高二数学必修5 解三角形 ppt
高中数学人教B版必修5第1章《解三角形》(1.2 第1课时)同步课件

∴AE=2csoisn1350°°=
2×12 6+
= 2
6-
2.
4
在△ABC 中,已知 A=45°,cosB=45. (1)求 cosC 的值; (2)若 BC=10,D 为 AB 的中点,求 CD 的长.
[解析]
(1)∵A=45°,∴cosA=
22,sinA=
2 2.
又∵cosB=45,∴sinB=35.
第一章 解三角形
第一章 1.2 应用举例 第1课时 距离问题
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课时作业
课前自主预习
• 碧波万顷的大海上,“蓝天号”渔轮在A处进行海上
作业,“白云号”货轮在“蓝天号”正南方向距
“蓝天号”20n mile的B处.现在“白云号”以10n
mile/h的速度向正北方向行驶,而“蓝天号”同时
小岛A周围38 n mile内有暗
礁,一船正向南航行,在B处
测得小岛A在船的南偏东30°,
航行30 n mile后,在C处测
得小岛在船的南偏东45°,
如果此船不改变航向,继续
向南航行,有无触礁的危险?
• [分析] 船继续向南航行,有无触礁的危险,取决
于A到直线BC的距离与38 n mile的大小,于是我们 只要先求出AC或AB的大小,再计算出A到BC的距离,
∴x=503 6 n mile.
• 4.在相距2 km的A、B两点处测量目标点C,若∠CAB =75°,∠CBA=60°,则A、C两点之间的距离为
______ km.
[答案] 6
[解析] 如图所示,由题意知∠C=45°, 由正弦定理,得siAn6C0°=sinA4B5°,∴AC= 22·23= 6. 2
高中数学人教版必修5课件:1.1.1正弦定理(系列三)

典型例题 例1 已知一三角形中a=2 3 ,b=6,A=30°,判断三角形是
否有解,若有解,解该三角形.
解 a=2 3,b=6,a<b,A=30°<90°.
又因为bsinA=6sin30°=3,a>bsinA,
所以本题有两解,由正弦定理得,
sinB=bsian
A=6sin 2
30°= 3
23,故B=60°或120°.
跟踪训练1 在△ABC中,角A、B、C所对的边分别为a、b、
c,已知A=60°,a= 3,b=1,则c等于
(B )
A.1 B.2 C. 3-1 D. 3
解析 由正弦定理sina A=sinb B,可得sin 630°=sin1 B,
∴sinB=12,故∠B=30°或150°.由a>b,
得∠A>∠B,∴∠B=30°,故∠C=90°,
由勾股定理得c=2.
例2 在△ABC中,若∠A=120°,AB=5,BC=7,求△ABC 的面积.
解 如图,由正弦定理,
得sin
1720°=sin5
, C
∴sinC=5143,且∠C为锐角(∠A=120°).∴cosC=1114. ∴sinB=sin(180°-120°-∠C)=sin(60°-∠C) = 23cosC-12sinC= 23×1114-12×5143=3143.
证明 作AD⊥BC,垂足为D, 则AD=AB·sinB,又AD=AC·sinC,
∴csinB=bsinC.
∴S△ABC=12BC·AD =12acsinB=12absinC. 同理S△ABC=12absinC=12bcsinA.
∴S△ABC=12absinC=12bcsinA=12acsinB.
人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件

=
3sinA+π6≤
2π
30<A<
3
.
当A=π3时,即△ABC为等边三角形时取等号,
所以sin A+sin B的最大值为 3.
题点四:多边形面积问题 4.已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA
=4,求四边形ABCD的面积S. 解:如图,连接BD,则S=S△ABD+S△CBD =12AB·ADsin A+12BC·CDsin C. ∵A+C=180°,∴sin A=sin C, ∴S=12sin A(AB·AD+BC·CD)=16sin A. 在△ABD中,由余弦定理得
(2)求sin A+sin B的最大值. 解:(1)由题意可知
1 2absin
C=
43×2abcos
C.
所以tan C= 3.
因为0<C<π,所以C=π3.
(2)由(1)知sin A+sin B=sin A+sinπ-A-π3
=sin A+sin23π-A
=sin
A+
ห้องสมุดไป่ตู้
3 2 cos
A+12sin
A
(√ )
(2)三角形中已知三边无法求其面积
(×)
(3)在三角形中已知两边和一角就能求三角形的面积 ( √ ) 解析:(1)正确,S=12absin C适合求任意三角形的面积.
(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正
弦值,进而求面积.
(3)正确.已知两边和两边的夹角可直接求得面积,已知两边
=a2-c2 b2
=左边,
所以a2-c2 b2=sinsiAn-CB.
与三角形有关的综合问题 题点一:与三角形面积有关的综合问题 1.在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
高中数学第二章解三角形2.1.2余弦定理课件北师大版必修5

1
2
3
4
5
1.在△ABC 中,已知 a=5,b=4,C=120°,则 c 的长为(
A. 41
C. 41或 61
)
B. 61
D. 21
1
解析: 因为 c2=a2+b2-2abcos C,所以 c2=52+42-2×5×4× - 2 =61,即
c= 61.
答案:B
1
2
3
4
5
2.在△ABC中,若bcos A=acos B,则△ABC是(
角A,B,C的对边,且b2,c2是关于x的一元二次方程x2-(a2+bc)x+m=0的
两根.
(1)求角A的大小;
(2)若 a= 3 ,设B=θ,△ABC的周长为y,求y=f(θ)的最大值.
分析:(1)利用余弦定理求出角A;(2)先利用正弦定理将△ABC的周
长y表示成关于θ的函数,再结合三角函数的性质进行求解.
探究一
探究二
探究三
思维辨析
解:(1)在△ABC中,依题意有b2+c2=a2+bc,即b2+c2-a2=bc,
所以 cos
2
+2 -2
A=
2
1
2
= ,
π
3
又因为 A∈(0,π),所以 A= .
π
3
(2)由 a= 3,A= ,及正弦定理得
sin
=
所以 b=2sin B=2sin θ,c=2sin C=2sin
1 .2
余弦定理
学 习 目 标
1.掌握余弦定理及其证明.
2.会用余弦定理解决两类解三角形问题.
3.能综合应用正弦定理与余弦定理解决三角形
高中数学必修5第一章:解三角形

外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.
,
A
,
,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.
高二数学必修五 第一章 解三角形

高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ A≈84°.
√ 73· 2√5 2 = . √365
4:已知向量a、b夹角为120°, B
C
120°
且|a| =5,|b|=4,求|a – b| 、 b
|a+b| 及a+b与a的夹角. 解:在AOB中,
O
a
A
∵ |a – b|2 = |a|2+|b| 2 – 2|a||b|cos120° =61, ∴ |a – b|=√61.
证明:由于正弦定理:令 a k sin A, B k sin B, c k sin C
代入左边得:
左边= k (sin A sin B sin A sin C sin B sin C sin B sin A sin C sin A sin C sin B) 0 =右边
4:已知向量a、b夹角为120°, B
C
120°
且|a| =5,|b|=4,求|a – b| 、 b
|a+b| 及a+b与a的夹角. 在OAC中, =21, ∴ a+b =√21. ∵ cos∠COA= a 2+ a+b 2 – b 2
O
a
A
∵ |a + b|2 = |a|2+|b| 2 – 2|a||b|cos60°
三 (、 余 弦已 定 理知 )三 边
(
B=180°-(A+C)≈100°. c sinA ∵sinC= a ≈0.5954, ∴ C ≈ 36°或144°(舍).
)
3:ABC三个顶点坐标为(6,5)、 (-2,8)、(4,1),求A. y 解法一: B ∵ AB =√[6-(-2)]2+(5-8)2 =√73 , BC =√(-2-4)2+(8-1)2 =√85 , A O 2 = √365 C x
≈0.6546,
2 a a+b ∴ ∠COA即a+b与a的夹角约为49°.
一、复习 正弦定理
练习: (1)在 ABC 中,一定成立的等式是( C )
A. a sin A b sin B C . a sin B b sin A B . a cos A b cos B D. a cos B b cos A
正弦定理可以用来解两种类型的三角问题:
(1) 已知两角和任意一边,可以求出其他两边和一 角; (2)已知两边和其中一边的对角,可以求出三角形 的其他的边和角。
二、复习 余弦定理
1.余弦定理是解三角形的又一重要工具 2+c2-a2 b ; c2=a2+b2-2abcosC; cosA= 2bc 2+a2-b2 c ; b2=c2+a2-2cacosB; cosB= 2ca 2+b2-c2 a a2=b2+c2-2bccosA; cosC= . 2ab 2.余弦定理可解以下两种类型的三角形:
A 30
二、已知两边、一边所对的角 (正弦定理)
例题讲解 例3 在
ABC 中,已知
得
a 6, b 6 3, A 30 ,求 C 。
a b 解:由 sin A sin B
sin B
b sin A 3 a 2
60
∵ ∴
在 ABC 中 a b B 为锐角或钝角 B
5.9 正弦定理、余弦定理
解三角形复习(1)
一、复习 正弦定理
正弦定理 相等,即
在一个三角形中,各边和它所对角的正弦的比
a b c 2R sin A sin B sin C
1 S△ABC= 2
absinC
1 S△ABC= 2
acsinB
1 S△ABC= 2
bcsinA
一、复习 正弦定理
一、已知两角、一边(正弦定理)
例题讲解 例1 在 ABC 中,已知 c 10, A 45, C 30 ,求b(保 留两个有效数字). b c 解:∵ 且 B 180 ( A C ) 105 sin B sin C
c sin B 10 sin 105 b 19 sin C si0或120
C 90 或30
0
二、已知两边、一边所对的角 (正弦定理)
练习: 1 在 ABC 中,已知 c 2, a 3, A 60 ,那么_____ A.有一个解 B.有两个解 C.无解 D.不能确定 。
sin C 1
2:在ABC中,已知a=7,b=10, c=6,求A、B和C. 解: ∵ ∴ ∵ ∴ ∴ b2+c2-a2 cosA= =0.725, 2bc A≈44° 2 a +b2-c2 cosC= =0.8071, 2ab C≈36°,
(1)已知三边;
(2)已知两边及夹角.
在三角形中由已知的边与角求出未知 的边与角,称为解三角形. 三个独立的条件确定一个三角形. C C b b b a a (1)已知两角一边; B A A cc A (2)已知两边及其中一边的对角;
(3)已知三边;(余弦定理) (4)已知两边及夹角.(余弦定理)
A、A、S 三角形唯一
二、已知两边、一边所对的角 (正弦定理)
例题讲解 例2 在 ABC 中,已知a 4, b 4 2 , B 45 ,求 A 。 a b a sin B 1 sin A 解:由 得 sin A sin B b 2 ∵ ∴ 在 ABC 中 a b A 为锐角 B C a b A
AC =√
∴ cosA=
(6-4)2+(5-1)2=2
√5 ,
AB 2+ AC 2- BC 2 2 AB AC
,
∴ A≈84°.
3:ABC三个顶点坐标为(6,5)、 (–2,8)、(4,1),求A. 解法二:
y
B A
∵ AB=(–8,3),AC=(–2,–4).
AB· AC ∴ cosA= AB AC = (– 8)×(– 2)+3×(– 4) O C x
(2)在ABC 中,已知 a 2 3, b 6, A 30 , 则 B 等于( D ) A. 30º B. 60º C. 120º D. 60º 或120º
一、复习 正弦定理
练习: (3)在任一 ABC 中,求证: a(sin B sin C ) b(sin C sin A) c(sin A sin B) 0
∴ 等式成立
一、复习 正弦定理
练习:
B 45, C 60, a 2( 3 1) ,求 ABC 中, 在
ABC 的面积S.
解: A 180 ( B C ) 75 A
2 2( 3 1)( h ) a sin B 2 4 ∴由正弦定理得 b sin A 三角形面积公式 B 6 2 C 4 1 1 1 1 ab sin C ac sin B bc sin3A S ABC aha 1 1 2 24 ( ) 6 2 3 S 2 ab sin C 2 2( 3 1) ABC 2 2 2