆 宪廉
杨辉三角中,第n行第r个数为
an,r
Cr1 n1
7
1
11
121
13 31
146 41
1 5 10 10 5 1
方衺 作乃
1
1C860 728C261156C35672.0..3.C5..5..663..21.C.28647
C1
8
5
61
C
6 6
法 本 源 图
,

算C

n1 0C1 n0Cn 1 1C n1 Cn 11 n 2 n1CC -C -1C nn 22 C1-n2..-.1...............n .r. .C1 .1 .-...n r .Cn.r.-.1n .1rnC .r1 C-C .nr.-..1.. ...C ...n n C 1 n n 2 - n1 n-C11 2C 1 nC nC1 n0C1
“杨` 辉三角”
中的一些秘密
宁波市正始中学 陈碧文
1

《探究与发现 “杨辉三角”中的一些秘密》PPT课件(部级优课)

《探究与发现 “杨辉三角”中的一些秘密》PPT课件(部级优课)

3 数学文化,拓展视野 谢 尔 宾 斯 基
谢 尔 宾 斯 基 三 角 形
埃 菲 尔 铁 塔
分形几何 奇异、美丽、 超乎想象!
4 课堂小结,升华“点睛”
斜看 三角形数 四面体数 高阶等差数列 斐波那契数列
贾宪



C
m n
C nm n
组合数对称性

杨横看 辉
2的幂、11的幂
杨辉三角
朱世杰
Cnm
成林处处云,抽笋年年玉。
调清金石怨,吟苦鬼神悲。
天风乍起争韵,池一水相涵更五绿。 十
十 天下只五应我爱一,世间惟有君知。
却寻庚信小员中一,闲对数六竿心自足十五。


自从十五都尉别六苏句,便一到司空送白辞。
3 数学文化,拓展视野
(动手操作):如果用笔将杨辉三角中的偶数与奇数 分别标出,并保留全部的奇数,会出现什么现象?
对称性:Cnm
C nm n
递推性: Cnm
C m1 n 1
Cm n 1
1
C10 C11
C
0 2
C
1 2
C
2 2
C30
C
1 3
C32
C33
C
0 4
C
1 4
C
2 4
C
3 4
C
4 4
C
0 5
C
1 5
C52 C53
C
4 5
C
5 5
C 60
C
1 6
C
2 6
C
3 6
C
4 6
C
5 6
C
6 6
2 善于观察,发现“秘密”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《 开 方 作 法 本 源 图 》 贾 宪
左 衺 乃 积 数 右 衺 乃 隅 n 1 Cn-1n1 n-1 n-... 1 n1 n-1 C n-1 n 1 1 C C C ... 1 n1 n1 n1 r 0 算C 0 C 1 1 2 C2 r C n 1 Cn 1 .. . ... C 1 Cn n Cn n .. . C Cn 1 n n... n n n 中 n 0 n 1 n 1 r nr r n 1 n 1 n n ( a b ) C a C a b ... C a b ... C ab C n n n n nb 藏 者 r 1 杨辉三角中,第n行第r个数为 an,r Cn1 皆 廉
第 1行 1 第 2行 1 1 贾宪 第 3行 1 2 1 第 4行 1 3 3 1 第 5行 1 4 6 4 1 第 6行 1 5 10 10 5 1 第 7行 1 6 15 20 15 6 1 第 8行 1 7 21 35 35 21 7 1 第 9行 1 8 28 56 70 56 28 8 1 第10行 1 9 36 84 126126 84 36 9 1
——
, ,
1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 .........C ... C C ... C 1 1 n-1 n-1 n-1 n-1 1 2 r n 1 1 Cn Cn .. . C ... C 1 n n
杨辉三角中每一个数均为肩上两数之和
1
C
r 1 n-1
C
r n-1
C
r n
杨辉恒等式
第 1行 1 第 2行 1 1 第 3行 1 2 1 第 4行 1 3 3 1 第 5行 1 4 6 4 1 第 6行 1 5 10 10 5 1 第 7行 1 6 15 20 15 6 1 第 8行 1 7 21 35 35 21 7 1 第 9行 1 8 28 56 70 56 28 8 1 第10行 1 9 36 84 126126 84 36 9 1 ……
1 3 6 10 15 21 28 36 …
1 1 1 1 1 1 1 4 5 6 7 8 9 … 10 15 21 28 36 … 20 35 56 84 … 35 70 126 … 56 126 … 84 … …

奇偶:第1,2,4,8,16…这些行即2k(k是自然数)行的各个数 字均为奇数, 第2k+1行除两端的1之外都是偶数。
奇异、美丽的图案-----超出想象!
是工艺美术大师的创作吗?
这是数学 的杰作!
斐 波 那 契
1、1、2、3、5、8、13、21、34 、55 、89 …
悄悄的我走了, 正如我悄悄的来; 我翻一翻课本, 让我收获点什么 。
再 见
宁波市正始中学 陈碧文
1 1 0 1 杨辉三角中的 1C1 C 1 1 0 1 1 1 C2 每一个数都是二项 C2 2 C 2 2 10 3 3 1 1 2 3 C C C C 3 3 式系数,都可都可 贾宪 10 3 4 16 3 4 1 2 3 4 C C C C C 以写成组合数 1 45 10 4 10 4 5 1 4 4 0 1 2 3 4 5 C C C C C C 1 5 6 15 5 20 5 15 5 6 1 5 5 0 7 21 1 35 3 21 4 5 6 1 16 C6 C6 C62 35 C6 C67 C C6 1 8 28 56 70 56 .. 28 8 1 .......... 1 2 r 1 r n2 .......... .......... 1 2C r 1 C r C 2 C0 C ... ... nC C0
1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
1 3 6 10 15 21 28 36
1 4 1 10 5 1 20 15 6 1 35 35 21 7 1 56 70 56 28 8 1 84 126126 84 36 9 …….
1
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 … …
“杨辉三角”
中的一些秘密
`
宁波市正始中学 陈碧文
圣 人 则 之
河 出 系 图 辞 洛 上 出 》 书
·
《 易
图 形 ,将 就数 是字 数按 阵一 定 顺 序 排 列 成 一 个
数 阵
开方作法本源图
手算高次方根 贾宪 研究高阶等差级数(垛积术)
艾 萨 克 牛 顿 朱世杰
研究微积分
·
差分方程、无穷级数
相关文档
最新文档