人教新课标版数学高二-数学必修5第一章《解三角形》知识整合
高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
人教版数学必修5知识点的总结.doc

高中数学 必修 5 知识点第一章 解三角形 (一)解三角形:1、正弦定理:在C 中 , a 、 b 、 c 分 别 为 角、、C 的对边,,则有a bc 2Rsin sinsin C( R 为C 的外接圆的半径 )2、正弦定理的变形公式:①a 2Rsin ,b 2Rsin ,c 2Rsin C ;② sina , sinb ,sin Cc ;③ a : b : c sin :sin :sin C ;2R2R2 R3、三角形面积公式:S1bc sin 1 1ac sin .Cab sin C2224、余弦定理:在2222bc cosb 2c 2 a 2C 中,有 a bc,推论: cos2bc第二章数列1、数列中 a n 与 S n 之间的关系:a nS 1 , (n 1)注意通项能否合并。
S n S n 1,( n2).2、等差数列:⑴定义:如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,即 a - ann 1=d ,(n ≥ 2, n ∈N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a 、 A 、b 成等差数列 A ab2⑶通项公式: a na 1 ( n 1)d a m (n m) d或 a npn q ( p 、q 是常数) .⑷前 n 项和公式:S n na 1 n n 1 dn a 1 a n22⑸常用性质:①若 mnp q m,n, p, q N ,则 a m a na p a q ;②下标为等差数列的项 a k ,a k m , a k 2m,,仍组成等差数列;③数列a nb ( ,b 为常数)仍为等差数列;④若 { a n } 、 { b n } 是等差数列,则 { ka n } 、 { ka n pb n } ( k 、 p 是非零常数 ) 、{ a p nq }( p, q N * )、, 也成等差数列。
⑤单调性: a n 的公差为 d ,则:ⅰ) ⅱ) ⅲ) d 0 a n 为递增数列;d0 a n 为递减数列;da n 为常数列;⑥数列 { a n } 为等差数列a npn q ( p,q 是常数)⑦若等差数列a n的前 n 项和 S ,则 S 、S 2 k S k 、S 3k S 2k 是等差数列。
高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
高中数学必修5第一章解三角形知识点复习及经典练习

高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结1.正弦定理:2sin sin sin a b c R A B C===或变形:::sin :sin :sin a b c A B C =. 推论:①定理:若α、β>0,且α+β<π,则α≤β⇔sin sin αβ≤,等号当且当α=β时成立。
②判断三角解时,可以利用如下原理: s inA > sin B ⇔ A > B ⇔ a > b (在上单调递减)2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或.222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩ﻩ 3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cotA B C A B C A B C +++===cos cos A B A B >⇔<cos y x =(0,)π解三角形[基础训练A 组]一、选择题1.在△A BC中,若0030,6,90===B a C ,则b c -等于( )A.1 B.1- C .32 D.32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sin B.A cos C .A tan D .Atan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或 B.006045或 C.0060120或 D.0015030或6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120 C.0135 D .0150二、填空题1.在Rt △A BC 中,090C =,则B A sin sin 的最大值是_______________。
最新人教版高中数学必修5第一章《解三角形》本章小结

知识建构一、知识网络二、基本知识、方法归纳整理1.解三角形常见类型及解法已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能出现一解、两解、无解的情况,这时应结合“三角形中大边对大角”及几何图形帮助理解,此时一般用正弦定理,但也可用余弦定理.(1)利用正弦定理讨论:若已知a 、b 、A,由正弦定理A a sin =B b sin ,得sinB=aA b sin . 若sinB>1,无解;若sinB=1,一解;若sinB<1,两解.(2)利用余弦定理讨论:已知a 、b 、A,由余弦定理a 2=c 2+b 2-2cbcosA,即c 2-(2bcosA)c+b 2-a 2=0,这是关于c 的一元二次方程.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个同正数解,则三角形有两解.3.三角形形状的判定方法判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理,化边为角(如:a=2RsinA,a 2+b 2-c 2=2abcosC 等),利用三角变换得出三角形内角之间的关系进行判断.此时注意一些常见的三角等式所体现的内角关系.如sinA=sinB ⇔A=B;sin(A-B)=0⇔A=B;sin2A=sin2B ⇔A=B 或A+B=2π,等等;二是利用正弦定理、余弦定理,化角为边,如:sinA=R a 2,cosA=bca cb 2222-+等,通过代数恒等变换,求出三条边之间的关系进行判断.4.解斜三角形应用题的步骤(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语.(2)根据题意画出图形.(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正、余弦定理有关知识建立数学模型,然后求解.实践探究1.就三角形的面积计算问题作一探索,你现在已经学习了哪些计算公式,还可发现和证明一些新的计算公式吗?解:已学过的三角形面积公式有(1)已知一边和边上的高:S=21ah a ,S=21bh b ,S=21ch c . (2)已知两边及其夹角:S=21absinC,S=21bcsinA,S=21casinB. 还可以得到如下面积公式:(p=a+b+c)(3)S △ABC =r·p=R·r(sinA+sinB+sinC).(4)S △ABC =))()((c p b p a p p ---. (5)S △ABC =Rabc 4. (6)S △ABC =)sin(2sin sin 2C B C B a +∙∙=)sin(2sin sin 2C A C A b +∙=)sin(2sin sin 2B A B A c +∙. 证明:(3)如图所示.S △ABC =S △OAB+S △OBC+S △OAC =21c·OE+21a·OF+21b·OD =21cr+21ar+21br =21r(a+b+c) =rp.由正弦定理,得a=2RsinA,b=2RsinB,c=2RsinC,∴S △ABC =21r(a+b+c)=21r(2RsinA+2RsinB+2RsinC)=R·r(sinA+sinB+sinC). (4)由余弦定理知cosC=abc b a 2222-+,∴S △ABC =21ab·sinC=21ab·C 2cos 1- =21ab·2222)2(1abc b a -+- =4122222)()2(c b a ab -+- =41])([(])[(2222b a c c b a --∙-+ =2222c b a c b a c b a c b a ++-∙+-∙-+∙++ =))()((a p b p c p p --- =))()((c p b p a p p ---.(5)由正弦定理知A a sin =B b sin =Cc sin =2R, ∴S △ABC =21absinC=21ab·R c 2=Rabc 4. (6)由正弦定理知A a sin =B b sin =Cc sin =2R, ∴S △ABC =21absinC=21·a·2R·sinB·sinC =21·a·A a sin ·sinB·sinC=A C B a sin 2sin sin 2∙=)sin(2sin sin 2C B C B a +∙∙. 同理,S △ABC =)sin(2sin sin 2C A C A b +∙=)sin(2sin sin 2B A B A c +∙. 2.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 的对边,其外接圆半径为1,且(sinB+sinC+sinA)(sinB+sinC-sinA)=3sinBsinC,b 、c 是方程x 2-3x+4cosA=0的两根(b>c).(1)求角A 的度数及a 、b 、c 的值;(2)判定△ABC 的形状,并求其内切圆的半径.解:(1)由韦达定理b+c=3,b·c=4cosA,由正弦定理b=2RsinB=2sinB,c=2sinC.∴2(sinB+sinC)=3,sinB·sinC=cosA.∵(sinB+sinC+sinA )(sinB+sinC-sinA)=3sinBsinC,利用平方差公式展开为(sinB+sinC )2-sin 2A=3sinBsinC,把sinB +sinC =23,sinB·sinC=cosA 代入上式可得49-sin 2A=3cosA.整理得4cos 2A-12cosA+5=0,即(2cosA-5)(2cosA-1)=0,∴cosA=21,cosA=25(舍去).∴∠A=60°.∴⎩⎨⎧=∙=+.2,3c b c b∵b>c,∴b=2,c=1.由余弦定理a 2=b 2+c 2-2bccosA=22+12-2×2×1×21=3,∴a=3.(2)∵b 2=a 2+c 2(由勾股定理).∴△ABC 是直角三角形.如图所示,设内切圆半径是r,则∠OAB=30°,在△OAD 中,AD=rcot30°=3r,∴3r+r=1.∴内切圆半径r=213-.3.在△ABC 中,设=a,=b,=c.(1)当△ABC 为正三角形时,求证:a·b=b·c=c·a;(2)若a·b=b·c=c·a,问△ABC 是否是正三角形?(1)证明:不妨设|BC |=|CA |=||=1,则·=||||cos60°=21,同理可得·=21,·=21,∴b·(-a)=(-b)·c=(-c)·a.∴a·b=b·c=c·a.(2)解:若a·b=b·c=c·a,则·=·=·, ∴·=·=·,即|a||b|cosC=|b||c|cosA=|a||c|cosB,各除以|a||b||c|,得||cos c C =||cos a A =||cos b B,①由正弦定理可得C c sin ||=A a sin ||=Bb sin ||, ② 由①②得C tan 1=A tan 1=B tan 1. ∵A 、B 、C ∈(0,π),∴A=B=C,即△ABC 为正三角形.4.如图所示,有两条相交成60°角的直线xx′、yy′,交点是O,甲、乙分别在Ox 、Oy 上,起初甲离O 点3 km,乙离O 点1 km,后来两人同时以每小时4 km 的速度,甲沿xx′方向,乙沿y′y 方向步行(设甲、乙初始位置分别为A 、B).(1)甲、乙两人之间的初始距离是多少?(2)什么时间两人的距离最短?解:(1)△AOB 中,OA=3,OB=1,∠AOB=60°.∴AB 2=OA 2+OB 2-2×OA×OB×cos60°=7.∴AB=7,即甲、乙两人最初相距7 km.(2)设t 小时后甲由A 到P,乙由B 到Q.①当3-4t≥0,即t≤34时,则△POQ 中,OQ=1+4t,OP=3-4t,∠POQ=60°, ∴PQ 2=(1+4t)2+(3-4t)2-2×(1+4t)×(3-4t)×cos60°. ②当3-4t<0,即t>34时,△POQ 中,OQ=1+4t,OP=4t-3,∠POQ=120°. ∴PQ 2=(1+4t)2+(4t-3)2-2×(1+4t)×(4t-3)×cos120°.综合①②知,当t≥0时,PQ 2=(4t+1)2+(4t-3)2+2×(4t+1)(4t-3)×21=(4t+1)2+(4t-3)2+(4t+1)(4t-3)=48t 2-24t+7=48(t-41)2+4. ∴当t=41时,PQ min =2, 即41小时后,甲、乙两人的距离最短.。
(完整版)高中数学必修五解三角形知识点归纳,推荐文档

的距离 ; 代数意义: | a | 0 a 0
a a0
2、 如果 a 0, 则不等式:
(1)
|x| a |x| a (3) | x | a
x a 或x a ;(2)
x a 或x a
axa
;
(4) | x | a
axa
注意 : 上式中的 x 可换成 f(x)
3、解含有绝对值不等式的主要方法:解含绝对
注意:
使用均值不等式的条件:一正、二定、三相等
3、平均不等式:( a、b 为正数),即
a2 b2 2
ab 2
2 ab
1 1 (当 a = b 时取等)
ab
4、常用的基本不等式:
① a2
b2
2ab a, b
R ;② ab
a2 b2 a,b R
2
; ③ ab .
2
ab
2
a
0,b
0 ;④ a2 b2
2
ab a, b R
d n2 2
(a1
d )n 2
(2) 找到通项的正负分界线
s a1 0
若 d 0 则 n 有最大值,当 n=k 时取到的
最大值 k 满足
ak 0 ak 1 0
a1 0 d0
若
则sn 有最大值,当 n=k 时取到的最
大
值 k 满足
ak 0 ak 1 0
等比数列
一.定义、如果一个数列从第 2 项起,每一项与
a f ( x ) a g( x ) (0 a 1) f ( x ) g( x )
③对数不等式:
log a f ( x ) log a g( x )( a 1)
f (x) 0
g( x) 0
人教版数学必修五解三角形知识点

人教版数学必修五解三角形知识点
人教版数学必修五中,关于三角形的知识点主要包括以下内容:
1. 三角形的基本概念:三角形是由三条线段组成的图形,其中包括三个顶点、三条边和三个内角。
2. 三角形的分类:根据三条边的长短,可以将三角形分为等边三角形、等腰三角形和普通三角形。
根据三个角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形。
3. 三角形的性质:三角形中,任意两边之和大于第三边;任意两角之和小于180度;任意两边之差小于第三边。
此外,三角形的内角和为180度。
4. 三角形的重要定理:包括三角形的角平分线定理、三角形的中线定理、三角形的高线定理、三角形的垂心定理等。
5. 三角形的相似性质:如果两个三角形的对应角相等,那么这两个三角形是相似的。
相似三角形的边比例相等,相似三角形的面积比等于边比例的平方。
6. 三角形的三边关系:根据三角函数的定义,可以得到三角形中的正弦定理、余弦定理和正切定理。
通过这些定理,可以解决与三角形边长和角度相关的问题。
7. 应用题:根据已知条件解决实际问题,如三角形的面积计算、角度测量、边长计算等。
以上是人教版数学必修五中关于三角形的主要知识点。
希望对你有所帮助!。
必修五 第一章 解三角形知识与方法

高中数学 知识与方法必修五 第一章 解三角形(一)ABC ∆中,三内角为,,A B C ,它们所对的边分别为,,a b c ,三角形的边角关系有:1、角:A B C π++=()()()sin sin ,cos cos ,tan tan A B C A B C A B C +=+=-+=- , , ,…… 1sin cos ,cos sin ,tan 22222tan 2A B C A B C A B C +++=== ,…… tan tan tan tan tan tan A B C A B C ++=⋅⋅2、边:三角形两边之和大于第三边,两边之差小于第三边,即 b c a b c -<<+。
定理一般这样运用:三角形较短两边之和大于最长边⇔最长边与最短边之差小于中间边。
3、边角:(1)正弦定理:2sin sin sin a b c R A B C===, 正弦定理的变形:① 2sin a R A =,2sin b R B =,2sin c R C =(化边为角)②sin 2a A R =,sin 2b B R=,sin 2c C R =(化角为边) ③ 2sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a b ma nb a b c R A B C A B A B m A n B A B C +--++==========+--++ (其中分母都不为0);④::sin :sin :sin a b c A B C =⑤sin sin a b A B A B >⇔>⇔>利用正弦定理,可以解决以下两类问题:①已知两角和任一边,解三角形;②已知两边和其中一边的对角,解三角形。
注意:已知,,a b A ,当A 为锐角时,三角形的解可能不确定:若sin a b A <,三角形无解;若sin a b A =或a b ≥,三角形有一解;若sin b A a b <<,三角形有两解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学·必修5(人教A版)一、本章的中心内容是如何解三角形.正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章的学习应当达到以下学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际生活问题.3.本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论.在初中,学生已经学习了相关边角关系的定性知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全等”.“在任意三角形中有大边对大角,小边对小角”的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形”.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.4.在此内容之前我们已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,用了向量的方法,发挥了向量方法在解决问题中的威力.5.勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.二、学数学的最终目的是应用数学.能把实际问题抽象成数学问题,把所学的数学知识应用到实际问题中去,通过观察、分析、归纳、类比、抽象、概括、猜想等发现问题,确定解决问题的科学思维方法,学会把数学知识应用于实际.1.正弦定理可建立边角关系,角的正弦越大所对的边就越长.2.由正弦值得出角的大小时特别要注意是一个解还是两个解.一般地,解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.3.利用正弦定理,可以解决以下两类有关三角形的问题.(1)已知两角和任一边,求其他两边和一角.(2)已知两边和其中一边的对角,求另一边的对角.4.把a=k sin A,b=k sin B代入已知等式可将边角关系全部转化为三角函数关系.5.余弦定理是三角形边角之间的共同规律,勾股定理是余弦定理的特例.6.余弦定理的应用范围是:①已知三边,求三角;②已知两边及一个内角,求第三边.7.已知两边及其中一边所对的角用余弦定理时可能有两个解,注意用三边特点取舍.解决实际测量问题一般要充分理解题意,正确作出图形,从中抽象出一个或几个三角形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,然后解三角形,得到实际问题的解.8.解斜三角形应用题的一般步骤.(1)分析:理解题意,分清已知与未知,画出示意图.(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型.(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解.(4)检验:检验上述所求的解是否有实际意义,从而得出实际问题的解.9.平面上两点的距离测量问题一般有如下几类情况:(1)A、B两点都在河的两岸,一点可到达,另一点不可到达.方法是可到达一侧再找一点进行测量.(2)A、B两点都在河的对岸(不可到达).方法是在可到达一侧找两点进行测量.(3)A、B两点不可到达(如隔着一座山或建筑).方法是找一点可同时到达A、B两点进行测量.10.利用正弦定理和余弦定理来解高度问题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.11.测量高度的一般方法是选择能观察到测量物体的两点,分别测量仰角或俯角,同时测量出两个观测点的距离,再利用解三角形的方法进行计算.12.求三角形的面积的问题,先观察已知什么,尚缺什么,用正弦定理、余弦定理求出需要的元素,就可以求出三角形的面积.13.利用正弦定理、余弦定理、面积公式将已知条件转化为方程组是解决复杂问题的常见思路,将方程化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系.14.许多试题既可用正弦定理也可用余弦定理解决,甚至可以两者兼用,当一个公式求解受阻时要及时考虑其他公式列式.15.本章问题的高考要求不高,学习时要立足基本问题,熟练掌握测量的一般技巧,正确使用定理列方程求解,无须过多延伸与拓广.题型1 利用正、余弦定理解三角形解三角形就是已知三角形中的三个独立元素(至少一条边)求出其他元素的过程,三角形中的元素有基本元素(边和角)和非基本元素(中线、高、角平分线、外接圆半径和内切圆半径),解三角形通常是指求未知的元素,有时也求三角形的面积.解斜三角形包括四种类型:(1)已知三角形的两角和一边(一般先用内角和求角或用正弦定理求边);(2)已知两边及夹角(一般先用余弦定理求第三边);(3)已知三边(先用余弦定理求角);(4)已知两边和一边的对角(先用正弦定理求另一边的对角或先用余弦定理求第三边,注意讨论解的个数).在△ABC 中,c =4,b =7,BC 边上的中线AD 长为72,求a .解析:如图,设CD =DB =x ,在△ACD 中,cos C =72+x 2-⎝ ⎛⎭⎪⎫7222×7×x ,在△ACB 中,cos C =72+(2x )2-422×7×2x, 所以72+x 2-⎝ ⎛⎭⎪⎫7222×7×x =72+(2x )2-422×7×2x. 解得x =92. 所以a =2x =2×92=9.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于________.解析:由余弦定理得BD 2=22+22-2×2×2cos 120°=12,∴BD =2 3.∵BC =CD =2,C =120°,∴∠CBD =30°,∴∠ABD =90°,∴S 四边形ABCD =S △ABD +S △BCD=12×4×23sin 90°+12×2×2×sin 120°=5 3. 答案:5 3题型2 利用正、余弦定理判定三角形的形状判定三角形形状通常有两种途径:一是通过正弦定理和余弦定理化边为角,如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等,再利用三角变换得出三角形内角之间的关系进行判断,此时注意一些常见的三角等式所体现的内角关系,如sin A =sin B ⇔A =B ,sin(A -B )=0⇔A =B ,sin 2A =sin 2B ⇔A =B 或A +B =π2等;二是利用正弦定理、余弦定理化角为边,如sin A =a 2R ,cos A =b 2+c 2-a 22bc等,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解析:解法一:由正弦定理可得2sin B =sin A +sin C ,∵B =60°,∴A +C =120°,A =120°-C ,将其代入上式,得2sin 60°=sin(120°-C )+sin C ,展开整理,得32sin C +12cos C =1,∴sin(C +30°)=1,∴C +30°=90°.∴C =60°,故A =60°,∴△ABC 是正三角形.解法二:由余弦定理可得b 2=a 2+c 2-2ac cos B ,∵B =60°,b =a +c 2, ∴⎝ ⎛⎭⎪⎪⎫a +c 22=a 2+c 2-2ac cos 60°. ∴(a -c )2=0,∴a =c ,∴a =b =c ,∴△ABC 为正三角形.题型3 三角形解的个数的确定(1)利用正弦定理讨论:若已知a ,b ,A ,由正弦定理a sin A =b sin B,得sin B =b sin A a .若sin B >1,则无解;若sin B =1,则有一解;若sin B <1,则可能有两解.(2)利用余弦定理讨论:已知a ,b ,A ,由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形有一解;若方程有两个不同正数解,则三角形有两解.在△ABC 中,若a =23,A =30°,则b 为何值时,三角形有一解,两解,无解?解析:由正弦定理a sin A =b sin B得: ①当b sin A <a <b 时,有两解,此时23<b <43;②当a ≥b 时或B 为90°(b 为斜边)时,有一解,此时b ≤23或b =43;③当a <b sin A 时无解,此时b >4 3.题型4 正、余弦定理在实际问题中的应用如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.解析:如下图,作DM ∥AC 交BE 于N ,交CF 于M ,高中数学-打印版精校版DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130, EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理得:cos ∠DEF =DE 2+EF 2-DF 22DE ×EF =1302+1502-102×2982×130×150=1665.。