数学八上作业本答案。
八年级上册数学作业本答案-2019年学习文档

八年级上册数学作业本答案八年级上作业本同步练答案(人教版)跟别人要答案的学生,不是好学生哦,做个好学生吧!独立完成作业,然后再来对照答案,祝你学习进步。
下面是小编整理的八年级上册数学作业本答案,供大家参考。
八年级上数学作业本[人教版]答案,浙教版也可以用,参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180° 7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵ AB∥CD, ∴ α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)× (2)× 3.(1)DAB(2)BCD4.∵ ∠1=∠2=100°, ∴ m∥n(内错角相等,两直线平行).∴ ∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴ ∠PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP, ∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.15cm4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF, ∴ ∠AEB=∠CFD.∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM ⊥l5.如图,答案不唯一,图中点C1,C2,C3均可2于M,BN ⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=15cm7.AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1 ∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题) ∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS). ∴ BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不正确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△EFC都是等腰三角形.理由如下:1.C2.45°,45°,63.5∵ △ADE和△FDE重合, ∴ ∠ADE=∠FDE.4.∵ ∠B+∠C=90°, ∴ △ABC是直角三角形∵ DE∥BC, ∴ ∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴ ∠B=∠DFB. ∴ DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴ DE=DF.∠ECD=45°, ∴ ∠EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20°和100° (2)把60°分成20°和40°∴ ∠EDF=90°,即DE⊥DF【2.4】【2.5(2)】1.(1)3(2)51.D2.33° 3.∠A=65°,∠B=25° 4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵△ABC是等边三角形,∴ ∠A=∠B=∠C=60°.∵ DE∥BC,∴ ∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP, ∴ ∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴ ∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC)·BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由 ∠ABE+ ∠FCB= ∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°. ∴ ∠DFE=60°.同理可S梯形BCC′D′=S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴ △DEF是等边三角形由1(a+b)2=ab+17.解答不唯一,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.∠BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD=槡32. ∴ BD2+CD2=BC2,∴ ∠BDC=90°. ∴ ∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不唯一)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴ ∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL). ∴ ∠CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴ OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴ ∠B=∠D,从而∠D+∠C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵ AD=AE, ∴ ∠ADE=∠AED, ∴ ∠ADB=∠AEC.【3.2】又∵ BD=EC,∴ △ABD≌△ACE. ∴ AB=AC1.C11.482.直四棱柱3.6,712.B13.连结BC.∵ AB=AC, ∴ ∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵ ∠ABD=∠ACD,∴ ∠DBC=∠DCB. ∴ BD=CD6.表面展开图如图.它的侧面积是14.25(π15+2+2.5)×3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴ ∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12×15×2×2=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.3】(第6题)1.②,③,④,① 2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.蓝,黄从上面看圆圆和圆心圆4.B5.示意图如图6.示意图如图11.如图(第11题)(第7题)第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.15×3×05×3×4=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后进行调查,调查的问题可以是平均每天上网的时间、内容等【4.2】1.22.2,不正确,因为样本容量太小3.C4.120千瓦·时5.8625题(第5题)(第6题)6.小王得分70×5+50×3+80×210=66(分).同理,小孙得745分,小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分最高复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm12(平方环).八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是1615cm,162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不唯一.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分),S2乙=女生,直至挑选到40人为止256(平方分).S2甲<S2乙,甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为96年,众数为8年,中位数为85年;乙:平均数为9480分的,甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这一角度看,乙组成绩更好(2)甲公司运用了众数,乙公司运用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2).(3)此题答案不唯一,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、【4.4】舒服1.C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,8,7,1.0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差距大,乙组成员成绩差距较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选取的样本具有代表性7.(1)3.平均数为144岁,中位数和众数都是14岁4.槡2平均数中位数众数标准差5.286.D7.A8.A9.10,32004年(万元)5126268.310.不正确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)65303011.3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度进行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提高,但差距拉大(2)甲应加强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是75,乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)18千克(2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥ 2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x≥ 槡-24.(1)x≥1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5)≥2.(1)x+2>0(2)x2-7<5(3)5+x≤3x(4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x≤0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x≤5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.(1)x<165(2)x<-1【6.(1)买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>30×20×08,解得x>16.所以171.(1)(2)× (3)(4)× (5)人以上买团体票更便宜2.(1)≥ (2)≥ (3)≤ (4)≥ (5)≤ (6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+35.a≥2座的客车至多租6辆6.正确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加4工服装200套5×06y≤06x<06y, ∴ 45y≤x<y5.设小颖家这个月用水量为x(m3),则5×15+2(x-5)≥15,解得x≥55数学八年级上875.至少为875m33750.所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.设该班在这次活动中计划分x组,则3x+10≥5(x-1),{解得3x+10≤5(x-1)+1,(2)设甲厂每天处理垃圾x时,则550x+495×140-11x7≤x≤7.5.即计划分7个组,该班共有学生31人9≤7370,解得x6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得≥6.甲厂每天至少处理垃圾6时0≤x≤25.x可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30×45+6(x-30)>(30×45+6x)×09,解得x>757.(1)x>2或x<-2(2)-2≤x≤0(2)全部按甲种方式需:30×45+6×10=1410(元);全部按乙种方式需:(30×45+6×40)×09=1431(元);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30×45+6×10×09=1404(元).这种付款方案最省钱1.x<122.7cm<x<13cm3.x≥24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解8.(1)x>73.(1)1≤x<4(2)x>-14.无解5.C2(2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a≤-1(2)412.设小林家每月“峰电”用电量为x千瓦时,则056x+028(140-x)≤053×140,解得x≤125.即当“峰电”用电量不超过125千瓦时使用“峰【5.4(2)】谷电”比较合算3x-2>0,烄13.m≥21.1烅,解得2(3<x≤42.24或3514.设这个班有x名学生,则x-1()x<6,解得x<56.23x-2)×4≤烆202x+14x+17∵ x是2,4,7的倍数, ∴ x=28.即这个班共有28名学生3.设小明答对了x题,则81≤4x≤85,解得2014≤x≤2114.所以小明答15.设甲种鱼苗的投放量为x吨,则乙种鱼苗的投放量为(50-x)吨,得对了21题9x+4(50-x)≤360,{解得30≤x≤32,即甲种鱼苗的投放量应控制在3x+10(50-x)≤290,4.设电脑的售价定为x元,则x-3000>10%x,{解得33331x-3000≤20%x,3<x≤30吨到32吨之间(包含30吨与32吨)563.略4.略5.C6.如图第6章图形与坐标【6.3(1)】【6.1】1.A(-2,1),B(2,1),C(2,-1),D(-2,-1)1.C2.A′(3,5),A″(-3,-5)2.(3,3)3.(1)东(北),350(350),北(东),350(350)3.点A与B,点C与D的横坐标相等,纵坐(2)495标互为相反数4.A(2,1),C(4,0),D(4,3).点F的坐标为(4,-1)5.(1)横排括号内依次填A,B,C,D,E;竖排括号内由下往上依次填1,2,4.(1)A(1,6),B(3,2),C(1,2),它们关于(第y轴对称的点的坐标分别为6题)3,4,5((2)略-1,6),(-3,2),(-1,2)(6.(1)星期一、星期三、星期四、星期五的最高气温分别记做(1,21),(3,5),2)略(4,12),(5,13);其中(6,18)表示星期六的最高气温,这一天的最高5.(1)略(2)B6.(1)略(2)相同;相似变换气温是18℃【6.3(2)】(2)本周内,星期天的最高气温最高;由于冷空气的影响,星期一、二气温降幅最大1.(1)右,3(2)(-3,3)(3)(x,1)(0≤x≤3)2.略7.在(2,7)处落子3.(1)把点A向下平移6个单位得到点B(2)把点A向右平移4个单位,再向下平移4个单位得到点C【6.2(1)】(3)把点C向左平移4个单位,再向下平移2个单位得到点B1.(2,-3),3,22.C3.(1)平行(2)平行(4)点(-3,-1)向右平移3个单位,再向上平移2个单位,得到点(0,1)4.(1)A(1,4),B(-1,2),C(1,0)(2)略(3)分别在一、二、三、四象限4.(1)(-3,m+4)(2)-25.(1)(-2,2)(2)m=-35.图略,A′,B′,C′的坐标分别为(-1,0),(1,0),(0,1)6.(1)训兽馆,海狮馆,鸟馆6.(1)C(-2,-3),D(-2,3),图略(2)A代表“长颈鹿馆”(8,9),B代表“大象馆”(4,2)(2)将AB向左平移4个单位,或以y轴为对称轴作一次对称变换7.图略.使点A变换后所得的三角形仍是等腰直角三角形的变换有:【6.2(2)】①把点A向下平移4个单位到点(1,-2);1.-4,(-8,0)②把点A先向右平移2个单位,再向下平移4个单位到点(3,-2);2.过点A且垂直于AB的直线为y轴建立坐标系,A(0,0),B(5,0),C(5,③把点A向右平移2个单位到点(3,2);5),D(0,5)④把点A先向右平移1个单位,再向下平移1个单位到点(2,1);⑤把点A先向右平移1个单位,再向下平移3个单位到点(2,-1)数学八年级上复习题5.(1)s=360-70t(2)220,表示汽车行驶2时后距离B地220km6.(1)R,I(2)是(3)16Ω1.(1)四(2)(0,1)(3)12.(2,5,2)7.(1)(从下至上)8,32(2)573.(1)k=2,t=2(2)k=-2,t=-2(3)是,因为风速随时间的变化而变化,且对于确定的时间都有一个确定4.图形略.直角三角形的风速5.图略,直线l上的点的纵坐标不变;向上平移3个单位后所得直线l′上任【7.2(2)】意一点的坐标表示为(x,1)6.±27.光线从点A到点B所经过的路程是7071.(1)x为任何实数(2)t≠-1的任何实数8.(1)A(0,-1),B(0,2),C(4,2),D(4,-1)(2)1429.南偏东20°方向,距离小华86米2.(1)-4;5(2)x=1(2y+3);-110.(1)图略3.(1)y=x+14,4<x<14(2)20cm(2)图案Ⅱ各顶点的坐标分别为(-2,-1),(-4,-1),(-1,-3)(3)不能,因为以9,5,15为边不能组成三角形(3)①各顶点的横坐标、纵坐标分别互为相反数;②△ABC绕原点旋转4.(1)v=2t,0≤t≤20(2)v=16180°后,得到图案Ⅱ5.y=1第2x2,0≤x≤107章一次函数6.(1)y=x2槡+9,x>0(2)5cm(3)8cm【7.1】【7.3(1)】1.s,t;60千米/时2.y,x;120元/立方米1.-3,0;-1,-1;-3,13.常量是p,变量是m,q2.(1)y=12x,是一次函数,也是正比例函数4.常量是10,110,变量是N,H.13岁需97时,14岁需96时,15岁需95时(2)y=500-3x,是一次函数,但不是正比例函数5.(1)T,t是变量(2)t,W是变量6.f,x是变量,k是常量3.(1)Q=-4t(2)20(3)-172【7.2(1)】4.(1)y=2000x+12000(2)220001.y=(1+306%)x;5153;存入银行5000元,定期一年后可得本息和为5.(1)y=002t+50(2)80元,122元5153元6.(1)T=-4.8h+24(2)9.6℃ (3)6km7.(1)是(2)23.85元;65.7元;129.4元2.(1)瓜子质量x(2)1463.(1)-4(2)43(3)44.(1)4.9m;122.5m(2)4s58【7.3(2)】3.(1)y=600x+400(2)1120元4.(1)Q=95x+32(2)2121.-3;2-62.B5.(1)当0≤x≤4时,y=12x;当x>4时,y=16x-16(3.(1)y=2x+3,x为任何实数(2)1(3)x<-32)12元/立方米,16元/立方米(3)9立方米26.20,904.(1)y=53x+253(2)不配套【7.5(2)】5.(1)84cm(2)y=27x+3(3)11张x=3,6.(1)可用一次函数来描述该山区气温与海拔的关系.y=-x1.{200+22y=2(2)400≤x≤8002.(1)2(2)2,80(3)40千米(4)y=20x(5)y=40x-80【x=17.4(1)】3.{(近似值也可)y=21.(1)(3,0);(0,6)(2)-2(3)一,三;一,三,四2.D4.(1)2;6(2)3(3)y=3x(4)y=-x+8(5)1~5(包括1和5)3.(1)y=-3x+3(2)不在4.图略5.设参加人数为x人,则选择甲旅行社需游费:75%×500x=375x(元),选择5.(1)y=16-2x,0<x<4(2)图略乙旅行社需游费:80%×500(x-1)=(400x-400)(元).当375x=400x-6.(1)y1=50+0.4x;y2=0.6x(2)略400时,x=16.故当10≤x<16时,选择乙旅行社费用较少;当人数x=16(3)(250,150).当通话时间为250分时,两种方式的每月话费都为150元时,两家旅行社费用相同;当16<x≤25时,选择甲旅行社费用较少7.(1)不过第四象限(2)m>3课题学习【7.4(2)】方案一,废渣月处理费y1=005x+20,方案二,废渣月处理费y2=01x.1.C2.5<s<113.y1<y2处理费用越高,利润越小,因此应选择处理费用较低的方案.当产品的月生产4.(1)B(0,-3)(2)A8,()量小于400件时应选方案二;等于400件时两方案均可,大于400件时,选方30,k=98案一5.(1)1000万m3(2)40天6.(1)y=320000-2000x复习题(2)方案为A型车厢26节,B型车厢14节,总运费为268000元1.s,,()0;(0,7)【p;0.053L/km;p=0053s;10.62.在3.77.5(1)】21.y=22x2.如y=-x+1等4.x≠35.B6.A7.(1)y=-52x(2)y=2x+4598.y=0.5x+15(0≤x≤18),图略9.y=-2x-1x+y>10,{①10.(1)2(2)y=2x+30(3)10个0.9x+y=10-0.8.②11.(1)S=-4x+40(2)0<x<10(3)P(7,3)由②,得y=9.2-0.9x.③12.(1)24分(2)12千米(3)38分把③代入①,得x+9.2-0.9x>10,解得x>8.又由x≤10且为整数,得x=9,或x=10.总复习题把x=9代入③,得y=1.1;把x=10代入③,得y=02.所以饼干的标价为每盒1.A9元,牛奶的标价为每袋1.1元;或饼干的标价2.D3.D4.B5.B6.B7.D为每盒8.2510元,牛奶的标价为每袋02元9.3010.x>-511.40°12.等腰三角形底边上的中线、顶角的平分线和底边上的高互相重合;直角27.7三角形斜边上的中线等于斜边的一半;等边对等角;28.(1)1500元∠BAD;内错角相等,两直线平行(2)印刷费为(2.2×4+0.7×6)×2000=26000(元),总费用为26000+1500=27500(元)13.12≤x<214.图略15.516.4(3)设印数为x千册.17.由已知可得Rt△BFD≌Rt△CED(HL),得∠B=∠C.所以△ABC是①若4≤x<5,由题意,得1000×(2.2×4+0.7×6)x+1500≤等腰三角形60000,解得x≤4.5. ∴ 4≤x≤4.5;18.10米19.D20.C21.C22.D23.C24.B②若x≥5,由题意,得1000× (2.0×4+0.6×6)x+1500≤60000,解得x≤5.04. ∴ 5≤x≤5.04.25.(1)A(1,槡3)(2)槡334综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或26.设饼干的标价为每盒x元,牛奶的标价为每袋y元,则5≤x≤5.04。
数学八年级上册作业本答案浙教版2020

第1页—第3页
1. 选择题
1A 2D 3A 4C
2. 填空
(1)T=20-6h 20,6 T h h
(2)Q=6x105-pt 6x105 p Q t 0≤t≤6x105/p
(3)S=1.5b (4) 0≤x≤7 0≤y≤5 5 0
3.解答题
(1)y= Q/a-x –Q/a (0≤x≤a)
(3)①在同一直线上 y=25/72x
②当x=72时,y=25
当x=144时,y=50
当x=216时,y=75
y=25/72 x (0≤x≤345.6)
③当x=158.4时,y=25/72x158.4=55
(4) ①y甲=2x+180
y乙=2.5x+140
②当x=100时,y甲=200+180=380
Y乙=140+250=390
380〈390
租甲车更活算
第13页—第15页
1.选择题
(1)D (2)C (3)C
2.填空
(1)x=2
y=3
(2)x=2 x>2
(3)-3 -2 x= -5/8 y= -1/8
(4)1/2 0 x=2
y=3
(5)y=5/4 x
2. 解答题
3. (1)略
(2)①依题意
-k+b= -5
(2) 图略
(3)身高(cm) 频数
154.5~159.5 2
159.5~164.5 4
164.5~169.5 6
169.5~174.5 10
174.5~179.5 5
179.5~184.5 3
(4)图略 结论:只有少数人对自己工作不满。
八年级上数学作业本答案浙教版

八年级上数学作业本答案浙教版参考答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠ BDC=180° 7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110° 3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴ ∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β =44°.∵ AB∥CD,∴α =β 6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35° 【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)³ (2)³ 3.(1)DAB(2)BCD4.∵ ∠1=∠2=100°,∴ m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠ PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.∴ ∠ PAB+∠PCD=180°-∠CAP-∠ACP.10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D又∠APC=180°-∠CAP-∠ACP,∴ ∠APC=∠PAB+∠PCD(2)由B′E∥DC,得∠BEB′=∠C=130°.【1.4】∴ ∠AEB′=∠AEB=12∠BEB′=65°1.2第2章特殊三角形2.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m【2.1】3.1保担悖4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF,∴ ∠ AEB=∠CFD.∴ △AEB≌△CFD,2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC∴ AE=CF3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM⊥l5.如图,答案不,图中点C1,C2,C3均可2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=1保担悖恚罚AP平分∠BAC.理由如下:由AP是中线,得BP=复习题PC.又AB=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴ ∠BAP=∠CAP(第5题)3.(1)∠B,两直线平行,同位角相等【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,CD,同旁内角互补,两直线平行1.(1)70°,70° (2)100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40° 或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72° =∠25题)∠BDC=∠CEB=90°,BC=CB,∴ △BDC≌△ CEB(AAS).∴ BD=CE6.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D【2.3】8.不准确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=∠DCB.则DB=DC【2.5(1)】5.∠DBE=∠DEB,DE=DB=56.△DBF和△ EFC都是等腰三角形.理由如下:C1.2.45°,45°,63.5∵ △ADE和△FDE重合,∴ ∠ADE=∠FDE.4.∵ ∠B+∠C=90°,∴ △ABC是直角三角形∵ DE∥BC,∴ ∠ADE=∠B,∠FDE=∠DFB,5.由已知可求得∠C=72°,∠DBC=18°∴ ∠B=∠DFB.∴ DB=DF,即△DBF是等腰三角形.6.DE⊥DF,DE=DF.理由如下:由已知可得△CED≌△CFD,同理可知△EFC是等腰三角形∴ DE=DF.∠ECD=45°,∴ ∠ EDC=45°.同理,∠CDF=45°,7.(1)把120°分成20° 和100° (2)把60°分成20°和40°∴ ∠EDF=90°,即DE⊥DF【2.【2.(2)1.4】5】(1)3(2)51.D2.33° 3.∠ A=65°,∠B=25° 4.DE=DF=3m2.△ADE是等边三角形.理由如下:∵ △ABC是等边三角形,∴ ∠A=∠B=∠C=60°.∵ DE∥BC,∴ ∠ADE=∠B=60°,5.由BE=12AC,DE=12AC,得BE=DE6.135m∠AED=∠C=60°,即∠ADE=∠AED=∠A=60°3.略【2.6(1)】4.(1)AB∥CD.因为∠BAC=∠ACD=60°1.(1)5(2)12(3)槡52.A=225(2)AC⊥BD.因为AB=AD,∠BAC=∠DAC5.由AP=PQ=AQ,得△APQ是等边三角形.则∠APQ=60°.而BP=3.作一个直角边分别为1cm和2cm的直角三角形,其斜边长为槡5cmAP,∴ ∠B=∠BAP=30°.同理可得∠C=∠QAC=30°.4.槡22cm(或槡8cm)5.169cm26.18米∴ ∠BAC=120°7.S梯形BCC′D′=1(C′D′+BC) ²BD′=1(a+b)2,6.△DEF是等边三角形.理由如下:由∠ ABE+∠FCB=∠ABC=60°,22∠ABE=∠BCF,得∠FBC+∠BCF=60°.∴ ∠DFE=60°.同理可S梯形BCC′D′ =S△AC′D′+S△ACC′+S△ABC=ab+12c2.得∠EDF=60°,∴ △DEF是等边三角形由1(a+b)2=ab+17.解答不,如图22c2,得a2+b2=c2【2.6(2)】1.(1)不能(2)能2.是直角三角形,因为满足m2=p2+n23.符合4.∠ BAC,∠ADB,∠ADC都是直角(第7题)5.连结BD,则∠ADB=45°,BD=槡32.∴ BD2+CD2=BC2,∴ ∠BDC=90°.∴ ∠ADC=135°第3章直棱柱6.(1)n2-1,2n,n2+1(2)是直角三角形,因为(n2-1)2+(2n)2=(n2+1)2【3.1】【2.7】1.直,斜,长方形(或正方形)2.8,12,6,长方形1.BC=EF或AC=DF或∠A=∠D或∠B=∠E2.略3.直五棱柱,7,10,34.B3.全等,依据是“HL”5.(答案不)如:都是直棱柱;经过每个顶点都有3条棱;侧面都是长方形4.由△ABE≌△EDC,得AE=EC,∠AEB+∠DEC=90°.6.(1)共有5个面,两个底面是形状、面积相同的三角形,三个侧面都是形∴ ∠AEC=90°,即△AEC是等腰直角三角形状、面积完全相同的长方形5.∵ ∠ADB=∠BCA=Rt∠,又AB=AB,AC=BD,(2)9条棱,总长度为(6a+3b)cm∴ Rt△ABD≌Rt△BAC(HL)∴ ∠ .CAB=∠DBA,7.正多面体顶点数(V)面数(F)棱数(E)V+F-E∴ OA=OB正四面体6.DF4462⊥BC.理由如下:由已知可得Rt△BCE≌Rt△DAE,正六面体∴ ∠B=∠D,从而∠D+∠ C=∠B+∠C=90°86122正八面体68122复习题正十二面体2012302正二十面体1.A12203022.D3.224.13或槡1195.B6.等腰符合欧拉公式7.72°,72°,48.槡79.64°10.∵AD=AE,∴ ∠ADE=∠AED,∴ ∠ADB=∠AEC.【3.2】又∵ BD=EC,∴ △ABD≌△ACE.∴AB=AC1.C11.4保2.直四棱柱3.6,712.B13.连结BC.∵ AB=AC,∴ ∠ABC=∠ACB.4.(1)2条(2)槡55.C又∵ ∠ABD=∠ACD,∴ ∠DBC=∠DCB.∴ BD=CD6.表面展开图如图.它的侧面积是14.25(π 1保担2+2.5)³3=18(cm2);15.连结BC,则Rt它的表面积是△ABC≌Rt△DCB,∴ ∠ACB=∠DBC,从而OB=OC16.AB=10cm.∠AED=∠C=Rt∠,AE=AC=6cm,DE=CD.18+12³1保³2³2=21(cm2)可得BE=4cm.在Rt△BED中,42+CD2=(8-CD)2,解得CD=3cm【3.(第6题)②,④,3】1.③,① 2.C523.圆柱圆锥球4.b5.B6.B7.示意图如图从正面看长方形三角形圆8.D9.(1)面F(2)面C(3)面A从侧面看长方形三角形圆10.黄从上面看圆圆和圆心圆4.蓝,B5.示意图如图6.示意图如图11.(第11题)第7题)如图(第4章样本与数据分析初步【4.1】(第1.抽样调查5题)(第6题)2.D3.B4.(1)抽样调查(2)普查(3)抽样调查【3.4】5.不合理,可从不同班级中抽取一定数量的男女生来调查1.立方体、球等2.直三棱柱3.D6.方案多样.如在七年级各班中随机抽取40名,在八年级各班中随机抽取4.长方体.1保 ³3³0保³3³4=27(cm2)5.如图40名,再在九年级的各个班级中随机抽取40名,然后实行调查,调查的问题能够是平均每天上网的时间、内容等【4.2】1.22.不准确,2,因为样本容量太小3.C4.120千瓦²时5.8保叮玻堤猓ǖ冢堤猓(第6题)6.小王得分70³5+50³3+80³210=66(分).同理,小孙得74保捣郑小李得6.这样的几何体有3种可能.左视图如图65分.小孙得分复习题【4.3】1.C2.15,5,103.直三棱柱1.5,42.B3.C4.中位数是2,众数是1和253数学八年级上5.(1)平均身高为161cm1保玻ㄆ椒交罚.八年级二班投中环数的同学的投飞标技术比较稳定(2)这10位女生的身高的中位数、众数分别是161保担悖恚162cm5.从众数看,甲组为90分,乙组为70分,甲组成绩较好;从中位数看,两组(3)答案不.如:可先将九年级身高为162cm的所有女生挑选出来成绩的中位数均为80分,超过80分(包括80分)的甲组有33人,乙组有作为参加方队的人选.如果不够,则挑选身高与162cm比较接近的26人,故甲组总体成绩较好;从方差看,可求得S2甲=172(平方分)S2乙=女生,,直至挑选到40人为止256(平方分)S2甲<S2乙,.甲组成绩比较稳定(波动较小);从高分看,高于6.(1)甲:平均数为9保年,众数为8年,中位数为8保的辏灰遥浩骄数为9保矗福胺值模甲组有20人,乙组有24人;其中满分人数,甲组也少于乙组.因年,众数为4年,中位数为8年此,乙组成绩中高分居多.从这个角度看,乙组成绩更好(2)甲公司使用了众数,乙公司使用了中位数6.(1)x甲=15(cm),S2甲=2(cm2);x乙=15(cm),S2乙=35(cm2)(3)此题答案不.,只要说出理由即可.例如,选用甲公司的产品,因为33它的平均数、众数、中位数比较接近,产品质量相对比较好,且稳定S2甲<S2乙,甲段台阶相对较平稳,走起来舒服一些(2)每个台阶高度均为15cm(原平均数),则方差为0,走起来感到平稳、4.舒服1.【4】C2.B3.24.S2=25.D7.中位数是1700元,众数是1600元.经理的介绍不能反映员工的月工资实6.乙组选手的表中的各种数据依次为:8,1.8,7,0,60%.以下从四个方面给际水平,用1700元或1600元表示更合适出具体评价:①从平均数、中位数看,两组同学都答对8题,成绩均等;复习题②从众数看,甲比乙好;③从方差看,甲组成员成绩差别大,乙组成员成绩差别较小;④从优秀率看,甲组优秀生比乙组优秀生多1.抽样,普查2.方案④比较合理,因选择的样本具有代表性7.(1)3.平均数为14保此辏中位数和众数都是14岁4.槡2平均数中位数众数标准差5.2保6.D7.A8.A9.10,32004年(万元)5保保勃保叮勃保叮福310.不准确,平均成绩反映全班的平均水平,容易受异常值影响,当有异常值,如几个0分时,小明就不一定有中上水平了.小明的成绩是否属于中2006年(万元)6保担唱保埃唱保埃保保3上水平,要看他的成绩是否大于中位数(2)可从平均数、中位数、众数、标准差、方差等角度实行分析(只要有道理即可)分;乙318分;丙307分,所以应录用乙.如从平均数、中位数、众数角度看,2006年居民家庭收入比11.(1)三人的加权平均分为甲2952020202004年有较大幅度提升,但差别拉大(2)甲应增强专业知识学习;丙三方面都应继续努力,重点是专业知识和工作经验【4.5】12.(1)表中甲的中位数是7保担乙的平均数、中位数、投中9个以上次数分1.方差或标准差2.4003.(1)1保盖Э (2)27000元别是7,7,04.八年级一班投中环数的方差为3(平方环),八年级二班投中环数的方差(2)从平均数、方差、中位数以及投中9个以上的次数等方面都可看出54甲的成绩较好,且甲的成绩呈上升的趋势【(5.3(1)】3)答案不唯一,只要分析有道理即可1.①⑥ 2.C第5章一元一次不等式3.(1)x>3(2)x<-3(3)无数;如x=9,x槡=3,x=-3等8【5.1】(4)x≥ 槡-24.(1)x≥1(2)x<45.x>2.最小整数解为31.(1)>(2)>(3)<(4)<(5)≥ 2.(1)x+2>0(2)x2-7<5(3)5+x≤3x(4)m2+n2≥2mn6.共3组:0,1,2;1,2,3;2,3,47.a<-323.(1)<(2)>(3)<(4)>(5)>【5.3(2)】4.1.(1)x≤0(2)x<43(3)x<3(第4题)2.(1)x>2(2)x<-73.(1)x≤5(2)x<-35.C56.(1)80+16x<54+20x4.解不等式得x<72.非负整数解为0,1,2,3(2)当x=6时,80+16x=176,54+20x=174,小霞的存款数没超过小明;当x=7时,80+16x=192,54+20x=194,小霞的存款数超过了小明5.1)(x<165(2)x<-1【6.1)(买普通门票需540元,买团体票需480元,买团体票便宜5.2】(2)设x人时买团体票便宜,则30x>30³20³0保福解得x>16.所以171.(1)(2)³ (3)(4)³ (5)比艘陨下蛲盘迤备便宜2.(1)≥ (2)≥ (3)≤ (4)≥ (5)≤ (6)≥【5.3(3)】3.(1)x<22,不等式的基本性质2(2)m≥-2,不等式的基本性质3(3)x≥2,不等式的基本性质2(4)y<-1,不等式的基本性质1.B2.设能买x支钢笔,则5x≤324,解得x≤644335.所以最多能买64支3.设租用30座的客车x辆,则30x+45(12-x)≥450,解得x≤6.所以304.-45x+3>-45y+35.a≥2座的客车至多租6辆6.准确.设打折前甲、乙两品牌运动鞋的价格分别为每双x元,y元,则4.设加工服装x套,则200+5x≥1200,解得x≥200.所以小红每月至少加4工服装200套5³0保叮≤0保x<0保叮,∴ 45y≤x<y5.设小颖家这个月用水量为x(m3),则5³1保担2(x-5)≥15,解得x≥55数学八年级上8保罚担至少为8保罚担恚常常罚担埃所以商店应确定电脑售价在3334至3750元之间6.(1)140-11x95.该班在这次活动中设计划分x组,则3x+10≥5(x-1){解得3x+10≤5(x-,1)+1,(2)设甲厂每天处理垃圾x时,则550x+495³140-11x7≤x≤7.5.即计划分7个组,该班共有学生31人9≤7370,解得x6.设购买A型x台,B型(10-x)台,则100≤12x+10(10-x)≤105,解得≥6.甲厂每天至少处理垃圾6时0≤x≤2保担x可取0,1,2,有三种购买方案:①购A型0台,B型10台;7.(1)设购买钢笔x(x>30)支时按乙种方式付款便宜,则②购A型1台,B型9台;③购A型2台,B型8台30³45+6(x-30)>(30³45+6x)³0保梗解得x>757.(1)x>2或x<-2(2)-2≤ x≤0(2)全部按甲种方式需:30³45+6³10=1410(元);全部按乙种方式需:(30³45+6³40)³0保梗剑保矗常保ㄔ);先按甲种方式买30台计算复习题器,则商场送30支钢笔,再按乙种方式买10支钢笔,共需30³45+6³10³0保梗剑保矗埃矗ㄔ).这种付款方案最省钱1.x<122.7cm<x<13cm3.x≥24.82【5.4(1)】5.x=1,2,3,46.0,17.(1)3x-2<-1(2)y+12x≤0(3)2x>-x21.B2.(1)x>0(2)x<13(3)-2≤x<槡3(4)无解8.(1)x>73.(1)1≤x<4(2)x>-14.无解5.C2(2)x≥1116.设从甲地到乙地的路程为x千米,则26<8+3(x-3)≤29,解得9<x≤9.(1)-4<x<-2(2)-0.81≤x<-0.7610.m≥310.在9千米到10千米之间,不包含9千米,包含10千米11.-2<x<17.(1)-3<a≤-1(2)412.设小林家每月“峰电”用电量为x千瓦时,则0保担叮+0保玻福ǎ保矗埃x)≤0保担³140,解得x≤125.。
人教版八年级上册数学 八年级上册数学作业本参考答案

人教版八年级上册数学八年级上册数学作业本参考答案一、第一章实数1. 课前练习(1) 有理数的范围是整数、分数及其运算结果。
(2) 无理数是不能表示为有理数的数。
(3) 小数除了有限小数外,还有无限小数,无限小数有循环小数和非循环小数两种。
(4) √2、π、e等都是无理数。
2. 课后作业(1) 有理数是指整数、分数及其运算结果,如4、-5/6、√16等。
(2) 无理数是指不能表示为有理数的数,如√2、π、e等。
(3) 有限小数是指小数部分有限的小数,如0.5、-3.25等。
循环小数是指小数部分出现了一定规律循环的小数,如0.3(3)、0.25(25)等。
(4) 在实数轴上,0与正数、负数之间是有间隔的。
(5) 非负有理数和非负无理数都可以表示为不小于0的数,但有理数可以表示为x=a或a<x<b,而无理数不能表示为这样的形式。
3. 拓广探究(1) 设a是正整数,b是不为1的正整数,证明:如果a可整除b,则a和b的最大公约数是b的约数。
证:设d是a和b的最大公约数,因为a可整除b,所以a=k×b,其中k是正整数。
如果d≠b,那么d是b的真因数,d也是a的因数,这与d是a和b的最大公约数矛盾。
所以d=b,即a和b的最大公约数是b的约数。
(2) 设x和y都是有理数,证明:x+y和x-y都是有理数。
证:因为x和y都是有理数,所以可以表示为x=a/b,y=c/d,其中a、b、c、d都是整数。
则x+y=a/b+c/d=(ad+bc)/bd,其中ad+bc、bd都是整数,所以x+y也是有理数。
同理,x-y=a/b-c/d=(ad-bc)/bd,其中ad-bc、bd都是整数,所以x-y也是有理数。
(3) 设x和y都是无理数,是否有必要证明x+y和x-y都是无理数?答:不必要。
因为有理数和无理数的运算结果都是无理数,所以x+y和x-y一定都是无理数。
二、第二章代数式1. 课前练习(1) 代数式是由常数、变量及运算符号组成的式子。
八年级上册数学作业本答案2020浙教版

八年级上册数学作业本答案2020浙教版定义与命题(2)定义与命题(2)第1题答案C定义与命题(2)第2题答案(1)定理(2)定义定义与命题(2)第3题答案A定义与命题(2)第4题答案(1)真命题。
分成的两个三角形等底同高(2)假命题。
如a=130°,β=20°,则a-β=110°>90°(3)真命题。
∠1的对顶角与∠2相等,根据同位角相等,两直线平行可以判定a∥b定义与命题(2)第5题答案由∠FAB=∠ABC+∠ACB,得∠ACB=35°,由AB∥CD,得∠BCD=∠ABC=35°,因此∠ACB=∠BCD,所以CE平分∠ACD定义与命题(2)第6题答案(1)答案不唯一,例如,垂直于同一条直线的;平行于同一条直线的;不相交的(2)90(3)<证明(2)证明(2)第1题答案45°证明(2)第2题答案∠a=∠PBA=40°证明(2)第3题答案(1)>(2)∠ADB>∠DCB>∠CDE,所以∠ADB>∠CDE证明(2)第4题答案由∠EAC=∠B+∠C,得∠C=1/2∠EAC=∠DAC,∴AD∥BC证明(2)第5题答案已知:直线AB,CD被直线EF所截,AB∥CD,EG平分∠BEF,FH 平分∠EFC求证:EG∥FH。
证明:略证明(2)第6题答案答案不唯一。
例如:方法一:连结BD,证△ABD≌△CDB;方法二:延长BC至E,证∠DCE=∠B=∠D三角形全等的判定(2)三角形全等的判定(2)第1题答案∠ABC=∠EBD或∠ABE=∠CBD三角形全等的判定(2)第2题答案3,线段垂直平分线上的点到线段两端点的距离相等三角形全等的判定(2)第3题答案∠CBD,已知,公共边,△ABD,△CDB,SAS三角形全等的判定(2)第4题答案周长为6三角形全等的判定(2)第5题答案(1)△AED≌△ACD(SAS)(2)由DC=DE=2cm,得BC=BD+DC=5cm三角形全等的判定(2)第6题答案方法1:BO是线段AC的垂直平分线,所以BA=BC;方法2:△AOB≌△COB(SAS),所以BA=BC。
八年级上册数学作业本答案浙教版2020

② 541.8÷7= 77.4 (米)
③ 77.4-36.12=41.28 (米)
3、185×5.4= 999(千米)
4、0.8×24×18=19.2×18=345.6(元)
第四页:
5、324×1.2+48=388.8+48=436.8(元)
提升篇:
1、28
(2.7+6.3)×5÷2=45÷2=22.5(平方分米)
9)10×20+(12-10)×(20-14)÷2=200+6=206(平方厘米)(方法多种)
提升篇:
1、甲数的小数点向右移动一位就等于乙数,说明乙数是甲数的10倍。
解: 设甲数是X,则乙数是10X 。
10X-X=7.02
解得 X=0.78,10X=7.8
八年级上册数学作业本答案浙教版2020
第一页:
一、3, 1.2, 8.7, 1.26, 12,4
17,0.4, 0.24, 3 , 0.06,15
二、4.14,0.144,2.04 ,28
三、16.25,162.5 ,0.1625,42 ,0.42 , 0.42
四、15.6,27.72
第二页:
四、2.25,4.16 ,25.75,82
=0.79×0.46+0.79×2.4+1.14×0.79
=0.79×(0.46+2.4+1.14)
=0.79×4
=3.16
第五页:
1、>,,>
2、32.37.7
3、0.832.46
4、0.56×101 =0.56×100+0.56×1=56+0.56=56.56
【最新试题库含答案】浙教版八年级上册数学作业本答案

浙教版八年级上册数学作业本答案:篇一:浙教版数学八年级上作业本标准答案(全)- 1 -- 2 -- 3 -- 4 -- 5 -篇二:八年级上册数学作业本答案篇三:八年级上册数学作业本答案八年级上作业本同步练答案(人教版)跟别人要答案的学生,不是好学生哦,做个好学生吧!独立完成作业,然后再来对照答案,祝你学习进步。
下面是小编整理的八年级上册数学作业本答案,供大家参考。
八年级上数学作业本[人教版]答案,浙教版也可以用,参考答案第1章平行线【1.1】1.4,4,2,52.2,1,3,BC3.C4.2与3相等,3与5互补.理由略5.同位角是BFD和DEC,同旁内角是AFD和AED6.各4对.同位角有B与GAD,B与DCF,D与HAB,D与ECB;内错角有B与BCE,B与HAB,D与GAD,D与DCF;同旁内角有B与DAB,B与DCB,D与DAB,D与DCB【1.2(1)】1.(1)AB,CD(2)3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是ADE和ABC的角平分线,得ADG=12ADE,ABF=12ABC,则ADG=ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为1,2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由BCD=120,CDE=30,可得DEC=90.所以DEC+ABC=180,AB∥DE(同旁内角互补,两直线平行)5.(1)180;AD;BC(2)AB与CD不一定平行.若加上条件ACD=90,或1+D=90等都可说明AB∥CD6.AB∥CD.由已知可得ABD+BDC=1807.略【1.3(1)】1.D2.1=70,2=70,3=1103.3=4.理由如下:由1=2,得DE∥BC(同位角相等,两直线平行),3=4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.=44.∵AB∥CD,=6.(1)B=D(2)由2x+15=65-3x解得x=10,所以1=35【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)(2)3.(1)DAB(2)BCD4.∵1=2=100,m∥n(内错角相等,两直线平行).4=3=120(两直线平行,同位角相等)5.能.举例略6.APC=PAB+PCD.理由:连结AC,则BAC+ACD=180.PAB+PCD=180-CAP-ACP.10.(1)BE∥DC.理由是ABE=B=90=D又APC=180-CAP-A。
八上数学作业本答案

八上数学作业本答案第1章平行线【1.1】1.∠4,∠4,∠2,∠52.2,1,3,BC3.C4.∠2与∠3相等,∠3与∠5互补.理由略5.同位角是∠BFD和∠DEC,同旁内角是∠AFD和∠AED6.各4对.同位角有∠B与∠GAD,∠B与∠DCF,∠D与∠HAB,∠D与∠ECB;内错角有∠B与∠BCE,∠B与∠HAB,∠D与∠GAD,∠D与∠DCF;同旁内角有∠B与∠DAB,∠B与∠DCB,∠D与∠DAB,∠D与∠DCB【1.2(1)】1.(1)AB,CD(2)∠3,同位角相等,两直线平行2.略3.AB∥CD,理由略4.已知,∠B,2,同位角相等,两直线平行5.a与b平行.理由略6.DG∥BF.理由如下:由DG,BF分别是∠ADE和∠ABC的角平分线,得∠ADG=12∠ADE,∠ABF=12∠ABC,则∠ADG=∠ABF,所以由同位角相等,两直线平行,得DG∥BF【1.2(2)】1.(1)2,4,内错角相等,两直线平行(2)1,3,内错角相等,两直线平行2.D3.(1)a∥c,同位角相等,两直线平行(2)b∥c,内错角相等,两直线平行(3)a∥b,因为∠1,∠2的对顶角是同旁内角且互补,所以两直线平行4.平行.理由如下:由∠BCD=120°,∠CDE=30°,可得∠DEC=90°.所以∠DEC+∠ABC=180°,AB∥DE(同旁内角互补,两直线平行)5.(1)180°;AD;BC(2)AB与CD不一定平行.若加上条件∠ACD=90°,或∠1+∠D=90°等都可说明AB∥CD6.AB∥CD.由已知可得∠ABD+∠BDC=180°7.略【1.3(1)】1.D2.∠1=70°,∠2=70°,∠3=110°3.∠3=∠4.理由如下:由∠1=∠2,得DE∥BC(同位角相等,两直线平行),∴∠3=∠4(两直线平行,同位角相等)4.垂直的意义;已知;两直线平行,同位角相等;305.β=44°.∵AB∥CD,∴α=β6.(1)∠B=∠D(2)由2x+15=65-3x解得x=10,所以∠1=35°【1.3(2)】1.(1)两直线平行,同位角相等(2)两直线平行,内错角相等2.(1)×(2)×3.(1)DAB(2)BCD4.∵∠1=∠2=100°,∴m∥n(内错角相等,两直线平行).∴∠4=∠3=120°(两直线平行,同位角相等)5.能.举例略6.∠APC=∠PAB+∠PCD.理由:连结AC,则∠BAC+∠ACD=180°.50∴∠PAB+∠PCD=180°-∠CAP-∠ACP.又∠APC=180°-∠CAP-∠ACP,∴∠APC=∠PAB+∠PCD【1.4】1.22.AB与CD平行.量得线段BD的长约为2cm,所以两电线杆间的距离约为120m3.1保担悖恚矗略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.∵AE∥CF,∴∠AEB=∠CFD.∴△AEB≌△CFD,∴AE=CF6.AB=BC.理由如下:作AM⊥l2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC复习题1.502.(1)∠4(2)∠3(3)∠13.(1)∠B,两直线平行,同位角相等(2)∠5,内错角相等,两直线平行(第5题)(3)∠BCD,CD,同旁内角互补,两直线平行4.(1)90°(2)60°5.AB∥CD.理由:如图,由∠1+∠3=180°,得∠3=72°=∠26.由AB∥DF,得∠1=∠D=115°.由BC∥DE,得∠1+∠B=180°.∴∠B=65°7.∠A+∠D=180°,∠C+∠D=180°,∠B=∠D8.不准确,画图略9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠AED=∠C=70°10.(1)B′E∥DC.理由是∠AB′E=∠B=90°=∠D(2)由B′E∥DC,得∠BEB′=∠C=130°.∴∠AEB′=∠AEB=12∠BEB′=65°第2章特殊三角形【2.1】1.B2.3个;△ABC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,DC;AC3.15cm,15cm,5cm4.16或17。