价值管理-浅谈菲波纳契数列的内涵和应用价值 精品

合集下载

斐波那契数列fibonacci及其在外汇交易中的应用

斐波那契数列fibonacci及其在外汇交易中的应用

斐波那契数列fibonacci及其在外汇交易
中的应用
斐波那契数列(Fibonacci Sequence)是一个数学上无限序列,其定义如下:
F(n)=F(n−1)+F(n−2),其中F(0)=0,F(1)=1.
这意味着斐波那契数列的第 n 个元素是其前两个元素的和。

数列的开始部分如下:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波那契数列在外汇交易中的应用:
1.Fibonacci 重要比率:斐波那契数列的比率,如黄金分割比率(0.618)和黄金分割的倒数(1.618),被广泛应用于外汇交易中的技术分析。

交易员使用这些比率来确定支撑和阻力水平,以及可能的市场反转点。

2.Fibonacci retracement(斐波那契回撤):交易员使用斐波那契回撤来分析价格走势的调整水平。

通过绘制从趋势起始点到高点的水平线,可以确定潜在的支撑水平,这有助于预测价格的下跌幅度。

3.Fibonacci extension(斐波那契扩展):与回撤相反,扩展用于预测价格的上涨目标。

通过绘制从趋势起始点到低点的水平线,可以识别潜在的阻力水平。

4.Fibonacci 时间周期:一些交易员使用斐波那契时间周期来预测市场趋势的变化。

他们认为,特定的时间周期可能与价格走势的反转点相关联。

5.Fibonacci 扇形:扇形是以斐波那契数列的比率绘制的,用于显示可能的支撑和阻力区域。

需要注意的是,斐波那契在外汇交易中的应用主要是基于技术分析的一部分,而且这些方法的有效性仍然是一个有争议的话题。

外汇交易涉及风险,投资者应该谨慎并在实践中验证任何技术分析工具的有效性。

斐波那契数列的内涵和应用价值

斐波那契数列的内涵和应用价值

斐波那契数列的内涵和应用价值作者:杨顺祥来源:《学校教育研究》2017年第02期一、斐波那契数列的由来澳大利亚、新西兰本来是没有兔子的。

1859年,澳大利亚的墨尔本动物园从英国运来24只兔子供人观赏。

不料,1864年的一天,动物园失火,幸免于难的兔子逃到草原上。

一望无垠的大草原,不仅饲草丰美,没有天敌,野兔的繁殖非常快。

到1928年,兔子数量狂增至40亿只,遍及澳大利亚的2/3地区。

它们吃庄稼,毁坏新播下的种子,啃嫩树皮和牙,并且打地洞损坏田地和河堤。

它们消耗了牧场牧草和大量灌木,使畜牧业面临着灭顶之灾。

问题还在于兔子破坏了植被,又引起了水土流失。

一时,兔灾成害,人民遭殃。

新西兰也引进了兔子,32年兔成灾。

这些地区从实践中体悟到兔子繁殖的神奇速度问题,其实,早在630年以前,意大利数学家斐波那契就从理论上论述了这个问题,只是那时没有引起注意,在他的《算盘书》一书中,就说到了兔子繁殖问题。

题意是:假设一对刚出生的小兔一个月后就能长成大兔,再过一个月就能生下一对小兔,并且此后每个月都生一对小兔,一年内没有发生死亡,问:一对兔子,一年内繁殖成多少对兔子?对于n=1,2,……12,令表示第n个月开始时兔子的总对数,分别是未成年和成年的兔子(简称小兔和大兔)的对数,则显然,F1=1,F2=2,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,按照这个规律写下去,就得:1,2,3,5,8,13,21,34,55,89,144,233。

这就是斐波那契数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……,这个数列又叫黄金数列。

列昂那多又名斐波那契,所以这个数列称作斐波那契数列,其中每一项称作斐波那契数。

二、斐波那契数列的内涵1.在斐波那契数列中,前后两项的比值是以黄金数0.618为极限的。

2.斐波那契数列的任意相邻四项满足。

3.在斐波那契数列中或根据数列后一项是前两项之和形成的类斐波那契数列中,有前十项之和等于第七项的11倍。

谈斐波那契数列的由来及其应用

谈斐波那契数列的由来及其应用

谈斐波那契数列的由来及其应用永德二中 王冬梅摘要:斐波那契数列是一个广为人知的数列,然而在自然界中,在科学界中却有着匪夷所思的应用,如植物的花瓣数,菠萝的鳞片以及树枝的生长等大自然的现象都与斐波那契数列有关,甚至由古至今数学史上鼎鼎大名的黄金分割、黄金比也都与斐波那契数列有着密切的关系.本文介绍了斐波那契数列的来源以及其通项公式,介绍了斐波那契数列在自然界中的体现,并通过斐波那契数列与黄金比(0.618…)的关系来叙述了斐波那契数列在建筑以及艺术中频频出现的原因.关键词:斐波那契数列;斐波那契数;黄金比;黄金矩形1 斐波那契数列的简介斐波那契数列指的是这样一个数列:1 1 2 3 5 8 13 21 34 ……,它的特点是:从第三项开始,每一项都等于前两项之和,也就是有一个递推关系.即:(1)(2)1F F == ()(1)(2)F n F n F n =-+-,其中3n ≥且n Z ∈.{}()F n 即为斐波那契数列.斐波那契数列是一个广为人知的数列,然而在自然界中,在科学界中却有着匪夷所思的应用,如植物的花瓣数,菠萝的鳞片以及树枝的生长等大自然的现象都与斐波那契数列有关,甚至由古至今数学史上鼎鼎大名的黄金分割、黄金比也都与斐波那契数列有着密切的关系.斐波那契数列也是一个非常美丽、和谐的数列,它的形状可以用排成螺旋的一系列正方形来说明(如图1所示):起始的正方形(图中用实心表示)的边长为1,在它左边的那个正方形的边长也是1,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、21、34……等等的正方形,这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列.图12 斐波那契数列的出现(生小兔问题)[1]公元1202年,一位意大利比萨的商人斐波那契(Fibonacci )在他的《算盘全书》(这里的“算盘”指的是计算用沙盘)中提出过一个“养兔问题”.这道题说的是:兔子出生以后两个月就能生小兔,若每次不多不少恰好生一对(一雌一雄),假如养了初生的小兔一对,试问一年以后共有多少对兔子.(假设生下的小兔都存活)我们来推算一下,如图2所示:第一个月:只有一对小兔;第二个月:小兔不会生殖,仍然只有一对兔子;第三个月:这对兔子生了一对小图,这时共有两对兔子;第四个月:老兔子又生了一对小兔,而上月出生的小兔还未成熟,这时共有三对兔子;第五个月:已有两对兔子可以生殖(原来的老兔和第三个月出生的小兔),于是生了两对小兔,这时共有五对兔子;……如此推算下去,便有:。

斐波那契数列的作用

斐波那契数列的作用

斐波那契数列的作用斐波那契数列的作用数学是一门绝妙的学科,在我们的日常生活中,有很多数学理论被运用于实际问题中,其中就包括了斐波那契数列。

斐波那契数列是一个非常独特且有趣的数列,它有着广泛的应用场景,可以应用到多个领域,这篇文章将从不同的角度来探讨斐波那契数列的作用。

一、自然现象中的斐波那契数列斐波那契数列以1,1,2,3,5,8......的形式呈现。

这个数列具有独特的美感和规律性,而这种规律性也存在于许多自然现象中。

例如,植物叶片排列的方式、贝壳的旋转方式、旋转涡流的形态等等都符合斐波那契数列规律。

这些不同的现象和形态的发生,被解读为自然规律的深刻体现,表明了斐波那契数列在自然界中的存在与重要性。

二、金融领域中的斐波那契数列斐波那契数列在金融领域中也有着广泛的应用。

在投资领域,一些特定领域的专业人员会运用斐波那契数列来预测股票或汇率的变化趋势。

此外,斐波那契序列也被用于量化市场波动及预测市场走势的情况,为交易算法的编写提供基础。

三、信息技术中的斐波那契数列在计算机科学领域中,斐波那契数列常常被用于优化算法。

例如,在动态规划算法中,使用斐波那契数列来减小比较次数,提高算法的效率。

斐波那契数列也能被应用于诸如密码学和分布式计算等领域,表明它在现代信息技术领域的应用前景十分广阔。

斐波那契数列无疑是一种十分神奇而有用的数列,它在许多领域都有着广泛的应用价值。

不论是数学、气象、医学还是经济、物理等其他领域,斐波那契数列都能对其进行有用的拓展,它的重要性在于它所表达的是一些普遍的规律。

希望未来能有更多的人爱上数学,去探究斐波那契数列的奥秘,并把它更广泛地用于实践中。

介绍斐波那契数列及其运用

介绍斐波那契数列及其运用

介绍斐波那契数列及其运用斐波那契数列(Fibonacci Sequence)又称黄金分割数列,是一组特殊的数字序列,全部数字相加,当前项为其前两项之和。

它以著名意大利数学家莱昂纳多·斐波那契(Leonardio Fibonacci)的名字命名,因他在《尼罗河数字》(1202)中提出了它的组成规律。

一、斐波那契数列的定义斐波那契数列定义为:一列数字,从第三项开始,每一项都等于前两项之和。

通常用斐波那契数列的记法表示,用两个不同的数字作为起点,从而可以确定整个数列。

第一、第二项均为1,因此数列的起点为(1,1),前三项分别是:1,1,2。

二、斐波那契数列基本性质1. 通项公式斐波那契数列的通项公式为:an=an-1+an-2,即使用递推公式,可以求出斐波那契数列的任意一项。

其中an代表第n项,an-1代表第n-1项,an-2代表第n-2项。

2. 黄金比例斐波那契数列中数字的总和可以表示为黄金比例,即:a1/a2=a2/a3=a3/a4….=0.618,它表示任意斐波那契数列中,数字相加的比值都处于0.618左右。

三、斐波那契数列的应用1. 密码中的应用加密技术是用来保护信息在传输过程中不被窃取的一种技术,其中一种最常用的加密技术称为基于斐波那契数列的加密技术,该技术是一种有规律性的序列及规则的加密技术,使用起来既安全又直观,经常用来进行信息传输加密,以及用于制作密码、密钥保护等。

2. 算法中的应用斐波那契数列也常在算法中使用,如在算法中求解动态最优解,优先查找网络最短路等,比较容易使用其中的比例来解决各种规划问题,am是an-1+bn-2模式的了解,这种模式在很多分支处理方面都有着较好的应用,特别是网络路由最短路,及生物群降纬等,都是用户非常喜欢的算法。

3. 图形中的应用很多形象,如螺旋、花环、蜂窝等,在很多设计中都有着广泛的应用,但这些形象的基础其实都是斐波那契数列,在空间几何中,大多数螺旋线形状,都可以用fibonacci数列进行模拟,这样就可以简化模型,使其形状更加精确,便于使用,比如说螺旋道路、凸透镜和周期传播都是这类应用。

认识斐波那契数列:什么是斐波那契数列?有何特点?

 认识斐波那契数列:什么是斐波那契数列?有何特点?

斐波那契数列,又被称为黄金分割数列或兔子数列,是一种在数学上极为著名且有趣的数列。

它由意大利数学家莱昂纳多·斐波那契在《计算之书》(Liber Abaci)中首次提出。

斐波那契数列不仅是数学领域的研究对象,更在日常生活中、自然界以及科学研究中展现出其独特魅力和重要性。

下面,我们将深入探讨斐波那契数列的定义、特点、以及其广泛的应用。

一、斐波那契数列的定义斐波那契数列是这样一组数列:1,1,2,3,5,8,13,21,34,……,其中每一个数字都是前两个数字的和。

具体来说,斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2),其中n≥2二、斐波那契数列的特点1. 递推公式:斐波那契数列的每一项都是其前两项的和,这是其最显著的特点。

这一特点使得斐波那契数列可以通过递推的方式轻松地计算出来。

2. 黄金分割率:斐波那契数列与黄金分割率(φ = (√5 - 1) / 2 ≈ 0.618)有着密切的联系。

当斐波那契数列的项数趋于无穷大时,相邻两项的比值会趋近于黄金分割率。

这一性质使得斐波那契数列在美学、建筑、艺术等领域具有广泛的应用。

3. 对称性:斐波那契数列具有一种神奇的对称性。

具体来说,对于任意正整数n,都有F(n) = F(n-1) + F(n-2) = F(n+1) - F(n-1)。

这种对称性使得斐波那契数列在数学上具有独特的美感。

4. 递归性质:斐波那契数列是一种递归数列,这意味着每一项都可以通过递归的方式来表示。

例如,F(5) = F(4) + F(3) = (F(3) + F(2)) + F(3) = 2F(3) + F(2) = 2(F(2) + F(1)) + F(2) = 3F(2) + 2F(1) = 3×1 + 2×1 = 5。

这种递归性质使得斐波那契数列在计算上具有较大的灵活性。

三、斐波那契数列的应用斐波那契数列作为一种重要的数学概念,其在各个领域都有着广泛的应用。

斐波那契数列及应用

斐波那契数列及应用

斐波那契数列及应用斐波那契数列是一个非常经典的数列,它的定义是:第一个和第二个数都是1,从第三个数开始,每个数都是前两个数之和。

因此,斐波那契数列的前几个数字是1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...斐波那契数列的应用非常广泛,下面我将详细介绍一些常见的应用场景:1. 自然科学和数学领域:斐波那契数列最早是由13世纪意大利数学家斐波那契引入的。

这个数列在自然界中有很多出现的规律。

例如,植物的分枝、树叶的排列、兔子的繁殖等都可以用斐波那契数列解释。

斐波那契数列还具有一些其他特性,例如,它的比率越往后接近黄金比例。

2. 计算机科学和算法:斐波那契数列在计算机科学中有着广泛的应用。

其中一个著名的例子就是递归算法中的斐波那契数列计算。

递归算法可以非常简洁地实现斐波那契数列的计算,但效率较低,因为它进行了大量的重复计算。

为了提高效率,还可以使用动态规划等更高效的算法来计算斐波那契数列。

3. 金融领域:斐波那契数列在金融领域也有着重要的应用。

例如,在股票市场分析中,投资者可以使用斐波那契数列来预测价格的走势。

根据斐波那契数列的规律,价格的上涨和下跌往往会遵循特定的比率。

投资者可以根据这个规律来制定投资策略。

4. 艺术和设计:斐波那契数列在艺术和设计领域也有着广泛的应用。

斐波那契数列的规律被认为是非常美学和谐的,因此在建筑、绘画、音乐等艺术形式中经常出现。

例如,建筑师可以根据斐波那契数列的规律来设计建筑物的比例和布局,画家可以运用斐波那契数列的比例来构图,作曲家可以使用斐波那契数列的节奏来创作音乐。

5. 数据压缩和编码:斐波那契编码是一种基于斐波那契数列的无损数据压缩算法。

它利用斐波那契数列的特性,将数据转换成一系列的斐波那契编码,从而达到压缩数据的目的。

斐波那契编码在图像压缩、音频压缩等领域有着重要的应用。

总之,斐波那契数列作为一个简单而又神奇的数列,不仅具有丰富的数学性质,还在各个领域中有着广泛的应用。

Fibonacci数列及其应用

Fibonacci数列及其应用

Fibonacci数列及其应用Fibonacci数列是一个有趣的数列,它的规律是每个数都是前两个数之和,即1, 1, 2, 3, 5, 8, 13, 21, 34……。

这个数列最初是由13世纪意大利数学家斐波那契发现的,因此得名Fibonacci数列。

小学数学中经常出现的一个问题是“一对兔子每年可以生一对小兔子,一对小兔子需要两年后才能成长为一对成年兔子,假设一开始只有一对成年兔子,请问n年后有多少对兔子?”用Fibonacci数列来解决这个问题非常方便:第n年共有F(n)对兔子。

除了用来解决这类问题,Fibonacci数列还有很多有趣的应用。

黄金分割Fibonacci数列和黄金分割密切相关。

所谓黄金分割,是指将一条线段分割成两部分,使其中一部分和全长的比等于另一部分和这一部分的比。

设将一段线段AB分割成a、b两部分(a+b=AB),则a/b=(a+b)/a,即a/b=(1+√5)/2,用φ表示(φ=(1+√5)/2)。

假设一间屋子的长宽比例是1:φ,则这个比例会让人感觉非常舒适,因此被称为“黄金比例”,是建筑、设计中常用的比例。

这个比例也是当今世界上大多数货币的比例。

例如,美元、欧元、日元等都是按照黄金分割来确定长宽比例的。

金融学中的应用Fibonacci数列在金融学中也有广泛的应用。

例如,在股票市场上,经常会有股价按照Fibonacci数列的规律波动的现象。

因此,投资者可以利用Fibonacci数列的规律来预测股票的走势。

此外,Fibonacci数列还可以用于制定投资策略。

例如,在黄金市场上,通常会采取Fibonacci数列为基础的投资策略,即按照Fibonacci数列的规律买进或卖出黄金,以获取最大的收益。

算法设计Fibonacci数列还可以用于算法设计。

例如,经典排序算法中的归并排序和快速排序都是基于类似于Fibonacci数列的递归算法设计的。

归并排序的过程是先将数组一分为二,然后将左半部分和右半部分分别归并排序,最后将两部分合并成一个已排序的数组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈菲波纳契数列的内涵和应用价值99数学本四班 莫少勇 指导教师 孙丽英摘 要 本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。

关键词 Fibonacci 数列 黄金数 优选法数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。

古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。

神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。

一. F ibonacci 数列的由来Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。

这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对?对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式:⎩⎨⎧==∈≥+=1F 1,F Z)n 3,(n F F F 212-n 1-n n若我们规定F 0=1,则上式可变为⎩⎨⎧==∈≥+=1F 1,FZ)n 2,(n F F F 102-n 1-n n 这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……,这串数列的特点是:其中任一个数都是前两数之和。

这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。

它的通项是F n =51[(251+)n+1-(251-)n+1],由法国数学家比内(Binet )求出的。

二.Fibonacci 数列的内涵(1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。

证法一:∵菲波纳契数列是一个2阶的线性齐次递推关系,它的递推方程是x 2-x-1=0,特征根是251± ∴通解是F n =C 1(251+)n +C 2(251-)n代入初值来确定C 1、C 2,得方程组⎪⎩⎪⎨⎧=-++=+125125112121C C C C 解这个方程组得 C 1=51251+, C 2=51-251- ∴原递推关系的解是 F n =51[(251+)n+1-(251-)n+1]证法二:设F n 的生成函数为 F(x) ,则有F(x)=F 0+F 1x+F 2x 2+……+F n x n +……x(F(x)-F 0)= F 1x 2+F 2x 3+…F n-1x n +……x 2F(x)= F 0x 2+F 1x 3+……把以上式子的两边由上而下作差得F(x)(1-x-x 2)+x=F 0+F 1x+(F 2-F 1-F 0)x 2+(F 3-F 2-F 1)x 3+…… =1+x+0+0+……∴F(x)=211x x --=)2511)(2511(1x x --+-=x A2511+-+xB2511--由⎪⎩⎪⎨⎧=++-=+0)251()251(1B A B A 解得A=5251+,B=5215- ∴F(x)= 5251+k k k x )251(0∑∞=+-5215-kk k x )251(0∑∞=- ∴取x=1,k=n ,则F n =51[(251+)n+1-(251-)n+1](2)在Fibonacci 数列中,前后两项的比值1+n nF F 是以黄金数0.618为极限的。

记b n=1+n n F F ,则有b 0=10F F =1 b 1=21F F =21b 2=32F F =32 b 3=43F F =53 b 4=54F F =85 b 5=65F F =138………… b n =1111-+n b在求数列{}n b 的极限之前我们首先来证明以下两个命题:(i )引理:Fibonacci 数列的任意相邻四项满足 F n-2F n+1-F n F n-1=(-1)n , n ≥3证明:根据行列式与线性方程组的关系,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=-+++11)251(251)251(251n n y x y x 的解是 x=25112511251)251(251)251(11+-++--++n n =51[(251+)n -(251-)n ]=Fn-1y=25112511)251(1)251(111+-+-++n n =51[(251+)n+1-(251-)n+1]=F n∴F n-1、F n 满足原方程组,于是有⎪⎪⎩⎪⎪⎨⎧-=+++=-++-+1111-n )251(251)251(251n n n n n F F F F 把以上方程组的两边对应相乘,得 [n n F F 2511-+-][n n F F 2511++-]=1)251(+-n 1)251(++n 整理得, F n-12+F n F n-1-F n 2=(-1)n+1(F n -F n-1)(F n +F n+1)-F n F n-1=(-1)nF n-2F n+1-F n F n-1=(-1)n 证毕。

(ii )数列{}n b 存在极限。

证明:由引理可知,当n=2k+1,F k-2F k+1-F k F k-1=-1<0:当n=2k ,F k-2F k+1-F k F k-1=1>0因此分别有k k F F 212-<2212++k k F F , k k F F 212->2212++k k F F即数列⎭⎬⎫⎩⎨⎧-n n F F 212递增,数列⎭⎬⎫⎩⎨⎧+122n n F F 递减。

显然,10,0≤<≠∀n b n , ∴数列{}n b 有界。

根据“单调有界数列必有极限”可知{}n b 2、{}12-n b 存在极限。

设n n b 2lim ∞→=A, 12lim -∞→n n b =B ,分别对b 2n =12111-+n b 及b 2n+1=nb 2111+两边取极限有A=B111+, 与 B=A111+即有B A 111+=与A B 111+= ∴BAB A A B AB A B -=-=-11,则必有 A=B ≠0 ∴数列{}n b 极限的存在性可证。

于是由(ii )我们可求n n b ∞→lim 。

根据Fibonacci 数列的通项以及251-<1得, n n b ∞→lim =1lim +∞→n n n F F=22n 11n )251()251()251()251(lim ++++∞→--+--+n n n =2511lim +∞→n =251-≈0.618三.Fibonacci 数列的应用价值科学家发现无论在数学领域还是在自然界中都有很多有趣的现象与Fibonacci 数列有关,现在举例如下:例1. 杨辉三角对角线上各数之和构成Fibonacci 数列,即F n =⎪⎩⎪⎨⎧+⋯++++⋯+++-+----为奇数时当为偶数时当)(n C C C C n C C C C n n nn n n nn n n 212)1(222211022110 例2. 多米诺牌(可以看作一个2×1大小的方格)完全覆盖一个n ×2的棋盘,覆盖的方案数等于Fibonacci 数。

例3. 从蜜蜂的繁殖来看,雄峰只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌 蜂,未受精的孵化为雄峰。

人们在追溯雄峰的祖先时,发现一只雄峰的第n 代祖先的数目刚好就是Fibonacci 数列的第n 项Fn 。

例4. 钢琴的13个半音阶的排列完全与雄峰第六代的排列情况类似,说明音调也与Fibonacci 数列有关。

例5. 自然界中一些花朵的花瓣数目符合于Fibonacci 数列,也就是说在大多数情况下,一 朵花花瓣的数目都是3,5,8,13,21,34,……。

例6. 如果一根树枝每年长出一根新枝,而长出的新枝两年以后,每年也长出一根新枝, 那么历年的树枝数,也构成一个Fibonacci 数列。

Fibonacci 数列的重要价值还在于它能作为一些实际问题的数学模型,从而使复杂的实际问题转化到我们熟悉的数学问题的解决上。

问题一:有一条n 级楼梯,如果每步只能跨上一级或两级,问欲登上去,共有几种走法?分析:由于登上n 级台阶可以从第n-2直接上来,也可以通过第n-1级分步上来,这样登上n 级台阶的走法不仅与登上n-1级走法有关,且也与登上n-2级台阶的走法有关,故这里可以考虑通过二阶递推式来进行求解。

解:登上第一级只有一种走法,记a 1=1,登上第二级,有两种走法,记a 2=2,如果要登上第n 级,那么可能是第n-1级走上来,也可能是第n-2级跨上两级上来的,故有 a n =a n-1+a n-2显然这是缺了F 0项的Fibonacci 数列,它的通项为 F n =51[(251+)n+1-(251-)n+1]所以要登上第n 级楼梯,共有F n 种不同的走法。

问题二:某一种产品的质量取决于它的温度,这个温度估计在10000C —1500C 之间,怎样试验才能找到最好的温度? 有人从1001C 开始做试验,一直做到1499C ,共做499次试验,找到了最好温度,这叫均分法。

显然这是一种很笨的方法。

若我们利用Fibonacci 数列的知识只须做13次实验就可达到同样的效果。

1000n-1n-2中点n-3这里我们利用Fibonacci 数列中1+n nF F 的极限251-,因为它是无理数不好计算,所以取它的三位不足近似值0.618来代替它。

我们用一张有刻度的纸条上写上10000C —15000C ,在15000C 的点记为F n ,第一次试验在纸条总长的0.618处即13090C 处取第一个试验点记为F n-1,使得nn F F 1-=0.618第二次试验,将纸条对折,找到与13090C (即F n-1)相重合的点,即11910C 点记为F n-2,显然F n-2=F n -F n-1,取F n-2作第二个试验点,比较F n-1和F n-2,如果F n-2处比F n-1处好,就将F n-1的右边的纸条剪去(反之,剪去F n-2左边的一段)。

相关文档
最新文档