高中数学解三角形 副本PPT课件

合集下载

高中数学解三角形PPT课件

高中数学解三角形PPT课件
6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水 平线上 方的角叫仰角,视线在水平线下方的角叫俯角.如图中OD、 OE是视线,是仰角, 是俯角.
22
7.关于三角形面积问题
23
用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方 向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测 角仪的高度是b,求气球的高度.
6
7
考点2: 三角形中的三角变换
8
9
10
考点3 与三角形的面积相关的题
11
题型2:已知面积求线段长或角
12
13
2020/1/15
14
C
15
16
17
18
19
20
解三角形应用举例
1.已知两角和一边(如A、B、C),由A+B+C = π求C,由正弦定理 求a、b
2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定 理先求较短边所对的角,然后利用A+B+C = π,求另一角.
3.已知两边和其中一边的对角(如a、b、A),应用正弦定理 求B,由A+B+C = π求C,再由正弦定理或余弦定理求c边,要 注意解可能有多种情况.
4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C = π, 求角C.
21
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作 为起始方向旋转到目 标的方向线所成的角(一般指锐角),通常表达成.正北或正南, 北偏东××度, 北偏西××度,南偏东××度,南偏西××度.
第四章 解三角形
正弦定理和余弦定理 内角和定理:
1
面积公式: 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.

2024高中数学解三角形ppt课件

2024高中数学解三角形ppt课件

目录•三角形基本概念与性质•正弦定理及其应用•余弦定理及其应用•三角形面积公式及其应用•解三角形综合应用举例三角形基本概念与性质三角形的分类按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。

三角形的定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形的定义与分类三角形内角和定理01三角形内角和定理三角形的三个内角之和等于180°。

02证明方法通过平行线的性质或者撕拼法等方法进行证明。

三角形外角性质三角形外角的定义三角形的一个外角等于与它不相邻的两个内角的和。

三角形外角的性质三角形的外角大于任何一个与它不相邻的内角。

三角形边与角关系01正弦定理在任意三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

02余弦定理在任意三角形中,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

03三角形的面积公式S=1/2absinC,其中a、b为两边长,C为两边夹角。

正弦定理及其应用正弦定理的推导与证明推导过程通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。

证明方法利用三角形的面积公式和正弦函数的性质,证明正弦定理的正确性。

利用正弦定理求解三角形已知两边及夹角求第三边通过正弦定理计算出已知两边夹角对应的第三边的长度。

已知两角及夹边求其他元素利用正弦定理和三角形内角和定理,求出三角形的其他元素。

解决三角形中的角度问题通过正弦定理计算出三角形中的未知角度。

解决三角形中的边长问题利用正弦定理求出三角形中的未知边长。

解决力学问题在力学中,正弦定理可用于解决涉及三角形的问题,如力的合成与分解等。

解决光学问题在光学中,正弦定理可用于解决涉及光的反射和折射等问题。

余弦定理及其应用余弦定理的推导与证明向量法推导余弦定理通过向量的数量积和模长关系,推导余弦定理的表达式。

几何法证明余弦定理利用三角形的面积公式和正弦定理,结合相似三角形的性质,证明余弦定理。

解三角形PPT教学课件

解三角形PPT教学课件

y
D
C
y′ C′
D′
A
Bx
A′
B′ x′
29
例1.用斜二测画法画水平放置的六边形的 直观图。
1 在六边形ABCDEF中,取AD所在的直线为X轴,
对称轴MN所在直线为Y轴,两轴交于点O。画相应
的X轴和Y轴,两轴相交于点O,使xOy=45
y
y
F ME
A
O Dx
O
x
B NC
30
例1用斜二测画法画水平放置的六边形的直观图
AP B
41
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
A
D
A
C
B
C
B
42
练习:怎样画底面是正三角形,且顶点 在底面上的投影是底面中心的三棱锥?
C
A
B
zS
y C
M
A
o B xA
S C B
画轴 → 画底面 → 画侧棱 → 成图
43
变式训练
在ABC中,角A、B、C的对边分别为a,b,c,tan C 3 7 (1)求cos C (2)若CA • CB 5,且a b 9,求c
2
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
本题启示:由正弦定理、余弦定理进行边角转化 一般的,如果遇到的式子含角的余弦或是边的二次式,要
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
解答
例 在ABC中,a2 (b b c),求A与B满足的关系
解:由已知a2 (b b c) a2 b2 bc,移项得:b2 a2 bc

高中数学必修五第一章解三角形课件PPT (2)

高中数学必修五第一章解三角形课件PPT (2)

sin ,B 所以sinAb cossinBB=cosAsinB,
sin A cos A sin(A-sBin)B=0,coAs B=B.同理B=C.
所以△ABC是等边三角形.故选B.
1.1.2 余弦定理
自主学习 新知突破
1.了解向量法推导余弦定理的过程. 2.能利用余弦定理求三角形中的边角问题. 3.能利用正、余弦定理解决综合问题.
b2 4R 2
c2 4R 2
.
所以△ABC是等腰直角三角形.
【规律总结】判断三角形形状的常用方法 判断三角形形状的常用方法是化边为角或化角为边.分以下两 步: 第一步,将题目中的条件,利用正弦定理化边为角或化角为边, 第二步,根据三角函数的有关知识得到三个内角的关系或三边 的关系,进而确定三角形的形状.
公式推论
b2+c2-a2
cos A=______2_bc__________,
a2+c2-b2 2ac
cos B= ____a2_+_b_2-__c_2 _______ ,
2ab
cos C= _________________.
_____ a≤b 无解
【探究总结】正弦定理的三个应用技巧
(1)求边:
a
bsin
A,b
asin
B,c
asin
C,
类似地,还可以
写出求a,b,csi的n B其他几个si公n A式. sin A
(2)求角:先求出正弦值,再求角,即
等类似的公s式in .A
asin b
B,
s(i3n)B相同bs的in 元A,素s归in 到C 等c号sin的A一边:
C.等边三角形
D.等腰三角形或直角三角形
2.在△ABC中,已知bsinB=csinC,且sin2A=sin2B+sin2C,试判

解三角形课件PPT高中数学必修-五

解三角形课件PPT高中数学必修-五

实际应用问题中有关的名称、术语
1.仰角、俯角、视角。
(1)当视线在水平线上方时,视线与水平线所成角叫 仰角。
(2)当视线在水平线下方时,视线与水平线所成角叫 俯角。
(3)由一点出发的两条视线所夹的角叫视角。(一般 这两条视线过被观察物的两端点)
视线
仰角 俯角
视线
水平线
2.方向角、方位角。
(1)方向角:指北或指南方向线与目标方向线所成 的小于90°的水平角叫方向角。
正弦定理
由A+B+C=180˚,求出另一角,再 用正弦定理求出两边。
两边和夹角 (SAS)
三边(SSS)
用余弦定理求第三边,再用余弦
余弦定理 定理求出一角,再由
A+B+C=180˚得出第三角。
余弦定理
用余弦定理求出两角,再由 A+B+C=180˚得出第三角。
两边和其中一 边的对角(SSA)
正弦定理
用正弦定理求出另一对角,再由 A+B+C=180˚,得出第三角,然 后用正弦定理求出第三边。
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西

点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。

坡面距离
余弦定理:
a2 b2 c2 2bc cos A
cos A b2 c2 a2 , 2bc
b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC

人教版高中数学必修五第一章解三角形课件PPT

人教版高中数学必修五第一章解三角形课件PPT

探究1:如图,设
那么向量c的平方是
AB c,AC b,BC a,
什么?表示为对应的边可以得到什么式子?
提示:c=b-a,|c|2=(b-a)·(b-a)=b·b+a·a-2a·b =a2+b2-2abcosC,所以c2=a2+b2-2abcosC.
探究2:利用探究1的结论思考下面的问题: (1)已知三角形的三边a,b,c,如何表示cosC.
注意:(1)正弦定理指出了任意三角形中三条边与对应角
的正弦之间的一个关系式.由正弦函数在区间上的 单调性可知,正弦定理非常好地描述了任意三角形 中边与角的一种数量关系.
2 a b c 等价于
sin A sin B sin C a b , b c ,a c . sin A sin B sin B sin C sin A sin C
180°-(40°+ 64°)= 76°,
c
=
asinC sinA
=
20sin76° sin40°
30(cm).
注意精确度
(2)当B 时,C=180 (A+B)
180 (40 116)=24,
c=
a sin C sin A
=
20sin 24 sin 40
1(3 cm).
【变式练习】
在△ABC中,b= 3 ,B=60°,c=1,则此三角形有
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B

解三角形课件.ppt.ppt

第十讲 解三角形
△ABC中:
(1)A+B+C=
(2)A B C C
2
2 22
(3)A B a b sin A sin B
C
b
a
B
A
c
正弦定理:
a b c 2R sin A sin B sin C
a 2R sin A b 2R sin B
c 2R sin C
cos AcosC sin Asin C cos B 1 2sin2 B cos AcosC sin AsinC cos B 1 2sin AsinC
cos AcosC sin AsinC cos B 1
cos(A C) cos B 1 1
例9、如果△ABC内接于半径为的圆,且 2R(sin 2 A sin 2 C) ( 2a b) sin B, 求△ABC的面积的最大值。

AB ,
2
即 A B0
2
2
∴ sin A sin( B)即 sin A cos B
2
同理 sin B cosC ,sin C cos A
∴ sin A sin B sin C cosA cosB cosC
例2、在△ ABC中,若b 2a sin B
则 A 等于( )

∴ AC BC
2( 6 2)(sin A sin B) 4( 6 2)sin A B cos A B
2
2
AB
B
4cos 2 4, (AC BC)max 4
C
A
例4、在△ABC中,若 a cos A bcosB c cosC,
则△ABC的形状是什么?
解: acos A bcos B ccosC,sin Acos A sin Bcos B sinC cosC

解三角形PPT优秀课件1


b2 A
c2
a2
可得
2bc
(1)若a²=b²+c²,则A为直角;
(2)若a²<b²+c²,则A为锐角;
(3)若a²>b²+c², 则A为钝角;
6、三角形面积:
S 1底 h 2
S 1absinC1acsinB1bcsinA
2
2
2
S
1、 A B C 中 , A 4 5 , C 3 0 , c 1 0 , 求 B , a , b . 解: B 1 8 0 A C 105
a
b
c
s i n A 2 R,s i n B 2 R,s i n C 2 R ,
a:b:c sinA: sinB:sinC.
正弦定理可解以下两种类型的三角形:
(1)已知两角一边; (2)已知两边及其中一边的对角.
4、余弦定理:
a2=b2+c2-2bccosA b2= c2+a2-2cacosB
解:由 a b ,
sin A sin B
得 sin B b s in A 6 3 sin 30 3
a
6
2
B = 60或120,
a
∵ 在 ABC中,ab
C b
∴ ∠A < ∠B
A
B
B
B = 60或 120都 成 立 ,
当 B = 6 0时 C 9 0, 当 B = 1 2 0时 C 3 0。
cos A= 1 ,
2
∴∠B 2 3 sin 45 3
b
22
2
A=60或 120,ca,0 A90,
∴∠A=60°.

解三角形PPT精品课件


sin PAB 6 122 16
答:AB方向的方位角的正弦值为 6 122 。 16
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解 三角形问题; 3、解三角形的实际应用问题
平衡膳食与膳食指南
一、膳食结构的类型与特点
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
解答
例 在ABC中,a2 (b b c),求A与B满足的关系
解:由已知a2 (b b c) a2 b2 bc,移项得:b2 a2 bc
由余弦定理:a2 b2 c2 2bccosA,移项:2bccosA=b2 a2 c2
B A B或B (A B) (舍去)
即A与B满足的关系为A 2B
本题启示
典型例题
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
且 tan A tan B 3 tan A • tan B 3,又ABC的面积为
SABC
3 3 ,求a 2
b的值
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
1 2
ab sin C
3 3 ,ab 2
6
由余弦定理得:c2 a2 b2 2ab cos C
c2 (a b)2 2ab 2ab cos C 代入计算得:a b 11
2
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
求解三角形应用题的一般步骤:
1、分析题意,弄清已知和所求; 2、根据提意,画出示意图; 3、将实际问题转化为数学问题,写出已知所求; 4、正确运用正、余弦定理。

《高二数学解三角形》课件

方向测量
在地理测量中,利用解三角形的方法可以精确地测量方向。例如,使用 罗盘和三角函数可以确定一个物体的方向。
03
卫星轨道确定
在卫星轨道确定中,解三角形也是非常重要的工具。通过解三角形,可
以精确地计算卫星的位置和速度。
几何图形中的应用
三角形面积计算
解三角形的一个重要应用是计算三角 形的面积。通过解三角形,可以找到 三角形的底和高,然后使用公式计算 面积。
代数方法解题主要依赖于三角形的边和角的关系,通过代数 运算来求解三角形。
代数方法解题通常需要利用三角形的边和角的关系,如余弦 定理、正弦定理等,通过代数运算来求解三角形的角度、边 长等参数。这种方法适用于已知条件较为复杂,需要精细计 算的情况。
几何方法解题
几何方法解题主要依赖于几何图形的性质和定理,通过构造辅助线、图形变换等 方式来求解三角形。
正弦定理
总结词
利用正弦定理求解三角形的边长或角度。
详细描述
正弦定理是解三角形的重要工具,它建立了三角形边长和对应角正弦值之间的关 系。通过已知的边长和角度,我们可以使用正弦定理求解其他边长或角度。
余弦定理
总理是另一种求解三角形的方法,它建立了三角形边长的平方和与角度余弦值之间 的关系。通过已知的边长和角度余弦值,我们可以使用余弦定理求解其他边长或角度。
解三角形的重要性
总结词
解三角形在数学、物理、工程等领域具有广泛的应用价值。
详细描述
解三角形在数学中扮演着重要的角色,它不仅是解决几何问题的基础,也是解决物理、工程等领域问题的重要工 具。例如,在物理学中,解三角形可以用于解决力学、光学、电磁学等方面的问题;在工程学中,解三角形可以 用于解决建筑、机械、航空航天等方面的问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

法2:
那么现在问题来了:对于解三 角形问题,正弦余弦哪家强?
真相永远只有一个: 你最强!
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
17
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C = π, 求角C.
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作 为起始方向旋转到目 标的方向线所成的角(一般指锐角),通常表达成.正北或正南, 北偏东××度, 北偏西××度,南偏东××度,南偏西××度.
6.俯角和仰角的概念:在视线与水平线所成的角中,视线在水 平线上 方的角叫仰角,视线在水平线下方的角叫俯角.如图中OD、 OE是视线,是仰角, 是俯角.
在 A中 BCa , 1 , b7 , B 3, 求 c.
法1: 余弦定理:
coBsa2
c2 b2 2ac
12c12c71 2
解得 c : 3或-( 2 舍)
法2:: 正弦定理:
1 7 c 2 21 s21 2 7
由a 于 b,则 AB ,所A 为 以锐角。
解三角形应用举例
1.已知两角和一边(如A、B、C),由A+B+C = π求C,由正弦定理 求a、b
2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定 理先求较短边所对的角,然后利用A+B+C = π,求另一角.
3.已知两边和其中一边的对角(如a、b、A),应用正弦定理 求B,由A+B+C = π求C,再由正弦定理或余弦定理求c边,要 注意解可能有多种情况.
则 co sA 5, siC n si( n2-A )3coA s1siA n
27
3
2
2
sinC 3 5 1 3 3 3 2 27 2 27 27
csinC2 213 3
已知两边和其中一对角,.求另一 边的对角时,要注意分类讨论
在 AB 中 CA , ,B的对a,边 b,是 A 且 30 , a22, b4,那么满 A足 B 有 C 条 几件 解的 ?
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
为什么三角形会出现有几个解 的问题?
sin si ( n- )
法1:
由正弦定理, a s in
A
b sin B
22 1
2
4
2
sin B 4 2 , B 45( 对应 C 105 ) 42 2
或者 B 135 (对应 C 15 ), ; 满足 a b, A B
所以ABC有两个解。
正弦定理:
a b c 2R sin A sin B siC n
余弦定理:
coAs
b2
c2 a2 2bc
cosB
a2
c2 b2 2ac
coCsa2
b2 c2 2ab
面积公式:
SABC 12absiCn 12bcsiAn 12acsiBn
内角和定理:
三角形ABC中:
ABC siAn(B)sin(C)siCn coAs(B)cos(C)coCs
相关文档
最新文档